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1. Introduction 

It has been shown in the previous investigations (Pradhan et al., 2002; Obolensky et al., 

2011a, 2011b) that the postsynthesis treatment (e.g. chemical, heat treatment, milling, 

irradiation etc.)  of single-walled carbon nanotubes (SWCNT) can essentially change their 

sorption properties. Methods of SWCNT synthesis and features of the postsynthesis 

treatment of the SWCNT show in numerous experiments a wide range of gas (e.g. hydrogen 
etc.) mass contents in SWCNT ranging from extremely low (less than 0.1 wt%) to 

significantly high (more than 6 wt%) values. Unfortunately, none of the claims of hydrogen 

storage exceeding the DOE limit have been confirmed. For recent review of effect of 

synthesis method and post-treatment of CNTs, see Ref. (Chang & Hui-Ming, 2005). 

So, it is well established that hydrogen storage capacity of CNTs depends on many 

parameters including their pretreatment, types and structural modifications etc. One of the 

ways seems to be highly influential and it is the generation of appreciable structural defects 

in the tube walls. However, the increase in defects in graphitized layers of CNTs should be 

limited otherwise their structure would be destroyed which might lead to lowering of 

interaction or potential energy between the hydrogen molecules and carbon atoms. For 

instance, non-optimized electron irradiations severely destroy the graphitic network of 

CNTs  (Banhart et al., 2002) which is not desirable for application purposes. 

It has been reported that postsynthesis treatment can easily induce defects in the wall of 

SWCNT (Pradhan et al., 2002; Banhart et al., 2002; Hashimoto et al., 2004). The possibility of 

molecular hydrogen adsorption by the defect sites can also be considered. The experimental 

investigations of above mentioned factors as well as the result of irradiation on to SWCNT 

sorption capability are reported in this study. 
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2. Experimental 

2.1. Materials 

The arc-derived as-prepared (AP) SWNT material used in the present studies was obtained 

from Carbon Solutions, Inc.. All data reported here are collected using materials from the 

same batch of SWNT material. 

The impurities in AP-SWNTs may be divided into two categories: carbonaceous 

(amorphous carbon and graphitic nanoparticles) and metallic (typically transition-metal 

catalysts). Thermogravimetric analysis (TGA) can be used to analyze the amount of metallic 

components quantitatively whereas Raman spectroscopy can be used to estimate 

qualitatively the carbonaceous impurities in AP and purified-SWNTs. 

The AP SWNT (Carbon Solutions, Inc.) material has 21 to 31 percent of impurities which is 

consistent with the previously reported (Itkis et al., 2003) 34.5 ±1.8 percent impurities range. 

For purification of SWNTs the following technique has been used (Pradhan et al., 2002; 

Obolensky et al., 2011b). The SWNT (Carbon Solutions, approximately 1g amount) was 

oxidized in open air at 3500C temperature for 30 minutes and then heated in 2.6 M HNO3 for 

20 hours. After above procedure the treated CNTs were flushed in methanol and then in 

water until  the neutral reaction was achieved, dried in air and then were annealed in deep 

vacuum (10-8 bar) for 20 hours at  800оС temperature. Identification of the gases allocated in 

an act of warming of a sample at 850оС was carried by mass-spectrometry (МХ-7203). 

Working pressure in the chamber of the mass-spectrometer was 10-4 Па. Approbation of 

nanotubes purify technology was carried out and 700 milligrams of the purified nanotubes 

were obtained (metal 6-9 at. %). 

After chemical treatment, CNTs were milled at liquid nitrogen temperature in a stainless 

steel ball mill. Milling duration was 60 minutes with interruption after each 5 minutes for  

CNT samples’ microscopic control. After the milling procedure finishing the “ball mill” was 

heated up to the room temperature and CNT samples were sieved through a 63 μm sieve 

(Obolensky et al., 2011b). 

2.2. Experimental facility 

The method for SWNT electron bombardment irradiation was elaborated. In contrast to 

(Obolensky et al., 2011a) where the exposure of γ – quantum 105 Rad was used (this dose is 

equal to regime of electron bombardment ~3*1012 e-/cm2) the fluence in the work reported 

here was 1013-2*1015e-/cm2. The electron bombardment procedure was carried out at room 

temperature on the ELIAS linear accelerator  (National Science Center “Kharkov Institute of 

Physics and Technology”). The electron energy was 2.3 MeV and beam intensity was 0.2 

μA/cm2. The main parameters of ELIAS accelerator are specified in Table 1. 

Study of sorption/desorption process was carried out using the standard volumetric 

method (Obolensky et al., 2011a, 2011b). Hydrogen desorption out from SWNT was also 
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studied on the mass spectrometer MX7203. The schematics of the experimental facility used 

with both measurement methods is shown in Figure 1. 

 

Parameters Values 

Energy of accelerated electrons 0.5- 3.0 MeV 

Beam current (without scanning) 0.5-150 μА 

Max beam current (with scanning): up to 500 μА 

Electron beam disperse 10-4 radian 

Diameter of electron beam without focusing 1,0 сm 

Diameter of electron beam with focusing, for 90% capacity <1 mm 

Vacuum in electron beam line 1x10-7 mbar 

Power consumption 20 кW 

Table 1. Parameters of ELIAS accelerator 

 

Figure 1. Experimental facility schematics (Obolensky et al., 2011b). Vc – total accurate including 

manometer and supply pipelines; V1 – vessel with pure gas; V0 – ampoule with carbon nanotubes 

sample; H2 – non-purified hydrogen source 

Raman spectra studies at ambient conditions with 514 nm laser line were carried out for 

some samples at the Physics Institute of the Penn State University. 
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3. Results 

3.1. Adsorption studies of non-irradiated samples 

Study of sorption/desorption process was carried out using the standard volumetric method 

on a custom designed and manufactured manufactured vacuum stainless steel facility which 

included the known good unit volume VE and measuring vessel with volume VМ. Part of 

measuring vessel V78 was cooled down to liquid nitrogen vaporisation temperature of ~ 78 

K. Before measurements the facility was calibrated. The good unit with volume VE was 

inflated by gaseous helium or hydrogen with pressure РI ~ 10 bar at room temperature 

which has been measured with  ± 0.5 К precision. The pressure was controlled by electronic 

manometer GE Druck 104 with 1 mbar resolution. After the total facility volume V = VE + 

VМ was filled up, the pressure dropped to the value of PF = VEPI(VE + VМ - VA). This 

circumstance allowed exact determination of the volumes relation, taking into account the 

ampoule volume VA without sample. Above relation for hydrogen and helium was found 

equal with approximately ~ 0.01 percent accuracy and therefore the hydrogen sorption by 

vacuum system elements could be excluded from consideration. After this procedure, the 

container with ampoule was cooled to temperature 78 K and relation РW/РF was determined, 

where РW is the pressure in the system after cooling. 

The measurement of physically absorbed hydrogen was conducted in accordance with the 

following procedure. Firstly, after cooling down the container to temperature 78 K the 

system was evacuated to pressure ~ 0.1mbar for gaseous hydrogen elimination. The next 

step was pressure increase registration in the system during container heating, caused by 

hydrogen desorption process. 

The samples of SWNT with mass of 80 – 300 mg (estimated bulk density  ~ 1000 kg/m3) were 

used for the experiments on the volumetric facility. The pressure drop character dynamics 

during container with non-irradiated samples cooling are shown in Figure 2. 

 

Figure 2. The dependence of pressure drop in the container with non-irradiated CNT samples upon 

time during container with samples cooling (PF = 5035 mbar) (Obolensky et al., 2011b) 
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In Figure 2, one can see three sections with different sorption dynamics. On the base of 

comparison of this pressure drop dynamics with pressure drop dynamics for calibration 

stroke the following can be noted.  The pressure drop relative to the empty container was 

observed already at room temperature during the letting-to-hydrogen and this pressure was 

noted at a ~ 20 mbar level.  The additional pressure decrease was observed during further 

container cooling to  78 K temperature and at different cooling cycles this value was 10 – 15 

mbar. 

The pressure in the system during whole system heating was less than the pressure before 

the beginning of cooling by 10 – 12 mbar. Apparently this fact could be explained by any 

amount of hydrogen staying in binding state at room temperature after desorption. We 

didn’t register this phenomenon on repeat of the heating-cooling cycles. 

Figure 3 illustrates the correlation of pressure and temperature in the system for two 

evacuating regimes: fast (3 min) and gradual (15 min). Apparently already at  78 K 

temperature the increase of the duration of evacuation causes significant desorption and 

consequently elimination of part of hydrogen out from the system even before the beginning 

of heating. The duration of container heating for both regimes was approximately 25 – 30 min. 

 

Figure 3. The dependence of pressure in the container with non-irradiated CNT samples upon 

temperature during container heating for different evacuation rates (Obolensky et al., 2011b) 

The temperature dependences of hydrogen density in volume situated at heating regime 

(V78) and in the rest facility volume at ambient temperature are shown in Figure 4. It could 

be seen that the main hydrogen mass is exuded at temperature T< 160 K that is caused by 

relatively low value of physical absorption activation energy. Pressure difference occurring 

at container heating without evacuating and initial pressure РF as noted earlier is caused by 

other mechanism with higher values of desorption energies and it can be related to 

chemosorption regime with higher characteristic temperatures. 

Our estimations show that at different sorption/desorption cycles the amount of hydrogen 

located in non-irradiated SWNT was equal to 0.12 ±0.2 mass percent. 
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Figure 4. The dependence of hydrogen density in container with non-irradiated CNT samples upon 

temperature during container heating for different evacuation rates (Obolensky et al., 2011b) 

3.2. Adsorption studies of irradiated samples 

Hydrogen storage was studied with 2.5-90 mg samples. Saturation was carried out at liquid 

nitrogen temperatures (~78 K), and 300 K and at pressures between 3 and 10 bar. The 

measurement of physically absorbed hydrogen was conducted in accordance with the 

following procedure. 

First, after cooling the container down to 78 K temperature  the system was evacuated to ~ 

0.1 mbar of pressure for gaseous hydrogen elimination. Next, pressure in the system during 

container heating up to room temperature caused by hydrogen desorption process was 

registered. Hydrogen desorption out from SWNT was also studied in the 0-900 C 

temperature range by mass-spectrometry method on the MX 7203 mass spectrometer. 

Our estimations (Obolensky et al., 2011b) show that at different sorption/desorption cycles 

the amount of hydrogen located in non-irradiated SWNT was equal to 0.12 ±0.2 mass 

percent. Hydrogen desorption from treated and exposed to physical sorption/desorption 

procedure material at pressures ~3000 mbar as it is described above has been studied with 

the use of mass-spectrometry method within the 0 – 900 °C temperature interval on the MX 

7203 mass spectrometer. The dependencies of the amount of hydrogen extracted from non-

irradiated (a) and irradiated up to the fluence of 1014 e-/сm2 (b) SWNT samples upon 

temperature are shown in arbitrary units in Figure 5. 

As can be seen from Figure 5 the amount of hydrogen desorbed from irradiated material is 

approximately 2.5 times higher compared with that desorbed from the non-irradiated 

material. We have to draw attention to the fact that all procedures of the sorption/desorption 

processes were carried out at the 78 – 300 К temperature interval but at the same time  

significant amount of hydrogen is desorbed at temperatures higher than 300 K. There are 

additional peaks on the desorption curve which apparently correspond with different 



 
Postsynthesis Treatment Influence on Hydrogen Sorption Properties of Carbon Nanotubes 173 

sorption sites appearing as the result of irradiation and can be characterized by various 

activation energies. It should be noted that over a long period of time of samples staying in 

air between irradiation procedures and hydrogen saturation, complete saturation generated 

by irradiation sites filling by the molecules of other gases has not been detected. The data in 

Figure 5 can be presented in another form (Figure 6) i.e. as additional amount of hydrogen 

desorbed from irradiated sample (Δ - the difference between the irradiated and not 

irradiated samples). 

 

Figure 5. The dependencies of amount of hydrogen (arbitrary units) exuded from non-irradiated (a) 

and irradiated up to fluence 1014 e-/сm2 (b) samples upon temperature (Obolensky et al., 2011b) 

In order to control the structural transformations of CNTs, it is important to clearly 

understand the defect generation mechanism and to realize the extent of defects and their 

influence on sorption properties of CNTs. Acid or alkali treatment does not routinely 

improve the hydrogen storage capacity of CNT samples. A suitable ball-milling treatment 

and activation process can open the caps of CNTs and produce more structural defects, and 

therefore may be beneficial in improving their hydrogen storage properties (Chang & Hui-

Ming, 2005). In this connection we investigated the effect of electron irradiation on the 

hydrogen adsorption property of SWNTs without mechanical milling.  

Five AP samples (cf., Table 2) have been annealed in vacuum during 10 hours at 8000C 

temperature. The first sample (#1) was retained as the control sample. Sample #2 has 

remained for control and three samples (#3-5) were irradiated with various fluence (5*1014, 

1015 and 2*1015e-/cm2). After that, four samples (#2-5) were saturated at 10 bar pressure for 3 

hours at 78 K temperature.. 



 
Hydrogen Storage 174 

 

Figure 6. The dependence of additional amount of hydrogen (arbitrary units) desorbed from irradiated 

up to fluence 1014 e-/сm2 sample upon temperature (Obolensky et al., 2011b) 

 

Sample 
Vacuum anneal 

T (°C)/time (h) 

Electron irradiation fluence

(e-/cm2)/time (sec) 

Hydrogen sorption 

T (K)/P (bar) 

ΔH2 

(wt%) 

1 800/10 - - - 

2 800/10 - ~78/10 0.13 

3 800/10 5*1014/327 ~78/10 0.12 

4 800/10 1015/706 ~78/10 0.16 

5 800/10 2*1015/1340 ~78/10 0.22 

Note: For sample #2 Δ H2 - the difference between irradiated and non-irradiated samples. For samples #3-5, ΔH2 - 

thedifference between saturated and non-saturated samples. 

Table 2. Sample history for adsorption studies 

The dependencies of the amount of hydrogen extracted from the samples upon temperature 

are shown in arbitrary units in Figure 7. As can be seen from this Figure, the desorption 

curves were displaced in comparison with those for the samples exposed to all stages of 

treatment (i.e. oxidation, chemical treatment, annealing and milling shown in Figure 5.. 

For not irradiated samples the curves have remained similar, with some displacement of the 

maximum peak in the area of lower temperatures for the non-chemically treated and non-

milled sample (2, Table 2). At the same time, the character of the curves for the irradiated 

samples (3-5, Table 2) essentially differs from the Ref. (Obolensky et al., 2011b). 

Characteristic peaks in the vicinity of 400 K and 650 K temperatures for the Ref. (Obolensky 

et al., 2011b) practically do not become visible for samples 3-5 (Table 2). With increase in 

fluence, the amount of hydrogen desorbed from irradiated samples is reduced for the given 

range of temperatures (Figure 8 and Figure 9). 

As the temperature of samples at irradiation did not exceed 400C (Figure 10), most likely the 

temperature factor could not affect decrease in the amount of hydrogen desorbed from the 

irradiated samples in comparison with the non-irradiated samples. This feature needs 

additional study. 
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Figure 7. The dependencies of the amount of hydrogen (arbitrary units) exuded from samples (Table 1) 

upon temperature 

 

Figure 8. The dependence of the additional amount of hydrogen (the difference between saturated and 

non-saturated samples; arbitrary units) exuded from non-irradiated samples (Table 2) upon 

temperature 

 

Figure 9. The dependencies of the additional amount of hydrogen (the difference between saturated 

non-irradiated sample and saturated irradiated samples; arbitrary units) for irradiated samples (Table 

2) upon  temperature 
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Figure 10. The dependence of samples temperature on the irradiation time (fluence 1015e-/cm2) 

3.3. Raman scattering studies 

Raman scattering is a sensitive probing of the structure and bonding in carbon materials, 

particularly carbon nanotubes. Raman scattering spectra for seven sets of samples (cf., Table 

2) taken at room temperature in the range 100 to 3200 cm-1 are given in Figures 11-15.. 

The dominant spectral features include the low-frequency radial breathing modes (RBM) in 

the range approximately 150 to 200 cm-1 and the higher frequency modes in the range 1300 

to 2700 cm-1 (Figure 11).  

The SWNT tangential displacement modes observed near approximately 1600 cm-1 (G band) 

are related to the high frequency vibrational modes of a flat graphene sheet. The band (at 

1300 cm-1), commonly called the D band, has been observed in many sp2-bonded carbon 

materials and is associated with disorder in the hexagonal carbon network. 

 

Sample Sample history Vacuum anneal 

T (°C)/time (h) 

Metal (at. %) 

1 AP SWNTs a), irradiation b) - 21-31 

2 AP SWNTs a) irradiation b), sorption c) - 21-31 

3 AP SWNTs a), sorption c) 1000/20 21-31 

4 Treated d), milling, sorption c) 1000/20 6-9 

5 Treated d), milling, irradiation b) - 6-9 

6 Treated d), milling, irradiation b), sorption c) - 6-9 

7 Treated d), milling, irradiation e), sorption c) 1000/20 6-9 

a) AP-SWNT “Carbon Solution” 
b) Electron irradiation – 1013 e-/cm2 (time – 375 sec) 
c) Sorption – 78 K and 10 bar  
d) Heated in 2.6 M HNO3 during 20 hours 
e) Electron irradiation – 2*1013 e-/cm2 (time – 625 sec) 

Table 3. Sample history for adsorption studies 
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Figure 11. Room-temperature Raman spectra of bundles of arc-derived carbon nanotubes at various 

stages of post synthesis (Table 3). The Raman spectra were taken using 514-nm excitation 

From the analysis of Raman spectra, it follows that the RBM frequency, ωR, is inversely 

proportional to the tube diameter, d, while its value is up-shifted owing to the intertube 

interaction within a SWNT bundle (Pradhan et al., 2002). One of the empirical relations 

between d and ωR, applicable for bundled SWNT is (Pradhan et al., 2002) is d (nm) = [224 

cm-1 nm]/ [ωR (cm-1) - 12 cm-1]. According to this equation, the main RBM peaks (Figure 12) 

at 163-166 cm-1 correspond to SWNT with a diameter of ~1.46 nm, whereas the shoulder at 

~150 cm-1 is related to SWNT with a diameter of ~1.62 nm. 

 

Figure 12. Raman spectra (RBM) at 514nm laser excitation energy (Table 3) 
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The intense Raman G-band at a higher energy corresponds to the C–C stretching vibrations 

in tangential and axial directions of the SWNT that splits to G- (tangential) and G+ (axial) 

bands located at 1566-1571 cm-1 and 1588-1602 cm-1, respectively. The shape of the G--band is 

sensitive to the electronic properties (strongly related to chirality) of SWNT. 

 

Figure 13. Raman spectra (D band) at 514nm laser excitation energy (Table 3) 

D band (1341-1352 sm-1, Figure 13) testifies to presence in samples of amorphous carbon and 

defects in structure of SWCNT. The ratio of peak intensity D band to peak intensity G band 

allows to judge as a level of crystallization and quantity of defects. It is possible to see that 

for samples which were not exposed to chemical treating and cryogenic milling (#1-3), 

intensity of peak D is minimal (0.03-0.036; I(D)/I(G)= 0.333-0.793, fig.14) and quantity of 

defects in structure of SWCNT was small. 

Intensity of peak D band culminates for sample #5 (0.498; I(D)/I(G)= 2.129, Figure 14) which 

was exposed to chemical treating and cryogenic milling, but was not exposed to high-

temperature heating in vacuum, to an irradiation and to hydrogen saturation. 

 

Figure 14. Distribution of the intensity ratio I(D)/I(G) for samples (Table 3) 
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Intensity of peak D for sample #6 which differed from sample #5 only on stages of hydrogen 

sorption is a little bit lower (0.275; I(D)/I(G)= 1.389, fig.14), but considerably exceeds 

intensity of peak D for samples #1-3. Apparently, during hydrogen sorption there was 

"treatment" of defects due to introduction of hydrogen in vacant sites of SWCNT. 

Addition to the above-stated procedures of high-temperature heating in vacuum (samples 

#7 and #4) leads to essential decrease in intensity of peak D (0.062 and 0.107; I(D)/I(G)= 0.185 

and 0.239, Figure 14). Most likely, at once two factors here dominate: treatment due to 

heating and treatment due to formation of С-Н bond. 

Range G' (2672-2686 cm-1, Figure 15) which characterizes presence of "positive" or "negative" 

defects in SWCNT is submitted in spectra and has the obvious tendency: hydrogen sorption 

lowers intensity of this peak and leads to displacement of peak "to the left" in short-wave 

area of a spectrum. 

 

Figure 15. Raman spectra (G' band) at 514nm laser excitation energy (Table 3) 

4. Conclusion 

The amount of hydrogen desorbed from non-irradiated samples was 0.12 ±0.2 mass percent. 

The significant increase (more than two times) of hydrogen mass absorbed in irradiated 

SWCNT samples (1014 e-/сm2) relative to non-irradiated ones has been proved. For samples 

irradiated with fluences more than 1014 e-/сm2 the decrease of hydrogen desorption was 

observed. 
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