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1. Introduction 

The hydrogen is a clean fuel source, which produces water vapor as the only exhaust gas 

when it is burnt with oxygen. The chemical energy density of hydrogen (142 MJ/kg) is at 

least three times larger than that of other chemical fuels. When the hydrogen is 

electrochemically burnt using a fuel cell system, the efficiency can reach 50~60%, twice as 

much as the thermal process because the efficiency of the direct process of electron transfer 

from oxygen to hydrogen in a fuel cell system is not limited by the Carnot efficiency in [1]. 

However, the hydrogen volume is 3000 times higher than that of gasoline at room 

temperature and atmosphere because it is a molecular gas. Therefore, on-board hydrogen 

energy storage need compact, light, safe and affordable containment. The condensation of a 

monolayer of hydrogen on a solid leads to a maximum of 1.3x10–5 mol/m2 of adsorbed 

hydrogen. For automotive applications, the US DOE required a hydrogen storage capacity 

of greater than 6.5 wt% and ambient temperatures for hydrogen release and moderate 

storage pressures for industrial applications. Hydrogen storage in carbon materials is a very 

attractive field since high gravimetric storage capacities may be possible owing to the low 

specific weight and high specific surface area of carbon. The reversibly adsorbed quantity of 

hydrogen on nanostructure graphitic carbon amounts to 1.5 mass% per 1000 m2/g of specific 

surface area at 77 K (liquid nitrogen temperature) in [1]. On active carbon with the specific 

surface area of 1315 m2/g, 2 mass% of hydrogen was reversibly adsorbed at a temperature of 

77 K in [2]. Carbon materials with different nanostructures are available for hydrogen 

storage, e.g. carbon nanofibers (CNF), graphite nanofiber (GNF), carbon nanohorns, 

multiwalled carbon nanotubes (MWNT), and single-walled carbon nanotubes (SWNT). 

Since the excellent 6 to 8 wt% hydrogen storage using carbon nano-materials at room 

temperature and with atmospheric pressure was first reported in [3], several studies on 

hydrogen storage using SWNT, MWNT, GNF, active carbon, and active carbon fibers etc., 
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have been conducted in [4,5]. The hydrogen adsorption of 4.2 wt% (0.5-H/C) at 100 bars and 

at room temperature was observed using SWNT synthesized through the arc electric 

discharge method in [6]. A hydrogen adsorption of approximately 3 wt% at 3~100 MPa and 

room temperature was reported using a well-aligned SWNT bundle in [4]. The hydrogen 

storage of SWNTs measured using volumetric method, however, showed scattered 

capacities within the range of 0.03~4 wt% at room temperature because of introduction of 

some error during the measurement in [7,8]. As listed in Table 1, SWNTs in more accurate 

volumetric measurements showed low capacity within the range of 0.14~0.43 wt% and 

results for MWNTs and graphite powder were less than 0.04 wt% in [9]. Despite the large 

volume of data from studies conducted on SWNTs, MWNTs, GNFs, etc., as potential 

hydrogen storage materials, these data are scattered and are thus inconclusive. 

Carbon 

nanomaterials 

Sources Evaluation H2 Storage 

capacity Temperature/Pressure  

SWNT Carbon nanotechnology 

Inc. 

298 K / 80 bars 0.43 wt% 

SWNT MTR, Ltd (20~40% 

purity) 

298 K / 80 bars 0.14 wt% 

MWNT ground core, Strem 

Chemicals, Inc 

298 K / 80 bars < 0.04 wt% 

SWNT arc-discharge 300 K /145 bars 0.2~0.4 wt% 

MWNT acetylene pyrolysis 300 K /145 bars 0.2~0.6 wt% 

MWNT arc-discharge 300 K /145 bars 2.6 wt% 

aligned MWNT 

bundle 

ferrocene pyrolysis 300 K /145 bars 1.0~3.3wt% 

aligned MWNT 

bundle 

ferrocene/acetylene 

pyrolysis 

300 K /145 bars 3.5~3.7wt% 

GNF acetylene pyrolysis - 2.4 wt% 

GNF hexane/ferrocene 

pyrolysis 

298 K /100 bars 1.29~3.98 wt% 

Commercial ACF A-20(Osaka Gas 

Chemicals Co. Ltd) 

/FT300-20(Kuraray 

Chemical Co., Ltd)_ 

298 K / 80 bars 0.35~0.41 wt% 

vitreous carbon 80-200μm, 99.5% purity 

(Goodfellow Cambridge, 

Ltd.) 

298 K / 80 bars < 0.04 wt% 

Graphite powder 200μm, 99.997% purity 

(Goodfellow Cambridge 

Ltd.) 

298 K / 80 bars < 0.04 wt% 

Table 1. The hydrogen storage capacities of several carbon nano-materials evaluated by using the PCT 

and gravimetric method. 
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Typical carbon materials, such as active carbon, active carbon fiber, and graphite powder, 

were also investigated as potential materials for hydrogen storage. Purified SWNT (285 

m2/g) and saran carbon (1600 m2/g) with a high BET surface area were also reported to have 

a hydrogen adsorption of approximately 0.04 and 0.28 H/C, respectively, at 0.32 MPa and 80 

K in [5]. Large hydrogen adsorption was also observed by a micro porous zeolite and active 

carbons at 77 K under atmospheric pressure in [10]. In the case of highly porous carbon (AX-

21 carbon), very high hydrogen adsorption of 5.3 wt% (0.64 H/C) was observed at 77 K and 1 

MPa in [11]. However, active carbon materials with very high surface areas showed very 

low capacities at room temperature. This may be due to the very low levels of the effective 

pore size for hydrogen storage in spite of their high surface areas. The hydrogen storage 

capacity of materials surface greatly depended on the adsorption potential energy between 

the materials and hydrogen molecules. But too high adsorption potential energy may give to 

irreversible storage with chemisorptions of hydrogen molecule. The potential fields from 

opposite walls may overlap so that the attractive force acting on hydrogen molecules is 

greater than that on an open flat surface. Therefore, in micro porous carbon materials the 

pores with a width not exceeding a few hydrogen molecules may be more effective pores for 

hydrogen storage because of the dynamic diameter of hydrogen molecule with 0.41 nm, in 

[1]. 

TiO2 nanotubes could reproducibly store up to about 2 wt% H2 at room temperature and 60 

bars in [12]. However, only 75% of the H2 is physisorbed and can be reversibly released 

upon pressure reduction. Approximately 13% is weakly chemisorbed and can be released at 

70 °C as H2, and 12% is bonded to oxide ions and released only at temperatures above 120 

°C as H2O. The sorption of hydrogen between the layers of the multilayered wall of 

nanotubular TiO2 was also investigated in the temperature range of -195 to 200 °C and at 

pressures of 0 to 6 bar and it got a 1~2.5 wt% hydrogen sorption at 1 bar and temperatures in 

the range 80 to 125 °C, in [13]. The hydrogen storage capacity of 0.83 wt% using ZnO 

nanowires with the mean diameter of 20 nm was found under the pressure of about 3.03 

MPa and at room temperature, and about 71% of the stored hydrogen can be released under 

ambient pressure at room temperature, in [14]. And also hydrogen storages using MoS2 

nanotube and TiS2 nanotube were investigated in [15,16]. So we need the study on the 

effective pore size of materials with appropriate adsorption potential energy for hydrogen 

storage at room temperature rather than large surface area of materials.  

Carbon fibers have been used in a variety of fields as high-performance and functional 

materials. Woven or nonwoven carbon fibers are used as absorbed materials because of 

better adsorption capacity than conventional activated granular and powder carbon 

materials. They are being applied to gas separation and liquid adsorption. Saran carbons 

showed higher the hydrogen storage capacity than that of other active carbon materials, in 

[5]. Poly(vinylidene fluoride) (PVdF) also can be used in obtaining meso porous carbon 

similar to saran polymers, in [17]. The carbonization of PVdF can also produce a 

polyacetylene or carbyne structure and its pore size may be smaller than that of saran 

carbon due to the small size of the fluorine atom. Nano-sized fibers may be more helpful in 

obtaining carbon materials with a well-defined pore structure compared to the 
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carbonization of micro-sized polymer fibers. Because thinner fibers are expected to be more 

desirable for those separation and adsorption applications, there has been growing interest 

in electrospinning for producing ultrafine fibers.  

The recent electrospinning process for polymer or metal oxide sole gel solutions is a 

powerful method for producing ultrafine fibers within the range of a few to a few hundred 

nanometers in diameter, core-shell nanostructure nanofibers, etc., which cannot be easily 

obtained using traditional methods. There is a growing interest in the electrospinning 

process of polymer or metal oxide sol-gel solution because of their several potential 

applications such as ultrasensitive gas sensors, polymer electrolytes for lithium ion polymer 

battery, dye-sensitized solar cell etc., in [18~22]. Thus, such electrospun polymeric 

nanofibers can be used as effective precursors for carbon nanofibers. In addition, a transition 

metal would promote carbonization and graphitization of polymeric precursor, which was 

verified for Kapton films by various research groups, in [23~25]. Recent reports showed the 

effects of a transition metal on the carbonization behavior of the electrospun polyimide 

nanofiber, PAN nanofibers and PVdF nanofibers, resulting in graphite nanofiber (GNF), in 

[26,27]. And also electrospinning of metal oxide sol-gel solution provide metal oxide 

nanofibers with various morphologies after calcinations. They are also expected to have 

some hydrogen storage because of higher adsorption potential energy between the metal 

oxide materials and hydrogen molecules although they had much lower surface area than 

those of electrospun polymer based carbon nanofibers. 

 In this chapter, the preparation of carbon nanofibers, graphite nanofiber, and metal oxide 

nanofibers such as titanium oxide and lithium titanate nanofiber through heat-treatment of 

electrospun precursor nanofibers, their structural properties such as surface area and pore 

size, and morphologies were investigated. And their hydrogen storage capacities discussed 

with their pore size and surface area. 

2. Results and discussion 

2.1. Morphology and crystalline structure of CNFs, GNFs, and lithium titanate 

nanofiber 

Polyacrylonitrile (PAN) typically has been used for preparation of carbon fiber with high 

performance. Carbonizations of PVdF or saran polymers also give to meso porous or micro 

porous carbon materials. Ultrafine structure of electrospun PVdF nanofibers is expected to 

be suitable for the formation of pores which are effective for hydrogen adsorption, 

compared to PVdF films or microfibers. So, micro porous carbon nanofibers as hydrogen 

storage materials were prepared through the carbonization of as-electrospun PAN and 

PVdF nanofibers. As-electrospun PAN or PVdF-based nanofibers were prepared from the 

typical electrospinning of the polymer solution containing several contents of iron (III) 

acetylacetonate (IAA) on the weight of the polymer as a catalyst for graphitization. Carbon 

nanofibers (CNF) and graphite nanofiber (GNF) were prepared from carbonization after 

stabilization of them, in [28~31].  
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Firstly polyacrylonitrile (PAN) solutions for electrospinning were prepared by dissolving 

PAN (Mw 150,000, polyscience) in N,N’-dimethylacetamide. The PAN solutions contained 0 

wt%, 2 wt%, 5wt%, and 7.5 wt% of iron (III) acetylacetonate (IAA) on the weight of the 

polymer as a catalyst for graphitization. As-electrospun PAN-based nanofibers were 

stabilized by heating them at  a rate of 1 oC/min up to 260 oC, and by holding them for 2 hrs 

under air atmosphere. Carbonization was performed at a given temperature within the 

range of 900 to 1500 oC under nitrogen atmosphere. The samples were kept for 1 hr 

sequentially at 400 and 600 oC and then heated up to final temperature at a rate of 3 oC/min. 

As-electrospun PVdF nanofibers were also obtained from electrospinning of 11 wt% PVdF 

solution (Kynar 761) in acetone/N,N’-dimethylacetamide (=7/3, wt. ratio) mixture. They 

were slightly dehydrofluorinated (DHF) in the methanol/ N, N’-dimethylacetamide (=9/1 

wt. ratio) solution containing 10 ml of 1,8-diazabicyclo[5.4.0] undec-7-ene (DBU) at 50 oC for 

5 hours. They were also highly dehydrofluorinated in the methanol/DBU (=1/2 wt. ratio). A 

PVdF solutions for GNFs were prepared by dissolving 11 wt% of PVdF in 100 ml of 

acetone/N,N’-dimethylacetamide (=7/3, wt. ratio) mixture containing 25 ml of 1,8-

diazabicyclo[5.4.0] undec-7-ene for partial dehydrofluorination and also contained 5.5 wt% 

of IAA based on the weight of the polymer as a catalyst for graphitization. As-electrospun 

PVdF nanofibers for GNFs were chemically dehydrofluorinated with a 4 M aqueous NaOH 

solution containing 0.25 mmole of tetrabutylammonium bromide at 70 oC for 1 h. 

Carbonization was performed to induce micro pore structures without a further activation 

process at a given temperature within the range 800~1800 oC under a nitrogen atmosphere. 

The samples were heated at a rate of 3 oC/min and were maintained for 1 h at the final 

temperature. 

Figure 1 shows the SEM images of electrospun PAN- and PVdF-based CNFs. In the case of 

as-electrospun PAN-based nanofiber with a diameter of about 90 nm the fiber diameter 

hardly changed during the carbonization at 1300 oC, while that with a diameter of about 240 

nm remarkably shrank to 110 nm and showed roughened surfaces. Solvent evaporation 

during the electrospinning process greatly has an effect on internal structure of the resulting 

PAN nanofibers. Thin fiber is denser and has a higher orientation than thick fiber because it 

is formed at a much higher draw ratio and with a much faster solvent evaporation during 

the electrospinning process. Oxidation and carbonization of the above as-electrospun PAN 

nanofibers were carried out under a tensionless condition or with a slight tension. Therefore, 

the dimensions of dense, highly oriented ultrathin fibers are thought to hardly change 

during carbonization and the PAN-based CNFs showed very smooth surfaces. In the case of 

as-electrospun PVdF nanofibers, it is also necessary to make the nanofibers infusible to 

maintain their fibrous shape through dehydrofluorination (DHF) treatment before the 

carbonization. The effect of DHF treatment in the carbonization of PVdF polymer has been 

reported in previous studies, in [17]. The structure of the PVdF-based CNFs greatly depends 

on the DHF condition, in [30]. The carbon nanofibers carbonized after a high DHF treatment 

had very smooth surfaces and dense, nonporous structures in Figure 1(c), while slightly 

DHF treatment gave to the micro porous carbon nanofibers with granular-shaped surfaces, 

and with an internal structure consisted of 20 to 30-nm carbon granules after carbonization 



 
Hydrogen Storage 186 

at above 800 oC, as shown in Figure 1(d). The pore structure became dense with the increase of 

carbonization temperature, indicating the formation of micro pores at higher temperature. The 

slight DHF treatment of PVdF nanofibers induced inhomogeneous structures consisting of the 

DHF-treated, amophorous region and the non-reacted crystalline region. The non-reacted 

crystalline region melted at a high temperature while the dehydrofluorinated region 

maintained its fibrous shape during the carbonization. The onset temperature and the amount 

of volume reduction during carbonization differed between the non-reacted and reacted 

regions. Thus, relatively large pores were produced between these regions.  

 

Figure 1. SEM images of carbon nanofibers prepared through carbonization of electrospun PAN 

nanofibers (a), (b), and PVdF nanofibers after (c) high DHF, (d) low DHF- treatment. in [28~30] (These 

data were reproduced under permissions of The Polymer Society of Korea and Cambridge University Press) 

As shown in Figure 2, the PAN-based CNFs had disordered, amorphous carbon structures 

with d002>0.37 nm, and had broad peaks structures in the XRD regardless of the 

carbonization temperature. The PVdF-based CNFs also showed disordered carbon 

structures in the XRD and Raman spectra regardless of the carbonization temperature. The 

CNFs prepared after low DHF treatment were expected to have higher surface areas than 

those prepared after high DHF treatment. Their high surface areas are thought to be due to 

their micro porous granular surfaces. However, this does not indicate high hydrogen 

storage capacity because micro pores with a width not exceeding 1 nm are thought to be 

much more effective for hydrogen storage when compared to the kinetic diameter of 

hydrogen molecule sizes of about 0.41 nm. 
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Figure 2. XRD patterns of (a) the PAN- and (b) the PVdF-based CNFs. in [28] (These data were reproduced 

under permissions of The Polymer Society of Korea) 

Catalytic graphitization using volatile hydrocarbon fractions during the carbonization may 

be helpful in increasing the carbon yield and in forming effective ultra micro pores for 

hydrogen storage. For these purpose, as-electrospun PAN and PVdF nanofibers containing 

IAA were carbonized to induce catalytic graphitization within the range 800~1800 oC under 

a nitrogen atmosphere. PAN based graphite nanofibers (GNF) with a diameter of 150-300 

nm were prepared by carbonization at 900~1500 oC after stabilization of as-electrospun PAN 

nanofibers containing 2, 5, and 7.5 wt% of IAA at air atmosphere, respectively. Figure 3 and 

4 shows SEM and TEM images of PAN-based GNF. White spots were observed on the 

surface of the GNF fibers (1100 oC), indicating the development of graphite crystal structures 

centered on the Fe catalyst. This catalytic graphitization was accelerated at above 1300 oC. 

The TEM image around the white spot on the surface of the GNF showed a well-ordered 

graphite structure similar to natural graphite. 

In the case of PVdF-based GNF, a notable grainy structure was observed on the surface and 

cross-section of the GNFs. The partial dehydrofluorination of PVdF nanofibers induced 

inhomogeneous structures consisting of a dehydrofluorinated amorphous region and an 

non-reacted crystalline region. Therefore, carbonization of them produced porous GNFs 

with a high surface area due to their porous granular surface. Figure 5 shows SEM and TEM 

images of PVdF-based GNFs. Clusters of Fe catalyst and the development of graphite 

structures centered on the Fe catalyst are clearly observed in TEM images of PVdF-based 

GNFs. The size of the Fe catalyst is from a few tens to a few hundreds of nanometers. 
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Figure 3. SEM images of the GNFs prepared from electrospun PAN nanofibers containing IAA 2 wt% ; 

carbonization; (a) 900oC (b) 1100oC (c) 1300oC (d) 1500oC. in [28] (These data were reproduced under 

permissions of The Polymer Society of Korea) 

Figure 6 and 7 shows XRD patterns of PAN and PVdF-based GNFs. The catalytic 

graphitization of electrospun PAN nanofibers intensively started to proceed from 900 oC, 

while PVdF nanofibers intensively started to proceed from 800 oC. The sharp peaks in the 

PAN-based GNF at 1100 oC were observed at around 26o (002) and 42-46o (100), respectively. 

New peaks also appeared at 35o and 50o, corresponding to Fe3O4. In the case of PVdF-based 

GNFs, the GNFs at 800 oC show sharp peaks at approximately 26o and 44o, corresponding to 

the diffraction of the (002) plane and (100)/ (101) of the graphite structure, respectively. The 

presence of the (112) peak at 83o is also indicative of a graphite structure. The intensities of 

these peaks increased and sharpened with the carbonization temperature. New peaks also 

appeared at 36o and 48o, corresponding to Fe3O4. It was assumed that IAA was converted 

into Fe3O4 via a-FeO(OH) during carbonization, and that the reduction of Fe3O4 at above 

800~900 oC resulted in the production of the α-Fe catalyst to be able to induce the 

graphitization reaction of the PAN or PVdF based nanofibers. In the case of the PAN-based 

GNF prepared at above 1300 oC, most of the Fe3O4 transformed to the α-Fe. As shown in 

Figure 6, the PAN-based GNFs using higher contents of IAA and higher carbonization 

temperature obviously showed α-Fe peak at around 42-44o (110) and 65o (200). The PVdF-

based GNF prepared at 1500 oC obviously showed α-Fe peaks at approximately 42~44o (110) 
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and 65o (200). Since the GNFs, however, did not entirely have this graphite structure, the d002 

of PAN-based GNFs and PVdF-based GNFs were almost 0.34 nm and in the range 

0.333~0.343 nm, respectively. The net structure of these GNFs consists of a graphite-like 

structure, which forms a turbostratic-oriented graphite layer. Generally, this type of 

structure has been obtained from carbonization of rigid polymers such as Kapton imides, in 

[32]. However, the electrospun thermoplastic nanofibers also transformed to form a well 

ordered graphite structure similar to natural graphite through catalytic graphitization 

during carbonization. Single hexagonal crystal graphite shows a Raman active peak at 1582 

cm-1 (G mode) and a band around 1357 cm-1 can be attributed to the D mode of disorder 

induced scattering, which is due to imperfection or lack of hexagonal symmetry in the 

carbon structure. A wide Gaussian band (M mode) is considered to represent an amorphous 

carbon contribution. La=4.2(IG/ID) in Raman spectra reflects the crystallite planar size of the 

graphite structure. As listed in Table 2, the Raman spectra of the PAN-based GNFs show 

that the relative intensity of the G band (1580 cm-1) over the D band (1360 cm-1) increased 

with the increase of the carbonization temperature. La (nm) greatly increased to 4.1 nm (900 
oC), 4.75 nm (1100 oC), and 6.54 nm (1300 oC). As shown in Figure 8, the IG/ID of the PVdF-

based GNFs also rapidly increased with increasing carbonization temperature. La (nm) 

greatly increased from 4.32 nm (800 oC) to 72.5 nm (1800 oC) with increasing carbonization 

temperature, in [31]. 

 

Figure 4. SEM and TEM images of the GNFs prepared through carbonization of electrospun PAN 

nanofibers containing IAA (a) 5 wt%, (b) 7.5 wt%. in [28] (These data were reproduced under permissions of 

The Polymer Society of Korea) 
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Figure 5. SEM and TEM images of the GNFs prepared through carbonization of electrospun PVdF 

nanofibers containing IAA 5.5 wt%. (a) 800oC; (b) 1000oC; (c) 1500oC; and (d) 1800oC. in [31] (These data 

were reproduced under permissions of Elsevier) 
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Figure 6. XRD patterns of the PAN-based GNFs. in [28] (These data were reproduced under permissions of 

The Polymer Society of Korea) 
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Figure 7. XRD patterns of the PVdF-based GNFs. in [31] (These data were reproduced under permissions of 

Elsevier) 

 

Samples Carbonization 

Temperature(oC) 

XRD Raman 

2 theta(o) d002(nm) La(nm)a 

PAN-based 

CNF 

1300 25.98 > 0.370 - 

 

PAN-base 

GNF 

 

900 25.90 0.344 4.10 

1100 26.10 0.341 4.75 

1300 26.12 0.341 6.54 

 

PVdF-based 

GNF 

800 26.11 0.341 4.32 

1000 25.96 0.343 4.83 

1300 26.12 0.341 7.50 

1500 26.28 0.339 10.9 

1800 26.27 0.333 72.5 

a : La (Raman) = 4.4 (IG/ID) 

Table 2. The (002) spacing values and in-plane sizes of small graphite crystals, La, of electrospun PAN- 

and PVdF-based graphitic carbon nanofibers. in [31] (These data were reproduced under permissions of Elsevier) 
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Figure 8. Raman spectra of the PVdF-based (a) CNFs and (b) GNFs at several carbonization 

temperatures. in [31] (These data were reproduced under permissions of Elsevier) 
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Figure 9. SEM images of (a) electrospun TiO2 nanofiber after calcinations at 450oC, and electrospun 

LiTi2O4 nanofibers after calcinations at (b) 450oC (c) 600oC, and (d) 700oC. 
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Figure 10. XRD patterns of electrospun TiO2 nanofiber (a) and LiTi2O4 nanofibers after calcinations at 

450oC and 700oC. 
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TiO2 nanofiber was also prepared from typical electrospinning of a mixture solution of 

titanium tetraisoproxide and polyvinyl acetate (PVAc, Mw 500,000) in N, N’-

dimethylacetamide (DMF). As-electrospun TiO2/PVAc nanofiber was calcined at 450oC to 

completely remove the PVAc component by thermal decomposition and to give to TiO2 

nanofiber. As shown in Figure 9, the resulting TiO2 nanofiber showed a smooth surface and 

internal structure composed of 20- to 50-nm TiO2 granules. Figure 10 indicated this TiO2 

nanofiber was composed of typical anatase crystalline. Lithium titanate nanofiber was also 

prepared by electrospinning using a mixture of LiNO3 and titanium tetraisoproxide (1:2 

mole ratio) instead of titanium tetraisoproxide similar to preparation of TiO2 nanofiber. As-

electrospun lithium titanate/PVAc nanofibers were calcined at 450oC, 600oC, and 700oC to 

remove the PVAc component by thermal decomposition and to give to lithium titanate 

nanofibers. As shown in Figure 9, the lithium titanate nanofiber calcined at 450 oC showed 

lots of wrinkled structure in the surface and it looked like the surface composed of 20 to 60-

nm nanorods. Crystalline size of lithium titanate was increased with increase of calcinations 

temperature. The lithium titanate nanofibers calcined at 600 oC and 700 oC showed the 

fibrous morphology composed of lithium titanate granules. These lithium titanate 

nanofibers calcined at above 450oC were typical crystalline structure of LiTi2O4 as show in 

Figure 10, in [33, 34]. 

2.2. Specific surface area and pore structure 

The electrospun PAN-based CNFs showed the typical adsorption curves very similar to that 

of nonporous carbon in the nitrogen gas adsorption-desorption isotherms, while the PAN-

based GNFs showed the typical curve of micro porous carbon in addition to a hysteresis 

loop that indicates existence of the meso pore, as shown in Figure 11. The PAN-based CNFs 

and GNFs had low surface areas within the range of 22~31 m2/g and 60~253 m2/g, 

respectively, as listed in Table 3. The surface areas of PAN-based GNFs were much higher 

than the CNFs, but they decreased with increase of carbonization temperature and increased 

with increase of IAA content. Although this could not be fully explained at present, it may 

be due to the surface roughness and inhomogeneous structure of the GNFs, which resulted 

from the induction of the metal catalyst in the GNFs. But they still had much lower surface 

area compared to common active carbon. Commercial active carbons and active carbon 

fibers generally have very high surface areas of above 1000 m2/g, and SWNT also has a 

surface area of a few hundred m2/g. They had low storage capacities, however, within the 

range of 0.35-0.41 wt%, at room temperature, in [9]. So, high hydrogen adsorption by PAN-

based CNFs and GNFs with very low surface area may not be expected. However, if they 

have effective pores for hydrogen storage when compared to hydrogen molecule sizes of 

about 0.41 nm, they may show high hydrogen adsorption. The electrospun PAN-based 

GNFs showed the adsorption curves very similar to that of meso porous carbon in the 

nitrogen gas adsorption-desorption isotherms in spite of their low surface area and also they 

had micro pores unlike those in the CNFs in the nitrogen gas adsorption-desorption 

isotherms. In the case of the PAN-based CNFs the change of the pore volumes with increase 

of carbonization temperature did not show because of their very low surface area. The micro 
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pore volumes and meso pore volumes of the PAN-based GNFs, however, decreased with 

increase of carbonization temperature.  

The electropun PVdF-based CNFs prepared after a slight DHF-treatment showed typical 

curves of micro porous carbon in the nitrogen gas adsorption-desorption isotherms. They 

showed high surface areas of 414~1300 m2/g. BET surface area rapidly decreased with 

increase of carbonization temperature, as shown in Table 3. Micro pore volume at 1500 oC 

greatly decreased while meso pore volume continuously increased with an increase of 

carbonization temperature. However, the PVdF-based CNF at 1800 oC showed a very high 

surface area of 1300 m2/g and a high volume (1.767 cm3/g) of only ultra- or super micro 

pores. The PVdF-based CNFs prepared after high DHF-treatment showed very low surface 

area and adsorption curves similar to those of nonporous carbon in nitrogen gas adsorption-

desorption isotherms. They did not have the micro pores. In the case of PVdF-based GNF 

nitrogen adsorption–desorption isotherms were the type II showing a hysteresis loop that 

indicates the existence of meso pores, as shown in Figure 11. They showed high surface 

areas of 377~473 m2/g but still have low surface areas compared to typical active carbon. The 

BET surface area and micro pore volume decreased with increasing carbonization 

temperature, as listed in Table 3. Decreases in the surface area and micro pore volume are 

thought to be due to densification of the porous structure with increasing carbonization 

temperature. Nitrogen adsorption–desorption isotherms for the LiTi2O4 nanofiber calcined 

at 450 oC were also the type II showing a hysteresis loop that indicates the existence of meso 

pores, as shown in Figure 10. However, the TiO2 nanofiber and the LiTi2O4 nanofibers 

calcined at 450 oC have very low surface are of about 50 m2/g, as listed in Table 4. The 

surface area of the LiTi2O4 nanofibers calcined at 700 oC decreased with increase of 

crystalline size.  

The pores in carbon materials are classified by their size into macro pores (> 50 nm), 

meso pores (> 2-50 nm), and micro pores (< 2 nm) according to IUPAC. Micro pores are 

further divided into super micro pores with a size of 0.7~2 nm and ultra micro pores of 

less than 0.7 nm, in [35]. Unfortunately, it is difficult to exactly analyze the ultra micro 

pore size distribution and volume in porous carbon through the nitrogen gas adsorption-

desorption isotherms measurement when compared to the kinetic diameter of hydrogen 

molecules. In the case of direct observations of pores on the surface of carbon materials 

by scanning tunneling microscopy (STM/AFM), the problem is how to differentiate the 

pores from other surface defects, such as depressions and trenches. The net ultra micro 

pore volume of carbon material cannot obtain from the pore analysis of small area on the 

surface by STM. The oxidation and carbonization of PAN precursor fiber for making 

carbon fiber usually accompany with the release of NH3, HCN, N2 gases, etc., resulting in 

the formation of pores within the carbon fiber structure, in [35]. So the preparation of 

carbon fiber with high tensile strength requires the removal of pore structure by heat 

treatment at high temperature. The carbonization of the electrospun PVdF nanofibers is 

also usually accompanied by the release of HF, H2, F2 and other gases, resulting in the 

formation of pores within the carbon fiber structure. In addition, micro and meso pores 
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are generated through the carbonization of PVdF nanofibers after partial 

dehydrofluorination. The calcinations of as-electrospun lithium titanate/PVAc nanofibers 

or TiO2/PVAc nanofibers may also produce the pore structure by evaporation of 

thermally decomposition product of PVAc. Therefore, we assume the generation of ultra 

micro pores and super micro pore during the carbonization and calcinations of the 

electrospun polymeric nanofibers and metal oxide nanofiber precursors. These pore 

structures became dense with the increase of carbonization temperature. Therefore, 

increase of carbonization temperature might bring out the increase of ultra- and super 

micro pore volume instead of loss of large pores. 

 

 

 
 

Figure 11. Typical nitrogen adsorption–desorption isotherms for the CNF, GNF and LiTi2O4 nanofiber 

prepared from the electrospun nanofibers. in [28] (These data were reproduced under permissions of The 

Polymer Society of Korea) 
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Samples 

Carbonization 

temperature(oC) 

Total pore 

volume(cm3/g) 

IAA

(wt%)

Surface 

area(m2/g) 

Pore Size 

Distribution(cm3/g) 

< 1 

nma 

1~2 

nma 

2~4 

nmb 

4~10 

nmb 

 

 

 

 

PVdF- 

CNF 

 

low DHF 

800 - 0 967 0.146 0.052 0.075 0.070 

1000 - 0 921 0.166 0.056 0.084 0.101 

1300 - 0 865 0.249 0.065 0.092 0.094 

1500 - 0 414 0.057 0.072 0.103 0.109 

1800 0.63 0 1300 1.767c - - - 

 

high DHF 

1000 - 0 33 - - 0.017 0.014 

1300 - 0 16 - - 0.006 0.004 

1500 - 0 26 - - 0.012 0.010 

 

PVdF- 

GNF 

 800 0.74 5.5 473 0.162 0.042 0.132 0.294 

 1000 0.91 5.5 445 0.158 0.040 0.133 0.315 

 1500 1.01 5.5 431 0.143 0.048 0.132 0.186 

 1800 2.02 5.5 377 0.115 0.044 0.125 0.180 

 

PAN- 

CNF 

 1000 - 0 32 - - 0.011 0.012 

 1300 - 0 22 - - 0.012 0.012 

 1500 - 0 22 - - 0.008 0.007 

 

 

 

 

 

PAN- 

GNF 

 900 - 2 198 0.048 0.027 0.048 0.039 

 1100 - 2 198 0.032 0.024 0.050 0.059 

 1300 - 2 60 - - 0.021 0.046 

 1500 - 2 65 0.008 0.007 0.023 0.039 

 900 - 5 243 0.044 0.027 0.047 0.060 

 1100 - 5 247 0.065 0.030 0.050 0.084 

 1300 - 5 116 0.025 0.017 0.040 0.066 

 1500 - 5 109 0.030 0.012 0.034 0.056 

 1300 - 7.5 163 0.047 0.019 0.041 0.062 

a determined by applying the Horvath Kawazoe pore sizes for micro porous samples. 
b determined by applying the B.J.H. pore sizes for meso porous samples. 
c ultra micro pores of below 0.8 nm 

Table 3. Surfacearea and pore analysis of electrospun PVdF- and PAN-based CNFs and GNFs. in 

[28~31] (These data were reproduced under permissions of The Polymer Society of Korea, Cambridge 

University Press, and Elsevier ) 

 

Samples Calcinations 

temperature 

(oC) 

Surface area 

(m2/g) 

Pore Size 

Distribution(cm3/g) 

(1~2 nma) 

TiO2 nanofiber 450 49.4 0.0157 

LiTi2O4 nanofiber 450 50.2 0.0187 

LiTi2O4 nanofiber 700 26.3 0.0090 

Table 4. Surface area and pore analysis of electrospun TiO2 and LiTi2O4 nanofibers. 
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2.3. Hydrogen storage capacities  

The hydrogen storage capacity of electrospun nanofibrous materials in this chapter was 

evaluated through the gravimetric method using magnetic suspension balance (MSB, 

Rubotherm), as show in Figure 12. First, the blank test chamber containing samples was 

evacuated, to remove the impurities and water, at 150 oC/10-6 torr for 6 hrs. The weights of 

the sample basket and samples were then measured at 10-6 torr/25 oC (±0.5 oC) and at a He 

gas atmosphere of 10 bars, respectively. It was assumed that He gas was not adsorbed by 

the nanofiber samples in this condition. The weight difference between the vacuum and the 

10 bars He gas, which indicates buoyancy due to the He gas, was used to determine the 

volume of the nanofiber samples, as follows:  

 Vs= W1/dHe  (1) 

where Vs is the volume of the samples, W1 is the weight difference of the samples between 

in the vacuum and at the 10-bar He gas atmosphere, and dHe is the density of He at a specific 

pressure and temperature. The weights of the samples were measured under different H2 

pressures (10~100 bars) at 25 oC (±0.5 oC). The weights of the absorbed hydrogen were 

determined after the correction of the buoyancy due to the hydrogen gas atmosphere, using 

the sample volume (Vs), as follows: 

 The weight of the adsorbed H2 = W2 +Vs dH2  (2) 

where W2 is the weight difference of the samples between in the vacuum and at the specific 

H2 pressure, Vs is the volume of the samples, and dH2 is the density of H2 at a specific 

pressure and temperature. The densities of He and H2 gas for buoyancy correction were 

calculated from a real gas equation using the Thermodynamic and Transport Properties of 

Pure Fluid Program (NIST-supported).  

In the case of monolayer condensation of hydrogen on carbon absorbents, theoretical 

quantity of absorption is 1.3×10-5 mol/m2, in[1,13], and the quantity of reversible hydrogen 

absorption is known to proportional to specific surface area of absorbents. Commercial 

active carbons and active carbon fibers generally have very high surface areas of above 1000 

m2/g, and SWNT also has a surface area of a few hundred m2/g. They showed low storage 

capacities, however, within the range of 0.35~0.41 wt%, at room temperature, in [7]. Low 

storage capacity of carbon materials at ambient temperature is due to too low absorption 

potential between carbon and hydrogen. If the tendency that hydrogen is going to escape 

from carbon absorbent is smaller than absorption potential, hydrogen will be absorbed as 

condensed phase by whole micro pore. It is predicted there are the optimum pore size and 

pore geometry for hydrogen absorption. Therefore, when the kinetic diameter of hydrogen 

molecule (0.41 nm) is considered, ultra micro pores (< 0.7 nm) are expected by doing 

important contribution for hydrogen storage by means of nanocapillary mechanism and 

superposing of potential on the pore wall substantially. Hydrogen adsorption of the CNFs 

with very low surface area may not be expected because of their low surface area. If they 

have ultra micro pores, however, which may be effective for hydrogen storage, they will 

show hydrogen adsorption.  
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Figure 12. Procedure for evaluation of hydrogen storage by Gravimetric method using Magnetic 

Suspension Balance. 

Figure 13 shows the hydrogen storage results of the electrospun PAN-based CNFs and 

GNFs under several hydrogen pressures and at room temperature. The hydrogen storage 

was measured after 2 hrs under a specific hydrogen pressure. Their hydrogen adsorption 

continuously increased even after 2 hrs, and also increased with increase of hydrogen 

pressure. The dotted line in Figure 13(a) indicates the increased hydrogen storage capacities 

after 16 hrs. The hydrogen storage capacities of the PAN-based CNFs obtained from 

carbonization at 1000oC, 1100 oC and 1300oC, and 1500oC were 0.16 wt%, 0.37 wt%, 0.50 wt%, 



 
Hydrogen Storage 200 

and 0.26 wt% respectively, although they were nonporous carbon with very low surface 

areas in the nitrogen gas adsorption-desorption isotherms. These may indicate the presence 

of ultra micro pores that cannot differentiate by using nitrogen gas adsorption-desorption 

isotherms. The reduction of hydrogen storage in the CNF obtained from carbonization at 

1500 oC was thought to be due to the disappearance of pore structure including ultra micro 

pore at high carbonization temperature of above 1300 oC. In the case of the PAN-based 

GNFs the hydrogen storage capacities increased with increase of carbonization temperature 

and the content of IAA catalyst, as shown in Figure 13(b), and were higher than those of the 

CNFs. The hydrogen storages of PAN-based GNF-5 showed highest capacity of 1.01 wt% at 

1300 oC and lowest capacity of 0.14 wt% at 1500 oC similar to those of the PAN based CNF 

samples. Increase of the content of IAA resulted in increase of the hydrogen storage. The 

hydrogen storage of the PAN-based GNF-7.5 at 1300 oC, however, showed very low storage 

of 0.32 wt% though it had higher surface area and higher micro-, meso pore volume than 

those of GNF-2 and GNF-5 at 1300 oC. So, the hydrogen storage of the PAN-based CNF and 

GNF did not show the correlation with surface area, and micro-, meso pore volume in Table 

3. Fe metal catalyst in the GNFs may contribute to the hydrogen adsorption. Figure 14 

showed the cycle property about the hydrogen adsorption of the PAN-based GNF-5 

(1300oC), which showed highest storage capacity. The GNF-5 (1300 oC) still retained initial 

hydrogen capacity storages, indicating physisorption of hydrogen. However, about 0.078 

wt% of hydrogen did not desorbed under atmosphere and vacuum of 10-6 torr at room 

temperature. This is thought to be chemisorptions by Fe metal catalyst.  

Figure 15 shows the hydrogen storage capacities of the electrospun PVdF-based CNFs. The 

PVdF-based CNFs (high DHF) also showed some hydrogen absorption although they had 

no micro pore volumes. The hydrogen absorptions of about 0.3 wt% (100 H2 bar) were 

observed in the PVdF-based CNFs (high DHF) prepared at 1,300~1500 oC although they 

have very low specific surface area of 16~33 m2/g. But the PVdF-based CNFs (low DHF) 

prepared at 800~1300 oC showed the hydrogen storage capacities of only 0.05~0.2 wt% in 

spite of high specific surface area of 865~967 m2/g. The hydrogen adsorption of the carbon 

nanofibers with high surface areas decreased with the increase of hydrogen pressure. This 

may be due to the buoyancy effect of hydrogen gas adsorbed on the samples. Hydrogen 

storage capacities of the electrospun PVdF-based CNF (low DHF) increased with increase of 

carbonization temperature and showed the maximum value of about 0.39 wt% at 1500 oC in 

spite of its lowest surface area. And also the PVdF-based CNF (low DHF) carbonized at 1800 
oC showed hydrogen storage capacity of 0.39 wt% even though it had highest surface area of 

1300 m2/g and highest ultra micro pore volume of 1.767 cm3/g, similar to the activated 

carbon fibers having 0.35~0.41 wt% hydrogen storage, in [9]. This is thought to be due to the 

disappearance of the pore structure including ultra micro pores at high carbonization 

temperatures. Figure 16 shows hydrogen storage results for the PVdF-based GNFs under 

several hydrogen pressures at room temperature. Their hydrogen adsorption increased with 

increase of carbonization temperature while specific surface area and micro pore volume (< 

1 nm) were decreased, but they showed very low storage capacities of about 0.1~0.2 wt% 

although they have highly graphite crystalline structure.  
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Figure 13. The hydrogen storage of the PAN-based (a) CNFs and (b) GNFs under several hydrogen 

pressures and at room temperature. in [28,29] (These data were reproduced under permissions of The Polymer 

Society of Korea and Cambridge University Press) 
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Figure 14. The hydrogen adsorption/desorption cycle property of the PAN-based GNF-5 (1300oC) 

under hydrogen pressures of 100 bars and at room temperature. in [28] (These data were reproduced under 

permissions of The Polymer Society of Korea) 
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Figure 15. The hydrogen storage of the PVdF-based CNFs under several hydrogen pressures and at 

room temperature. in [30] (These data were reproduced under permissions of Cambridge University Press) 
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The hydrogen storage capacity of the GNFs and CNFs did not show correlation with surface 

area or micro- and meso pore volume, as shown in Table 3. The quantity of adsorbed 

hydrogen on nanostructure graphitic carbon as well active carbon materials at 77 K is 

proportional to the specific surface area of carbon materials, in [10]. However, because at 

ambient temperature the thermal motion of hydrogen molecules overcomes van der Waals-

type weak physisorption of molecular hydrogen, their hydrogen storage capacities were 

very low. So the hydrogen adsorption on the GNFs and CNF samples may be influenced by 

pore structure as well as specific surface area. Therefore, we think that micro- and meso 

pores that are calculated using the nitrogen gas adsorption–desorption isotherms are not the 

effective pore for hydrogen storage. The effective pore for hydrogen storage may require 

small pore size not exceeding 1 nm, when compared to the kinetic diameter of hydrogen 

molecule of about 0.41 nm. It is assumed that these micro pores are different from the micro 

pores calculated using nitrogen adsorption–desorption isotherms. Thus, hydrogen 

adsorptions by the electrospun PAN or PVdF-based CNFs and GNFs may be due to the 

presence of ultra micro pores rather than micro- and meso pores, even though they have 

very low surface areas compared to commercially available active carbons and active carbon 

fibers. 
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Figure 16. The hydrogen storage of the PVdF-based GNFs under several hydrogen pressures and at 

room temperature. in[31] (These data were reproduced under permissions of Elsevier) 

The multilayered TiO2 nanotubes with a surface area of 199 m2/g (a pore size; 8 nm, and a 

pore volume; 0.70 cm3/g) had known to store a 1~2.5 wt% hydrogen at 1 bar and room 

temperatures in the range 80 to 125 °C, in [13]. This high storage capacity may result from 

much higher adsorption potential energy between the multilayered TiO2 nanotubes and 



 
Hydrogen Storage 204 

hydrogen molecules than those of carbon materials in consideration of very low hydrogen 

storage of typical meso porous carbon materials with high surface area. Figure 17 shows 

hydrogen storage results for the electrospun TiO2 nanofiber and LiTi2O4 nanofibers. The 

hydrogen storage was measured after 2 hrs under a specific hydrogen pressure. The TiO2 

nanofiber and LiTi2O4 nanofibers calcined at 450 oC showed high hydrogen storages of 1.11 

wt% and 0.74wt% in spite of their low surface area of 49.4 m2/g and 50.2 m2/g, respectively. 

Their hydrogen absorptions were higher than those of the electrospun CNFs and GNFs. 

Although we presently cannot determine effective ultra micro pore volumes for hydrogen 

storage in the TiO2 nanofiber and LiTi2O4 nanofibers, these are thought to be due to higher 

adsorption potential energy between the metal oxide materials and hydrogen molecules 

than those of carbon nanofibers. The LiTi2O4 nanofiber showed higher hydrogen storage 

than TiO2 nanofiber with similar surface area. This is also thought to be due to higher 

adsorption potential energy of LiTi2O4 nanofiber than TiO2 nanofiber. The hydrogen storage 

of the LiTi2O4 nanofiber calcined at 700 oC was greatly reduced to 0.41 wt%. Increase of the 

calcination temperature resulted in decrease of hydrogen storage with great reduction of 

surface area, indicating loss of effective pores with increase of LiTi2O4 crystalline size, as 

shown in Figure 9. Figure 18 showed the hydrogen adsorption/desorption cycle of 

electrospun LiTi2O4 nanofibers. Their hydrogen adsorption continuously increased even 

after 2 hrs under hydrogen pressure of 100 bars. The hydrogen storage of the LiTi2O4 

nanofibers calcined at 450oC and 600oC were about 1.50wt% and 1.23 wt% at the equilibrium 

state under hydrogen pressure of 100 bars, respectively. However, about 0.06 wt% and 0.054 

wt% of hydrogen were not desorbed under atmosphere and vacuum of 10-6 torr at room 

temperature, respectively. These are thought to be chemisorptions.  
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Figure 17. The hydrogen storage capacity of the electrospun TiO2 nanofiber and LiTi2O4 nanofibers. 
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Figure 18. The hydrogen adsorption/desorption cycle of the electrospun LiTi2O4 nanofibers under 

hydrogen pressures of 100 bars and at room temperature. 
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2.4. Further work  

Active carbon with the same specific surface area reversibly adsorbed 2 mass% hydrogen at a 

temperature of 77 K, in [1,2]. The quantity of adsorbed hydrogen on nanostructured graphitic 

carbon as well active carbon materials at 77 K is proportional to the specific surface area of 

carbon materials, in [10]. However, because at ambient temperature the thermal motion of 

hydrogen molecules overcomes van der Waals-type weak physisorption of molecular 

hydrogen, high surface area and large micro- and meso pores volumes of active carbon does 

not greatly contribute to the hydrogen adsorption. The effective pores for hydrogen storage 

are assumed to be ultra micro pores with small pore size not exceeding 1 nm, when compared 

to the kinetic diameter of hydrogen molecule of about 0.41 nm. The electrospun CNF and GNF 

were prepared by carbonization without further activation process to induce increase of ultra 

micro pore through heat-treatment for densification of large pores structure at high 

temperature. Thus, hydrogen adsorptions results of the electrospun CNFs and GNFs indicated 

the presence of ultra micro pores even though they have very low surface area and micro-, 

meso pores, that are calculated using the nitrogen gas adsorption–desorption isotherm, when 

compared to commercially available active carbons or active carbon fibers. For automotive and 

industrial applications, the solid absorbent with hydrogen storage capacity of greater than 6.5 

wt% and ambient temperatures for hydrogen release are presently required. The hydrogen 

storage capacities of the electrospun CNFs and GNFs, however, still showed the limitations in 

overcoming this requirement. That is, it may not be possible to increase effective ultra micro 

pores for above 6.5 wt% hydrogen storage even though we can find more improved process 

for the CNF and GNF in future.  

On the other hands, the hydrogen storage results in TiO2 nanofiber and LiTi2O4 nanofibers 

gave to some encouragement for overcoming hydrogen storage target. They showed 1.2~1.5 

wt% hydrogen in spite of very low surface area of about 50 m2/g. These were higher than 

those of the electrospun CNFs and GNFs because the TiO2 nanofiber and LiTi2O4 nanofibers 

are thought to be due to higher adsorption potential energy between the metal oxide 

materials and hydrogen molecules than those of carbon nanofibers. So, future works for the 

high hydrogen storage capacity need new solid absorbent materials with a high ultra micro 

pore volume, high surface area, and appropriate hydrogen adsorption potential energy for 

only reversible physisorption. 

Therefore, further work for this purpose will be tried to prepare new nanostructures metal 

oxide nanofibers with high reversible physisorption at ambient temperature, which are 

controlled to a high surface area and high ultra micro pore volumes. 

3. Conclusions 

The hydrogen storage capacities of electrospun nanofibrous materials were discussed in 

view of their pore size, surface area, and adsorption potential energy for hydrogen 

molecules. Carbon nanofibers (CNF) and graphite nanofibers (GNF) were prepared through 

the carbonization of the electrospun PAN- and PVdF-based nanofibers. The TiO2 nanofiber 

and LiTi2O4 were also prepared through typical electrospinning of precursor solutions. 
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The hydrogen storage capacities of the PAN-based CNFs prepared by carbonization at 1000 

oC, 1100 oC and 1300oC, and 1500oC were 0.16 wt%, 0.37 wt%, 0.50 wt%, and 0.26 wt% 

respectively, although they were nonporous carbon with very low surface areas of about 

22~32 m2/g in the nitrogen gas adsorption-desorption isotherms. The PVdF-based CNFs 

(high DHF) prepared by carbonization at 1300oC and 1500oC showed very low surface area 

of about 16~26 m2/g without the micro pores and showed the adsorption curves similar to 

those of nonporous carbon in nitrogen gas adsorption-desorption isotherms. However, they 

also stored the hydrogen of 0.30 wt% and 0.33 wt%, respectively. 

The PAN-based GNFs had some micro-, meso pores and higher surface areas of 60~253 m2/g 

than the CNFs though they were still much lower surface area compared to common active 

carbon. Their surface area decreased with increase of carbonization temperature and 

increased with increase of IAA content. Although this could not be fully explained at 

present, it may be due to the surface roughness and inhomogeneous structure of the GNFs, 

which resulted from the induction of the metal catalyst in the GNFs. The hydrogen storage 

capacities of them increased with increase of carbonization temperature and the content of 

IAA catalyst, and were higher than those of the CNFs. The hydrogen storages of PAN-based 

GNF-5 showed highest capacity of 1.01 wt% at 1300 oC and lowest capacity of 0.14 wt% at 

1500 oC. 

The PVdF-based CNFs (low DHF) showed typical curves of micro porous carbon in the 

nitrogen gas adsorption-desorption isotherms. They had high surface areas of 414~1300 m2/g 

and stored the hydrogen of 0.04-0.39 wt%. The PVdF-based CNF (low DHF) at 1800 oC 

showed the hydrogen storage of only 0.38 wt% in spite of high surface area of 1300 m2/g and 

a high volume (1.767 cm3/g) of only ultra- or super micro pores. Nitrogen adsorption–

desorption isotherms for the PVdF-based GNFs prepared from carbonization at 800~1800oC 

were the type II showing a hysteresis loop that indicates the existence of meso pores. They 

had high surface areas of 377~473 m2/g but showed very low storage capacities of about 

0.1~0.2 wt% although they have highly graphite crystalline structure.  

The above hydrogen storage capacities of the GNFs and CNFs did not show any correlations 

with surface area or micro- and meso pore volume calculated using nitrogen adsorption–

desorption isotherms. Because at ambient temperature the thermal motion of hydrogen 

molecules overcomes van der Waals-type weak physisorption of molecular hydrogen, their 

hydrogen storage capacities were very low. So the hydrogen adsorption on the GNFs and 

CNF samples may be influenced by pore structure as well as specific surface area. Therefore, 

micro- and meso pores that are calculated using the nitrogen gas adsorption–desorption 

isotherms are not thought to be the effective pore for hydrogen storage. The effective pore 

for hydrogen storage may require small pore size not exceeding 1 nm, when compared to 

the kinetic diameter of hydrogen molecule of about 0.41 nm. Thus, hydrogen adsorptions by 

the electrospun PAN or PVdF-based CNFs and GNFs may be due to the presence of ultra 

micro pores rather than micro- and meso pores, even though they have very low surface 

areas compared to commercially available active carbons and active carbon fibers. 
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The TiO2 nanofiber and LiTi2O4 nanofibers calcined at 450 oC showed high hydrogen 

storages of 1.11 wt% and 0.74wt% in spite of their low surface areas of 49.4 m2/g and 50.2 

m2/g, respectively. Their hydrogen storages were higher than the electrospun CNFs and 

GNFs. Although we presently cannot determine the effective ultra micro pore volumes for 

hydrogen storage, their high hydrogen adsorptions are thought to be due to higher 

adsorption potential energy than those of carbon nanofibers. The hydrogen storage of 

LiTi2O4 nanofiber was higher than that of TiO2 nanofiber with similar surface area, 

indicating higher adsorption potential energy of LiTi2O4 nanofiber than that of TiO2 

nanofiber. So, the high hydrogen storage capacity need new solid absorbent materials with a 

high ultra micro pore volume, high surface area, and appropriate hydrogen adsorption 

potential energy for only reversible physisorption at ambient temperature. 

Author details 

Seong Mu Jo 

Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul,  

Republic of Korea 

4. References 

[1] Schlapbach L and Zuttel A, (2001), Hydrogen-Storage Materials for Mobile Applications, 

Nature, 414: 353-358. 

[2] Nellis, W. J, Louis, A. A, and Ashcroft, N. W, (1998), Metallization of fluid hydrogen. 

Phil. Trans. R. Soc. Lond. A356: 119-135  

[3] Dillon A. C, Jones K. M, Bekke-dahl T. A., Kiang H, Bethune D. S, and Heben M. J, 

(1997), Storage of Hydrogen in Single-Walled Carbon Nanotubes, Nature, 386: 377-379. 

[4] Zhu H, Cao A, Li X, Xu C, Mao Z, Ruan D, Liang J, and Wu D, (2001), Hydrogen 

Adsorption in Bundles of Well-Aligned Carbon Nanotubes at Room Temperature, 

Appl. Surf. Sci., 178: 50-55. 

[5] Ye Y, Ahn C. C, Witham C, Fultz B, Liu J, Rinzler A. G, Colbert D, Smith K. A, and 

Smalley R. E, (1999), Hydrogen Adsorption and Cohesive Energy of Single-Walled 

Carbon Nanotubes, Appl. Phys. Lett.,74: 2307-2309. 

[6] Liu C, Fan Y. Y, Lyu M, Cong H. T, Cheng H. M, and Dresselhaus M. S, (1999), 

Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science, 

286: 1127-1129. 

[7] Liu C, Yang Q. H, Tong Y, Cong H. T., and Chen H. M, (2002), Volumetric Hydrogen 

Storage in Single-Walled Carbon Nanotubes, Appl. Phys. Lett., 80: 2389-2391 

[8] Quinn D. F, (2002), Supercritical Adsorption of ‘Permanent’ Gases under Corresponding 

States on Various Carbons, Carbon, 40: 2767-2773. 

[9] Kajiura K, Tsutsui S, Kadona K, and Ata M, (2003), Hydrogen Storage Capacity of 

Commercially Available Carbon Materials at Room Temperature, Appl. Phys. Lett., 82: 

1105-1107. 



 
Electrospun Nanofibrous Materials and Their Hydrogen Storage 209 

[10] Nijkamp M. G, Raaymakers J. E. M. J, Van Dillen A. J, and de Jong K. P, (2001), 

Hydrogen Storage using Physisorption-Materials Demands, Appl. Phys., A, 72: 619-623. 

[11] Chahine R and Bose T. K, (1994), Low-pressure Adsorption Storage of Hydrogen, Int. J. 

Hydrogen Energy, 19: 161-164. 

[12] Lim S. H, Luo J, Zhong Z, Ji W, and Lin J, (2005), Room-Temperature Hydrogen Uptake 

by TiO2 Nanotubes, Inorg. Chem., 44: 4124-4126. 

[13] Bavykin D. V, Lapkin A. A, Plucinski P. K, Friedrich J. M., and Walsh F. C, (2005), 

Reversible Storage of Molecular Hydrogen by Sorption into Multilayered TiO2 

Nanotubes, J. Phys. Chem. B 109: 19422-19427. 

[14] Wan Q, Lin C. L, Yu X. B, and Wang T. H, (2004), Room-Temperature Hydrogen 

Storage Characteristics of ZnO Nanowires, Appl. Phys. Lett., 84 (1): 124-126. 

[15] Chen J, Kuriyama N, Yuan H, Takeshita H. T, and Sakai T, (2001), Electrochemical 

Hydrogen Storage in MoS2 Nanotubes, J. Am. Chem. Soc., 123: 11813-11814. 

[16] Chen J, Li S.-L., Tao Z.- L, Shen Y.- T, and Cui C.- X, (2003), Titanium Disulfide 

Nanotubes as Hydrogen-Storage Materials J. Am. Chem. Soc., 125: 5284-5285. 

[17] Yamashita J, Shioya M, Kikutani T, and Hashimoto T, (2001), Activated Carbon Fibers 

and Films Derived from Poly(vinylidene fluoride), Carbon, 39: 207-214. 

[18] Choi S. W, Jo S. M, Lee W. S, and Kim Y. R, (2003), An Electrospun Poly(vinylidene 

fluoride) Nanofibrous Membrane and Its Battery Applications, Adv. Mater, 15(23): 

2027-2032. 

[19] Kim J. R, Choi S. W, Jo S. M, Lee W. S, and Kim B. C, (2005), Characterization and 

Properties of PVdF-HFP-Based Fibrous Polymer Electrolyte Membrane Prepared by 

Electrospinning, J. Electrochem. Soc., 152(2): A295-A300 

[20] Choi S. W, Kim J. R. Jo S. M. Lee W. S. and Kim Y.-R. (2005), Electrochemical and 

Spectroscopic Properties of Electrospun PAN-Based Fibrous Polymer Electrolytes, J. 

Electrochem. Soc., 152(5), A989-A995. 

[21] Song M. Y, Kim D. K, Ihn K. J, Jo S. M., and Kim D. Y, (2004), Electrospun TiO2 

Electrodes for Dye-Sensitized Solar Cells, Nanotechnology, 15 : 1861-1865. 

[22] Song M. Y, Ahn Y. R, Jo S. M , Ahn J-. P, and Kim D. Y, (2005), TiO2 Single-Crystalline 

Nanorod Electrode for Quasi-Solid State Dye-Sensitized Solar Cells, Appl. Phys. Lett., 

87: 113113-1~113113-3. 

[23] Kaburagi Y, Hishiyama Y, Oka H, and Inagaki M, (2001), Growth of Iron Clusters and 

Change of Magnetic Property with Carbonization of Aromatic Polyimide Film 

Containing Iron Complex, Carbon, 39: 593-603. 

[24] Konno H, Shiba K, Kaburagi Y, Hishiyama Y, and Inagaki M, (2001), Carbonization and 

Graphitization of Kapton-type Polyimide Film having Boron-bearing Functional 

Groups, Carbon, 39: 1731-1740. 

[25] Reshetenko T. V, Avdeeva L. B, Ismagilov Z. R, Pushkarev V. V, Cherepanova S. V, 

Chuvilin A. L, and Likholobov V. A, (2003), Catalytic Filamentous Carbon Structural 

and Textural Properties, Carbon, 41: 1605-1615. 

[26] Chung G. S, Jo S. M, and Kim B. C, (2005), Properties of Carbon Nanofibers Prepared 

from Electrospun Polyimide, J. Appl. Polym. Sci., 97: 165-170. 



 
Hydrogen Storage 210 

[27] Park S. H, Jo S. M, Kim D. Y, Lee W. S, and Kim B. C, (2005), Effects of Iron Catalyst on 

the Formation of Crystalline Domain during Carbonization of Electrospun Acrylic 

Nanofiber, Syn. Met., 150: 265-270. 

[28] Kim D.- K, Park S. H, Kim B. C, Chin B. D, Jo S. M, and Kim D. Y, (2005), Electrospun 

Polyacrylonitrile based Carbon Nanofibers and Their Hydrogen Storage, 

Macromolecular Research, 13(6): 521-528. 

[29] Park S. H. Kim B. C. Jo S. M. Kim D. Y. and Lee W. S. (2005), Cabon Nanofibrous 

Materials Prepared from Electrospun Polyacrylonitrile Nanofibers for Hydrogen 

Storage, Mater. Res. Soc. Symp. Proc., 837: 71-76 

[30] Chung H. J, Lee D. W, Jo S. M, Kim D. Y, and Lee W. S, (2005), Electrospun 

Poly(vinylidene fluoride)-based Carbon Nanofibers for Hydrogen Storage, Mater. Res. 

Soc. Symp. Proc., 837: 77-82 

[31] Hong S. E, Kim D.- K., Jo S. M, Kim D. Y, Chin B. D, Lee D. W, (2007), Graphite 

Nanofibers Prepared from Catalytic Graphitization of Electrospun Poly(vinylidene 

fluoride) Nanofibers and Their Hydrogen Storage Capacity, Catalysis Today, 120(3-4): 

413-419 

[32] Hishiyama Y, Igarashi K, Kaneko I, Fujii T, Kaneda T, Koidezawa T, Shimazawa Y, and 

Yoshida A, (1997), Graphitization Behavior of Kapton-derived Carbon Film Related to 

Structure, Microtexture and Transport Properties, Carbon, 35: 657-668. 

[33] Ra W, Nakayama M, Uchimoto Y, and Wakihara M, (2005), Experimental and 

Computational Study of the Electronic Structural Changes in LiTi2O4 Spinel 

Compounds upon Electrochemical Li Insertion Reactions, J. Phys. Chem. B, 109(3): 

1130-1134. 

[34] Manickam M, Takata M, (2003), Lithium Intercalation Cells LiMn2O4/LiTi2O4 without 

Metallic Lithium, J. Power Sources, 114: 298-302. 

[35] Inagaki M, (2000), Control of structure and functions, in New Carbons : Elsevier Science 

Ltd., chapt. 4- 5. 


