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1. Introduction 

In the control theory of linear systems, system transfer function provides a coordinate-free 

and equivalent description for system dynamic characteristics, by which it is convenient to 

conduct analysis and design. Therefore, frequency domain methods are commonly used by 

engineers and widely applied in engineering practice. However, although the analysis and 

design of linear systems in the frequency domain have been well established, the frequency 

domain analysis for nonlinear systems is not straightforward. Nonlinear systems usually 

have very complicated output frequency characteristics and dynamic behaviour such as 

harmonics, inter-modulation, chaos and bifurcation. Investigation and understanding of 

these nonlinear phenomena in the frequency domain are far from full development. 

Frequency domain methods for nonlinear analysis have been investigated for many years. 

There are several different approaches to the analysis and design for nonlinear systems, 

such as describing functions [5, 13], harmonic balance [18], and frequency domain methods 

developed from the absolute stability theory [10], for example the well-known Popov circle 

theorem [12, 21] etc. Investigation of nonlinear systems in the frequency domain can also be 

done based on the Volterra series expansion theory [11, 15, 16, 19, 20]. There are a large class 

of nonlinear systems which have a convergent Volterra series expansion [2, 17]. For this 

class of nonlinear systems, referred to as Volterra systems, the generalized frequency 

response function (GFRF) was defined in [4], which is similar to the transfer function of 

linear systems. To obtain the GFRFs for Volterra systems described by nonlinear differential 

equations, the probing method can be used [16]. Once the GRFRs are obtained for a practical 

system, system output spectrum can then be evaluated [9]. These form a fundamental basis 

for the analysis of nonlinear Volterra systems in the frequency domain and provide an 

elegant and useful method for the frequency domain analysis of a class of nonlinear 

systems. Many techniques developed (e.g. the GFRFs) can be regarded as an important 

extension of frequency domain theories for linear systems to nonlinear cases.  
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In this study, understanding of nonlinearity in the frequency domain is investigated from a 

novel viewpoint for Volterra systems. The system output spectrum is shown to be an 

alternating series with respect to some model parameters under certain conditions. This 

property has great significance in that the system output spectrum can therefore be easily 

suppressed by tuning the corresponding parameters. This provides a novel insight into the 

nonlinear influence in a system. The sufficient (and necessary) conditions in which the output 

spectrum can be transformed into an alternating series are studied. These results are illustrated 

by two example studies which investigated a single degree of freedom (SDOF) spring-

damping system with a cubic nonlinear damping. The results established in this study 

demonstrate a novel characteristic of the nonlinear influence in the frequency domain, and 

provide a novel insight into the analysis and design of nonlinear vibration control systems.   

The chapter is organised as follows. Section 2 provides a detailed background of this study. 

The novel nonlinear characteristic and its influence are discussed in Section 3. Section 4 

gives a sufficient and necessary condition under which system output spectrum can be 

transformed into an alternating series. A conclusion is given in Section 5. A nomenclature 

section which explains the main notations used in this paper is given in Appendix A.  

2. Frequency response functions of nonlinear systems 

There are a class of nonlinear systems for which the input-output relationship can be sufficiently 

approximated by a Volterra series (of a maximum order N) around the zero equilibrium as [2, 17] 
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where ),,( 1 nnh    is the nth-order Volterra kernel which is a real valued function of 

n ,,1  . For the same class of nonlinear systems, it can also be modelled by the following 

nonlinear differential equation (NDE) 
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 , M is the maximum degree of nonlinearity 

in terms of y(t) and u(t), and K is the maximum order of the derivative. In this model, the 

parameters such as c0,1(.) and c1,0(.) are referred to as linear parameters corresponding to 

coefficients of linear terms in the model, i.e., 
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p+q>1 are referred to as nonlinear parameters corresponding to nonlinear terms in the model 

of the form 
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nonlinear degree of parameter )(, qpc .  
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By using the probing method [16], a recursive algorithm for the computation of the nth-

order generalized frequency response function (GFRF) for the NDE model (2) is provided in 

[1]. Therefore, the output spectrum of model (2) can be evaluated as [9] 
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which is truncated at the largest order N and where,  
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is known as the nth-order GFRF defined in [4], and ),,( 1 nnh    is the nth-order Volterra 

kernel introduced in (1). When the system input is a multi-tone function described by 
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(where iF is a complex number, iF is the argument, iF  is the modulus, and K is a positive 

integer), the system output frequency response can be evaluated as [9]: 
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In order to explicitly reveal the relationship between model parameters and the frequency 

response functions above, the parametric characteristics of the GFRFs and output spectrum 

are studied in [6]. The nth-order GFRF can then be expressed into a more straightforward 

polynomial form as  

  1 1 1( , , ) ( , , ) ( , , )n n n n n nH j j CE H j j f j j          (7) 

where  1( , , )n nCE H j j   is referred to as the parametric characteristic of the nth-order 

GFRF 1( , , )n nH j j  , which can be recursively determined as 
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with terminating condition   1)(1 ijHCE  . Note that CE is a new operator with two 

operations “ ” and “ ” defined in [6,7] (the definition of CE can be referred to Appendix 
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B and more detailed discussions in [22]), and qpC ,  is a vector consisting of all the (p+q)th 

degree nonlinear parameters, i.e.,  
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In Equation (8), 1( , , )n nf j j  is a complex valued vector with the same dimension as 
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The mapping function 1( ( ( )); , , )n n nCE H    enables the complex valued function 

1( , , )n nf j j   to be analytically and directly determined in terms of the first order GFRF 

and nonlinear parameters. Therefore, the nth-order GFRF can directly be written into a more 
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straightforward and meaningful polynomial function in terms of the first order GFRF and 

model parameters by using the mapping function 1( ( ( )); , , )n n nCE H     as 

    1 1 1( , , ) ( , , ) ( ( ) ; , , )n n n n n n nH j j CE H j j CE H              (10) 

Using (10), Equation (3) can be written as 
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expressions for output spectrum above are all truncated at the largest order N. The 

significance of the expressions in (10-11) is that, the explicit relationship between any model 

parameters and the frequency response functions can be demonstrated clearly and thus it is 

convenient to be used for system analysis and design. 

Example 1. Consider a simple example to demonstrate the results above. Suppose all the 

other nonlinear parameters in (2) are zero except c1,1(1,1), c0,2(1,1), c2,0(1,1). For convenience, 

c1,1(1,1) is written as c1,1 and so on. Consider the parametric characteristic of H3(.), which can 

easily be derived from (8), 
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Proceed with the process above, the whole correlative function of   3 1 3( , , )CE H j j   can 

be obtained, and then (10-11ab) can be determined. This demonstrates a new way to 

analytically compute the high order GFRFs, and the final results can directly be written into 

a polynomial form as (10-11ab), for example in this case 

2 2
3 1 3 1,1 0,2 1,1 1,1 2,0 2,0 0,2 2,0 1,1 2,0 3 3 1 3 1 3

2 2 2 2
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 
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  
 

As discussed in [7], it can be seen from Equations (10-11ab) and Example 1 that the  

mapping function 1( ( ( )); , , )n n nCE H    can facilitate the frequency domain analysis of 

nonlinear systems such that the relationship between the frequency response functions  

and model parameters, and the relationship between the frequency response functions  

and 1 (1)( )lH j can be demonstrated explicitly, and some new properties of the GFRFs  

and output spectrum can be revealed. In practice, the output spectrum of a nonlinear system 

can be expanded as a power series with respect to a specific model parameter of interest  

by using (11ab) for N . The nonlinear effect on system output spectrum incurred  

by this model parameter which may represents the physical characteristic of a structural 

unit in the system can then be analysed and designed by studying this power series in  

the frequency domain. Note that the fundamental properties of this power series  

(e.g. convergence) are to a large extent dominated by the properties of its coefficients, which 

are explicitly determined by the mapping function 1( ( ( )); , , )n n nCE H    . Thus studying 

the properties of this power series is now equivalent to studying the properties of the 

mapping function 1( ( ( )); , , )n n nCE H    . Therefore, the mapping function 

1( ( ( )); , , )n n nCE H     introduced above provides an important and significant technique 

for this frequency domain analysis to study the nonlinear influence on system output 

spectrum.  

In this study, a novel property of the nonlinear influence on system output spectrum is 

revealed by using the new mapping function 1( ( ( )); , , )n n nCE H     and frequency 

response functions defined in Equations (10-11). It is shown that the nonlinear terms in a 

system can drive the system output spectrum to be an alternating series under certain 

conditions when the system subjects to a sinusoidal input, and the system output spectrum 

is shown to have some interesting properties in engineering practice when it can be 

expanded into an alternating series with respect to a specific model parameter of interest. 

This provides a novel insight into the nonlinear effect incurred by nonlinear terms in a 

nonlinear system to the system output spectrum.  

3. Alternating phenomenon in the output spectrum and its influence 

The alternating phenomena and its influence are discussed in this section to point out  

the significance of this novel property, and then the conditions under which system  

output spectrum can be expressed into an alternating series are studied in the following 

section.  
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For any nonlinear parameter (simply denoted by c) in model (2), the output spectrum (11ab) 

can be expanded with respect to this parameter into a power series as 

 2
0 1 2( ) ( ) ( ) ( ) ( )Y j F j cF j c F j c F j

             (12) 

Note that when c represents a nonlinearity from input terms, Equation (12) may be a finite 

series; in other cases, it is definitely an infinite series, and if only the first   terms in the 

series (12) are considered, there is a truncation error denoted by )( . As demonstrated in 

Example 1, )( jFi  for i=0,1,2,… are some scalar frequency functions and can be obtained 

from ( )iF j  or )(
~ jFi in (11a,b) by using the mapping function 1( ( ( )); , , )n n nCE H    . 

Clearly, )( jFi  dominates the fundamental properties of this power series such as 

convergence. Thus these properties of this power series can be revealed by studying the 

property of 1( ( ( )); , , )n n nCE H    . This will be discussed more in the next section. In this 

section, the alternating phenomenon of this power series and its influence are discussed.  

For any  ℂ, define an operator as 

 sgn ( ) sgn (Re( )) sgn (Im( ))c r r        
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1sgn ( ( )) sgn ( ( ))c i c iF j F j   for i=0,1,2,3,…, then the series is an alternating series.  

The series (12) can be written into two series as 

 2
0 1 2

2
0 1 2

( ) Re( ( )) (Im( ( )))

Re( ( )) Re( ( )) Re( ( )) Re( ( ))

(Im( ( )) Im( ( )) Im( ( )) Im( ( )) )

Y j Y j j Y j

F j c F j c F j c F j

j F j c F j c F j c F j







  

   

   

 

     

     

 

 

 (13) 

From definition 1, if ( )Y j is an alternating series, then ))(Re( jY and ))(Im( jY  are both 

alternating. When (12) is an alternating series, there are some interesting properties 

summarized in Theorem 1. Denote  

 2
1 0 1 2( ) ( ) ( ) ( ) ( )Y j F j cF j c F j c F j

            (14) 

Theorem 1. Suppose (12) is an alternating series at a (ℝ+) for c>0, then: 

(1) if there exist T>0 and R>0 such that for i>T 

1 1

Re( ( )) Im( ( ))
min ,

Re( ( )) Im( ( ))
i i

i i

F j F j
R

F j F j

 
  

     
  
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then (12) has a radius of convergence R, the truncation error for a finite order  >T is 
1

1( ) ( )c F j
  
 , and for all n 0,  

])(,)([)( 21121 nTnTn jYjYjY   and nn  1 ; 

(2) 
2

( ) ( ) ( )Y j Y j Y j     is also an alternating series with respect to parameter c; 

Furthermore, 
2

( ) ( ) ( )Y j Y j Y j    is alternating only if Re( ( ))Y j is alternating; 

(3) there exists a constant 0c such that 
( )

0
Y j

c





for cc 0 . 

Proof. See Appendix C.□ 
The first point in Theorem 1 shows that only if there exists a positive constant R>0, the series 

must be convergent under 0<c<R, its truncation error and limit value can therefore be easily 

evaluated. The other two points of Theorem 1 imply that the magnitude of an alternating 

series can be suppressed by choosing a proper value for the parameter c. Therefore, once the 

system output spectrum can be expressed into an alternating series with respect to a model 

parameter (say c), it is easier to find a proper value for c such that the output spectrum is 

convergent, and the magnitude can be suppressed. Moreover, it is also shown that the 

lowest limit of the magnitude of the output spectrum that can be reached is larger than 

1 1( ) TY j    and the truncation error of the output spectrum is less than the absolute value 

of the term of the largest order at the truncated point. 

Example 2. Consider a single degree of freedom (SDOF) spring-damping system with a 

cubic nonlinear damping which can be described by the following differential equation 

 3
0 ( )my k y By cy u t         (15) 

Note that k0 represents the spring characteristic, B the damping characteristic and c  

is the cubic nonlinear damping characteristic. This system is a simple case of NDE  

model (2) and can be written into the form of NDE model with M=3, K=2,  

1,0(2)c m , 1,0(1)c B , 00,1 )0( kc  , 3,0(111)c c , 1)0(1,0 c and all the other parameters 

are zero. 

Note that there is only one nonlinear term in the output in this case, the nth-order GFRF for 

system (15) can be derived according to the algorithm in [1], which can be recursively 

determined as 

3,0 ,3 1
1

1

(1,1,1) ( , , )
( , , )

( )

n n
n n

n n

c H j j
H j j

L j j

 
 

 


 




  

2

,3 1 ,2 1 1
1

( ) ( , , ) ( , , )( )
n

n i i n i i n i
i

H H j j H j j j j     


 


        
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,1 1 1 1( , , ) ( , , )( )n n n n nH j j H j j j j           

Proceeding with the recursive computation above, it can be seen that 1( , , )n nH j j   is a 

polynomial of )111(0,3c , and substituting these equations above into (11) gives another 

polynomial for the output spectrum. By using the relationship (10) and the mapping 

function 1( ( ( )); , , )n n nCE H    , these results can be obtained directly as follows.  

For simplicity, let ( ) sin( ) ( 0)d du t F t F   . Then ( )
lk l dF jk F   , for 1,

ll k lk k    , and 

1, ,l n   in (11b). By using (8) or Proposition 5 in [6], it can be obtained that  

n

nn cjjHCE ))1,1,1(()),,(( 0,312112     and 0)),,(( 212 nn jjHCE   for n=0,1,2,3,… (16) 

Therefore, for n=0,1,2,3,… 

 2 1 1 2 1 2 1 2 1 1 2 1( , , ) ( ( ) ; , , )n
n n n n nH j j c CE H            and 2 1 2( , , ) 0n nH j j       (17) 

Then the output spectrum at frequency   can be computed as (N is the largest order after 

truncated) 

 

 
 






2
1

0

12 )(
~

)(

N

n

n

n FcjY  (18) 

where )(
~

12  jF n can be computed as 

 

1 2 1

1 2 1

1 2 1

1 2 1

1

2 1
2 1 2 1 2 1 1 2 2 12 1

1 2 1
2 1 2 12 1

2 1
2 1 2 1

1
( ) ( ( ( )); , , ) ( )

2

1
( ( ( )); , , ) ( 1) ( ) ( 1)

2

( ) ( ( ( )); , ,
2

n

k k n

n

k k n

n
n n n k k d nn

n n n
n n k k dn

nd
n n k

F j CE H jF k k k

CE H j F

F
j CE H

 

 

  

  

 










   

  

 
 

  


 

     

     

  









  




2 1

1 2 1

)
n

k k n

k
 





  




 (19) 

 

and  2 1 2 1 1 2 1 2 1 3,0 1 2 1( ( ) ; , , ) ( (1,1,1) ; , , )n
n n n n nCE H c            can be obtained 

according to equations (9a-c). For example,  
 

3

3 3 3
1

3 3,0 1 2 3 1 13 3
1 1 1

3 3
1 1

( )
1

( (111); , , ) ( ) ( ) ( )

( ) ( )

i
i

i i i
i i i

i i
i i

j

c j H j H j

L j L j


      

 



  

 

    


  
 

 



 
Advances on Analysis and Control of Vibrations – Theory and Applications 12 

1

3 ,0

,

5 3,0 3,0 1 5

1 3,0 1 5 2 3,0 1 5
all the 3 partitions all the different
for (111) permutations of {0,0,1}

( ( ( ))) 3,0 ( ( )

( (111) (111); , , )

( (111),5; , , ) ( ( (111)); )

( ( (111));

p

x p q ii

a x x

c

n s s c x l X i

c c

f c f s s c

s c

  

   

 



 

  



 


  

,

3

1) ( ( ) ( ( ( ))))
1

2 0 0 1 3,0 1 5 1 1 1 2 3 3,0 3 5

1 3,0 1 5 2 0 1 0 3,0 1 5 1 1 3 3,0 2 4 1 5

2 1 0 0

)

( ( (111)); ) (1; ) (1; ) ( (111); )

( (111),5; , , ) ( ( (111)); ) (1; ) ( (111); ) (1; )

(

x p qi
l X i n s s c

i

a

a

a

f s s s c c

f c f s s s c c

f s s s



        

          

 





  



 

 
  

3,0 1 5 3 3,0 1 3 1 4 1 5( (111)); ) ( (111); ) (1; ) (1; )c c        

 
 
 
  
  

 

5 5 55 4 3

5
3 2 11 1 1

15 5 4 3
1

5 3 3 3
1 3 2 1

( ) ( ) ( ) ( ) ( ) ( )
1

( )

( ) ( ) ( ) ( )

i i i i i i
i i ii i i

i
i

i i i i
i i i i

j j j j j j

H j

L j L j L j L j

     


   

    



   

 
 
      
  
 

    


   
 

where { , }i    , and so on. Substituting these results into Equations (18-19), the output 

spectrum is clearly a power series with respect to the parameter c. When there are more 

nonlinear terms, it is obvious that the computation process above can directly result in a 

straightforward multivariate power series with respect to these nonlinear parameters. To 

check the alternating phenomenon of the output spectrum, consider the following values for 

each linear parameter: m=240, k0=16000, B=296, Fd=100, and 8.165  . Then it is obtained 

that 

2
1 3 5

23
1 13

1
1

45
1 15

1 1 1 1

( ) ( ) ( ) ( )

( ) ( )
           ( ) ( ) 3( )

2 2 ( )

( ) ( ) 6 3 3
         3( ) ( )

2 ( ) ( ) ( 3 ) ( )

d d

d

Y j F cF c F

H j H jF F
j H j

L j

H j H jF j j j

L j L j L j L j

       

  
   



      
   

    

   



 

=(-0.02068817126756 + 0.00000114704116i) 

  +(5.982851578532449e-006 -6.634300276113922e-010i)c 

   +(-5.192417616715994e-009 +3.323565122085705e-011i)c2+… (20a) 

The series is alternating. In order to check the series further, computation of 

2 1 3,0 1 2 1( (1,1,1) ; , , )n
n nc    can be carried out for higher orders. It can also be verified that 

the magnitude square of the output spectrum (20a) is still an alternating series, i.e.,  

2
( )Y j = (4.280004317115985e-004)-(2.475485177721052e-007)c 
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 +(2.506378395908398e-010)c2-… (20b) 

As pointed in Theorem 1, it is easy to find a c such that (20a-b) are convergent and their 

limits are decreased. From (20b) and according to Theorem 1, it can be computed that 

0.01671739< ( )Y j <0.0192276<0.0206882 for c=600. This can be verified by Figure 1. Figure 1 

is a result from simulation tests, and shows that the magnitude of the output spectrum is 

decreasing when c is increasing. This property is of great significance in practical 

engineering systems for output suppression through structural characteristic design or 

feedback control.  

 

Figure 1. Magnitude of output spectrum 

4. Alternating conditions 

In this section, the conditions under which the output spectrum described by Equation (12) 

can be expressed into an alternating series with respect to any nonlinear parameter are 

studied. Suppose the system subjects to a harmonic input ( ) sin( ) ( 0)d du t F t F    and 

only the output nonlinearities (i.e., cp,0(.) with p 2 ) are considered. For convenience, 

assume that there is only one nonlinear parameter cp,0(.) in model (2) and all the other 

nonlinear parameters are zero. The results for this case can be extended to the general one.  

Under the assumptions above, it can be obtained from the parametric characteristic analysis 

in [6] as demonstrated in Example 2 and Equation (11b) that 
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1 ( 1) 1

1 ,0 ,0 ( 1) 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

p p n

n
p p p p n

Y j Y j Y j Y j

F c F c F

 

 

        

         

 
   

 (21a) 

where  
ik   , ( 1) 1( )p nF j   can be computed from (11b), and n is a positive integer. 

Noting that ( )
lk l dF jk F   , 1,

ll k lk k    , and 1, ,l n   in (11b),  

 

1 ( 1) 1

1 ( 1) 1

( 1) 1 ( 1) 1

( 1) 1
( 1) 1 ,0 1 2 ( 1) 1

1
( )

2

( ( ) ; , , ) ( )
p n

k k p n

p n p n

p nn
p n p k k d p n

F j

c jF k k k
 

  
 

 

   

 
   

  

 

   




 
 (21b) 

If p is an odd integer, then (p-1)n+1 is also an odd integer. Thus there should be (p-1)n/2 

frequency variables being   and (p-1)n/2+1 frequency variables being   such that 

1 ( 1) 1p nk k 
 

    . In this case,  

 ( 1) /2
( 1) 1 ( 1) 1 ( 1) /2 ( 1) 12

1 2 ( 1) 1( ) ( 1) ( ) ( 1) ( )
p n

p n p n p n p n
d p n d djF k k k j j F j F

      
             

If p is an even integer, then (p-1)n+1 is an odd integer for n=2k (k=1,2,3,…) and an even 

integer for n=2k-1 (k=1,2,3,…). When n is an odd integer, 
1 ( 1) 1p nk k 

 
    for  

lk   . 

This gives that ( 1) 1( )p nF j   =0. When n is an even integer, (p-1)n+1 is an odd integer. In this 

case, it is similar to that p is an odd integer. Therefore, for n>0 


















 











else                                                                                            0

even isn or  odd is p if),,;)((
2)(

~

1)1(1

1)1(10,1)1(

1)1(

1)1(
npkk

npkk

n

pnp

np

d

np

c
F

j
jF 




 (21c) 

From Equations (21a-c) it is obvious that the property of the new mapping 

1 ( 1) 1( 1) 1 ,0( ( ) ; , , )
p n

n
p n p k kc  

      plays a key role in the series. To develop the alternating 

conditions for series (21a), the following results can be obtained.  

Lemma 1. That 
1 ( 1) 1( 1) 1 ,0( ( ) ; , , )

p n

n
p n p k kc  

      is symmetric or asymmetric has no influence 

on ( 1) 1( )p nF j   .  

Lemma 1 is obvious since 





1)1(1

)(

npkk  

includes all the possible permutations of 

1 2 1
( , , )

nk k 


 . Although there are many choices to obtain the asymmetric 

1 ( 1) 1( 1) 1 ,0( ( ) ; , , )
p n

n
p n p k kc  

      which may be different at different permutation

1 ( 1) 1
( , , )

p nk k 
 

 , they have no effect on the analysis of )(
~

1)1(  jF np .        

The following lemma is straightforward.  

Lemma 2. For 1 2, ,   ℂ, suppose 1 2sgn ( ) sgn ( )c c   . If Re( )Im( ) 0   , then 

1 2sgn ( ) sgn ( )c c     . If Re( )Im( ) 0   and 0  , then 1 2sgn ( ) sgn ( )c c     □. 
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Theorem 2. The output spectrum in (21a-c) is an alternating series with respect to parameter 

cp,0(k1,k2,…,kp) satisfying cp,0(.)>0 and 2 1p r   for r=1,2,3,...  

(1) if and only if  

1 ( 1) 1

1
( 1) 1 ,0 (1) (( 1) 1)sgn ( 1) ( ( ) ; )

k k p n

n n
c p n p l l p nc const

 
  

 


   

  

 
     
 




 , i.e., 

1 ( 1) 1
1 2 p

1 p i

1
( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

all the different combinations 1( 1) 1
of {x ,x ,...,x } satisfying
x x 1, 0 x n-1

( )
' ( ( ) ; )

( )

sgn                    

i

i i

k k p n

p
x

p x p l X i l X i p x
ip n

n

c

H j
c

L j  
  

 

     
    

     




 
  







1 p

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

  

(x , ,x )
( )

(k , ,k )
i

i

p
x k

l X i l X i p x
ik

n
j j

n

const

    


 
 
 
 
 
 
 
 
     
  
 
 



 







 (22) 

where const is a two-dimensional constant vector whose elements are +1, 0 or -1; 

1 2 p

1 p

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x

( ( ) ; )

1
( ( ) ; )

( )
i

i i

n
p n p l l p n

p
x

p x p l X i l X i p x
ip n l l p n

c

c
L j j

  

  
 

   

     
   

 

 

   
  










i

1 p

1, 0 x n-1

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

(x , ,x )
( )  

(k , ,k )
i

i

n

p
x k

l X i l X i p x
ik

n
j j

n
 

   

   



    





 







 

the termination is 1(1; ) 1i   ; *
1

1 2

!
( , , )

! ! !k p
e

p
n k k

n n n



 , n1+…+ne=p, e is the number of 

distinct differentials ki appearing in the combination, ni is the number of repetitions of ki, and 

a similar definition holds for *
1( , , )x pn x x .       

(2) or if k1=k2=…=kp=k in cp,0(.), 
1 1

( 1) 1 ( 1) 1

( ) ( )
Re( )Im( ) 0

( ) ( )p n p n

H j H j

L j L j   

 


 
, and 

 

1 ( 1) 1
1 2 p

1 p i

*
1 p

all the different combinations
of {x ,x ,...,x } satisfying
x x 1, 0 x n-1

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1)

(x , ,x )

sgn

                                   ( ( ) ;

k k p n

i

i i

x

n
c

x
p x p l X i l X i p x

n

c

 

  

 
  

     

    




 

 






 1)
1

)
p

i

const




 
 
 
  
 
   



  (23) 
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where if ix =0, ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; ) 1i

i i

x
p x p l X i l X i p xc          , otherwise,  

1 2 p

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

( ( ) 1) ( ( ) ( 1) 1)

( 1) 1 ( ( ) 1) ( ( ) ( 1) 1)

*
1 p

all the different combinations
of {x ,x ,...,x } satis

( ( ) ; )

( )

( )

(x , ,x )

i

i i

i

i i

x
p x p l X i l X i p x

k
l X i l X i p x

p x l X i l X i p x

x

c

j j

L j j

n

  

 

 

     

   

     

 

 
 
  









1 p j

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
1

fying
x x 1, 0 x -1

( ( ) ; )j

j j

i i

p
x

p x p l X j l X j p x
j

x x

c        


     

  





 

The recursive terminal of ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; )i

i i

x
p x p l X i l X i p xc          is ix =1. 

Proof. See Appendix D. □ 

Theorem 2 provides a sufficient and necessary condition for the output spectrum series (21a-

c) to be an alternating series with respect to a nonlinear parameter cp,0(k1,k2,…,kp) satisfying 

cp,0(.)>0 and 2 1p r   for r=1,2,3,.... Similar results can also be established for any other 

nonlinear parameters. Regarding nonlinear parameter cp,0(k1,k2,…,kp) satisfying cp,0(.)>0 and

2p r  for r=1,2,3,...., it can be obtained from (21a-c) that 

2 2
1 ,0 2( 1) 1 ,0 2( 1) 1( ) ( ) ( ) ( ) ( ) ( )n

p p p p nY j F c F c F                  

2( 1) 1( )p nF    for n=1,2,3,… should be alternating so that ( )Y j is alternating. This yields that 

1 2( 1) 1

1 2( 1)( 1) 1

2
2( 1) 1 ,0 (1) (2( 1) 1)

2( 1)
2( 1)( 1) 1 ,0 (1) (2( 1)( 1) 1)

sgn ( ( ) ; )

sgn ( ( ) ; )

k k p n

k k p n

n
c p n p l l p n

n
c p n p l l p n

c

c

 

 

  

  

 

  

   
  


     

  

 
   
 

 
     
 













 

Clearly, this is different from the conditions in Theorem 2. It may be more difficult for the 

output spectrum to be alternating with respect to cp,0(.)>0 with 2p r (even degree) than with 

respect to cp,0(.)>0 with 2 1p r   (odd degree).  

Note that Equation (21a) is based on the assumption that there is only nonlinear parameter 

cp,0(.) and all the other nonlinear parameters are zero. If the effects from the other nonlinear 

parameters are considered, Equation (21a) can be written as 

 1 ,0 ,0 ( 1) 1( ) ( ) ( ) ( ) ( ) ( )n
p p p p nY j F c F c F                   (24a) 

where  
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 ( 1) 1 ( 1) 1 ( 1) 1 , p,0( ) ( ) ( ; \ (.))p n p n p n p qF F C c                    (24b) 

,p qC   includes all the nonlinear parameters in the system. Based on the parametric 

characteristic analysis in [6] and the new mapping function 1( ( ( )); , , )n n nCE H     defined 

in [7], (24b) can be determined easily. For example, suppose p is an odd integer larger than 1, 

then ( 1) 1( )p nF j   is given in (21c), and ( 1) 1 , p,0( ; \ (.))p n p qC c     can be computed as 

,0

, ,0

i i

( ( ))

( 1) 1 , p,0
all the monomails  consisting of the parameters in \ ( )
satisfying np (p q ) is odd and less than N

( ; \ (.))
2

                                 

n
p

p q p

n c s

d
p n p q

C c

F
C c j

 



  


  

  
    

  




1,0 ( ( )),0
1 ( ( )),0

,0 , ,0( ( ))
                    ( ( \ ( )); )n

np n c sp
k k nn c sp

n
p p q p k kn c s

c s C c
 

  




 
  


  







 

where , ,0( \ ( ))p q ps C c   denotes a monomial consisting of some parameters in , ,0\ ( )p q pC c   .  

It is obvious that if (21a) is an alternating series, then (24a) can still be alternating under a 

proper design of the other nonlinear parameters (for example the other parameters are 

sufficiently small). Moreover, from the discussions above, it can be seen that whether the 

system output spectrum is an alternating series or not with respect to a specific nonlinear 

parameter is greatly dependent on the system linear parameters. 

Example 3. To demonstrate the theoretical results above, consider again model (15) in 

Example 2. Let ( ) sin( ) ( 0)d du t F t F   . The output spectrum at frequency   is given in 

(18-19). From Lemma 3 in Appendix D, it can be derived for this case that  

1 2 3

2 1
1

( ) 1 ( )
1

2 1 3,0 (1) (2 1)
2 1 (1) (2 1)

3
*

1 2 3 2 1 3,0 ( ( ) 1) ( ( ) 2 1)
all the different combinations 1
of {x ,x ,x } s

( 1) [( ) ( )]

( ( ) ; )
( )

(x ,x ,x ) ( ( ) ; )i

i i

n
n k

l i l i
n i

n l l n
n l l n

x
x x l X i l X i x

i

j H j

c
L j j

n c

 
  

 

  





 

 

   



 

 

  










1 2 3 i

atisfying
x x x 1, 0 x n-1n     


 (25a) 

where, if ix =0, ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; ) 1i

i i

x
p x p l X i l X i p xc          , otherwise,  

1 2 3

1 2 3

2 1 3,0 ( ( ) 1) ( ( ) 2 1)

( ( ) 1) ( ( ) 2 1)

2 1 ( ( ) 1) ( ( ) 2 1)

*
1 2 3

all the different combinations
of {x ,x ,x } satisfying
x x x 1, 0 x

( ( ) ; )

( )

( )

(x ,x ,x )

i

i i

i

i i

i

x
x l X i l X i x

k
l X i l X i x

x l X i l X i x

x

x

c

j j

L j j

n

  

 

 

   

  

   

    

 

 
 
  







j

3

2 1 3,0 ( ( ) 1) ( ( ) 2 1)
1

-1

( ( ) ; )j

j j

i

x

x l X j l X j x
j

x

c      




   

 (25b) 
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Note that the terminal condition for (25b) is at ix =1, i.e.,  

(1) (3)
2 1 3,0 1 3 3,0 (1) (3)( ( ) 1) ( ( ) 2 1)

3 (1) (3)

( )
( ( ) ; ) ( ( ); )

( )
i

i ii

k
l lx

x x l ll X i l X i x
l l

j j
c c

L j j

 
     

    

 
    

  


 


 (25c) 

Therefore, from (25a-c) it can be easily shown that 2 1 3,0 1 2 1( ( ) ; )n
n nc     can be written as 

1 2 n-1

i

1

2 1 3,0 1 2 1

2 1
1

1 1
(1) ( )1

1 2 n-1
all the combination (x ,x ,...,x ) 12 1 1 2 1 (1) ( )
satisfying x {2 1|1 1}
x

( ( ) ; )

( 1) ( )

(x ,x ,...,x )
( ) ( )

i

i i

n
n n

n
n

i i n
l l xi

X
in n x l l x

j j n

c

j H j
j j

r
L j j L j j

  

   

   

 







 
    





  
 

    








 

2 n-1

i 1

x .. x , and
" "  happens only if x 2 2ix n

 
   


 (26) 

where 1 2 n-1(x ,x ,...,x )Xr is a positive integer which can be explicitly determined by (25ab) and 

represents the number of all the involved combinations which have the same 
1

(1) ( )

1 (1) ( )( )
i

i i

n
l l x

i x l l x

j j

L j j

 

 





 

  



. Therefore, according to the sufficient condition in Theorem 2, it 

can be seen from (26) that the output spectrum (18) is an alternating series only if the 

following two conditions hold: 

(a1)      1 1

2 1 2 1

( ) ( )
Re( )Im( ) 0

( ) ( )n n

H j H j

L j L j 

 


 
 

(a2)     

1 2 n-11 2 1
i

1 2 n-1

i 1

1
(1) ( )

1 2 n-1
all the combination (x ,x ,...,x ) 1 (1) ( )
satisfying x {2 1|1 1}
x x .. x , and
" "  happens only if x 2 2

sgn (x ,x ,...,x )
( )

i

k k i in

i

n
l l x

c X
i x l l x

j j n

x n

j j
r

L j j 

 

 






   
    

  
   




 

  



  





const




 
  
 
 
 



 

Suppose 0k

m
  which is a natural resonance frequency of model (15). It can be derived 

that 

1

1

2
2 1 1,0 1 0

0

( ) ( )( ) ( ( ) ( ) )
K

k
n

k

L j c k j m j B j k jB


              

1
1

1 1
( )

( )
H j

L j jB


  

 
 

It is obvious that condition (a1) above is satisfied if 0k

m
  . Considering condition (a2), it 

can be derived that 
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 (1) ( )

(1) ( )

( )

( ) ( ( ) )
i

i i i

l l x i

x l l x x i

j j j x

L j j L j x

  
  

  


    




 (27a) 

where ( ) { (2 1) 0 1 }ix j j n         , and 1n   denotes the odd integer not larger than 

n+1. Especially, when ( ) 1ix   , it yields that 

(1) ( )

(1) ( )

1

( ) ( )
i

i i i

l l x

x l l x x

j j j j

L j j L j jB B

 

 

     
  

       




                       (27b) 

when ( ) 1ix  ,  

(1) ( )

2
(1) ( ) 0

2 1
0 0( )

( ) ( )

( ) ( ( ) ) ( ( ) ) ( ( ) )

( ) 1

(1 ( ) ) ( ) ( ( ) )

i

i i i

i

l l x i i

x l l x x i i i

i

i i i x

j j j x j x

L j j L j x m j x B j x k

j x

x k j x B B j x k m

   
    


  

   
 

        


 

    




      (27c) 

If 0B k m , then it gives 

(1) ( )

1
(1) ( ) 0( )

1

( ) ( ( ) )

i

i i
i

l l x

x l l x i x

j j

L j j j x k m

 

  

 


   




                            (27d) 

Note that in all the combinations involved in the summation operator in (26) or condition 

(a2), i.e., 

1 2 n-11 2 1
i

1 2 n-1

i 1

all the combination (x ,x ,...,x )
satisfying x {2 1|1 1}
x x .. x , and
" "  happens only if x 2 2

( )

k k n

i

j j n

x n

 




  
    

  
   

 


 

There always exists a combination such that 

1
(1) ( )

1
1 (1) ( )

1

( )
i

i i

n
l l x

n
i x l l x

j j

L j j B

 

 






 


  



                                     (28) 

Note that (27b) holds for both 1)( ix , thus there is no combination such that  

1
(1) ( )

1
1 (1) ( )

1

( )
i

i i

n
l l x

n
i x l l x

j j

L j j B

 

 






 
 

  



 

Also noting that mkB 0 , all these show that  

1
(1) ( )

1all the involved 
1 (1) ( )combinations

1
max ( )

( )
i

i i

n
l l x

n
i x l l x

j j

L j j B

 

 






 


  



 



 
Advances on Analysis and Control of Vibrations – Theory and Applications 20 

which happens in the combination where (28) holds.  

Because there are n+1 frequency variables to be   and n frequency variables to be   

such that 1 2 1n       in (18-19), there are more combinations where ( ) 0ix  that is 

1
0( )

( ( ) )
i

i x
x k m


  >0 in (27c-d). Thus there are more combinations where Im(

(1) ( )

(1) ( )( )
i

i i

l l x

x l l x

j j

L j j

 

 

 

  




) is negative. Using (27b) and (27d), it can be shown under the 

condition that 0B k m , 

1
(1) ( )

( ) 32 21all the involved
1 (1) ( ) 0 0( )combinations

1 1
max ( Im( ) )

( ) ( ( ) ) 2.7

i

i

i i
i

n
l l x

xn n
i x l l x i x

j j

L j j B x k m B k m




 

  



 


 
 

   





 

This happens in the combinations where the argument of 
1

(1) ( )

1 (1) ( )( )
i

i i

n
l l x

i x l l x

j j

L j j

 

 





 

  



is either 

-900 or +900. Note that there are more cases in which the arguments are -900. If the argument 

is -1800, the absolute value of the corresponding imaginary part will be not more than  

0

1
(1) ( )

( ) 33 3the combination 4 3 3 411 (1) ( )whose argument is 0 0( )
-180

1 1
max ( Im( ) )

( ) ( ( ) ) 2.7

i

i

i i
i

n
l l x

x
n ni x l l x

i x

j j

L j j B x k m B k m




 

  




 

 
 

   






 

which is much less than 
mkB n 0

27.2

1


.  

Therefore, if B is sufficiently smaller than mk0 , the following two inequalities can hold for n>1 

1 2 n-1

i

1 2 n-1

i 1

1
(1) ( )

1 2 n-1
all the combination (x ,x ,...,x ) 1 (1) ( )
satisfying x {2 1|1 1}
x x .. x , and
" "  happens only if x 2 2

Re( (x ,x ,...,x ) ) 0
( )

i

i i

i

n
l l x

X
i x l l x

j j n

x n

j j
r

L j j

 

 






    

  
   

 


   



 

1 2 n-1

i

1 2 n-1

i 1

1
(1) ( )

1 2 n-1
all the combination (x ,x ,...,x ) 1 (1) ( )
satisfying x {2 1|1 1}
x x .. x , and
" "  happens only if x 2 2

Im( (x ,x ,...,x ) ) 0
( )

i

i i

i

n
l l x

X
i x l l x

j j n

x n

j j
r

L j j

 

 






    

  
   

 


   



 

That is, condition (a2) holds for n>1 under 0B k m  and 0k

m
  . Hence, (18) is an 

alternating series if the following two conditions hold: 

(b1) B is sufficiently smaller than 0k m ,  
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(b2) The input frequency is 0k

m
  .  

In Example 2, note that 0k

m
   8.165, B=296<< 0k m =1959.592. These are consistent with 

the theoretical results established above. As it has been checked numerically in Example 2 

that (18) is an alternating series, the theoretical results above are well verified by the real 

system.  

Therefore, it can be seen that, at the driving frequency the system output spectrum (subject 

to a cubic nonlinear damping) can be designed to be an alternating series by properly 

designing system parameters (see conditions (b1-b2) above) and therefore can be suppressed 

as shown in Example 2 by properly choosing a value for the nonlinear parameter c. This 

result clearly demonstrate the mechanism for the nonlinear effect of the cubic nonlinear 

damping in the frequency domain.  

More simulation studies about the properties of the cubic nonlinear damping can be 

referred to the simulation results in [8], where the effects of the cubic nonlinear damping are 

studied in details and compared with a linear damping. The case study here theoretically 

shows for the first time why and when these nonlinear effects happen and what the 

underlying mechanism is.  

Based on the discussions in Examples 2-3, it can be concluded that, the results of this study 

provide a new systematic method for the analysis and design of the nonlinear effect for a 

class of nonlinearities in the frequency domain.  

5. Conclusions 

Nonlinear influence on system output spectrum is investigated in this study from a novel 

perspective based on Volterra series expansion in the frequency domain. For a class of 

system nonlinearities, it is shown that system output spectrum can be expanded into an 

alternating series with respect to nonlinear parameters of the model under certain 

conditions and this alternating series has some interesting properties for engineering 

practices. Although there may be several existing methods such as perturbation analysis 

that can achieve similar objectives for some simple cases in practice, this study proposes a 

novel viewpoint on the nonlinear effect (i.e., alternating series) and on the analysis of 

nonlinear effect (i.e., the GFRFs-based) for a class of nonlinearities in the frequency domain. 

As some important properties of a linear system (e.g. stability) are determined by the 

positions of the poles of its transfer function, the fact of alternating series should be a natural 

characteristic of some important nonlinear effects for nonlinear systems in the frequency 

domain. This study provides some fundamental results for characterizing and 

understanding of nonlinear effects in the frequency domain from this novel viewpoint. The 

GFRFs-based analysis provides a useful technique for the analysis of nonlinear systems 

which is just similar to the transfer function based analysis for linear systems. The method 

demonstrated in this paper has been used for the analysis and design of nonlinear damping 
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systems. Further study will focus on more detailed design and analysis methods based on 

these results for practical systems.  

Author details 

Xingiian Jing 

Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, 

Hong Kong 

Acknowledgement 

The author gratefully acknowledges the support of a GRF project of Hong Kong RGC (Ref 

517810), the Department General Research Funds and Internal Competitive Research Grants 

of Hong Kong Polytechnic University for this work. 

Appendix 

Appendix A: Nomenclature 

, 1( , , )p q p qc k k   - A model parameter in the NDE model, ki is the order of the derivative, p 

represents the order of the involved output nonlinearity, q is the order of the involved input 

nonlinearity, and p+q is the nonlinear degree of the parameter. 

1( , , )n nH j j   - The nth-order GFRF 

, , , ,[ (0, ,0), (0, ,1), , ( , , )]p q p q p q p q

p q m

C c c c K K

 

      - A parameter vector consisting of all the 

nonlinear parameters of the form .. 

CE(.) - The coefficient extraction operator 

1( ( , , ))n nCE H j j   - The parametric characteristics of the nth-order GFRF 

1( , , )n nf j j   - The correlative function of 1( ( , , ))n nCE H j j   

  - The reduced Kronecker product defined in the CE operator 

   - The reduced vectorized summation defined in the CE operator 

(*)
( )   and 

(*)
( )   - The multiplication and addition by the reduced Kronecker product “ ” 

and vectorized sum “ ” of the terms in (.) satisfying (*), respectively 

, , ,
1

k

p q p q p q
i

C C C

     - can be simply written as k

qpC , . 

0 0 1 1, , ,( ) ( ) ( )
k kp q p q p qc c c    - A monomial consisting of nonlinear parameters 
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pxxx sss 
21

 - A p-partition of a monomial 
0 0 1 1, , ,( ) ( ) ( )

k kp q p q p qc c c    

ix
s  - A monomial of xi parameters of )}(,),({ ,, 00


kk qpqp cc  of the involved monomial, 

0 ix k  ,  and s0=1 

: ( ) ( )n C fS n S n   - A new mapping function from the parametric characteristics to the 

correlative functions, ( )CS n  is the set of all the monomials in the parametric characteristics 

and ( )fS n is the set of all the involved correlative functions in the nth order GFRF.  

( ( ))xn s s  - The order of the GFRF where the monomial ( )xs s  is generated 

Appendix B: The Coefficient Extraction (CE) operator [6,7,22,23] 

Consider a series  

1 1 2 2CFH c f c f c f       

where the coefficients ci (i=1,…,  ) are different monomial functions in a set cP of some 

parameters in a set sC which takes values in ℂ, fi for i=1,…,n are some complex valued scalar 

functions in a set fP  which are independent of the parameters in sC ,   denotes all the finite 

order series with coefficients in cP timing some functions in fP , C=[c1,c2,…, 
c ], and F=[ 

f1,f2,…, f ]T. Define a Coefficient Extraction operator :CE ℂ 
for this series such that 

1 2( ) [ , , , ]CFCE H c c c C   ℂ 
 

where ℂ 
is the  -dimensional complex valued vector space. This operator has the 

following properties, also acting as operation rules: 

1. Reduced vectorized sum “ ”.  

1 1 2 2 1 1 2 2 1 2 1 2( ) ( ) ( ) [ , ]C F C F C F C FCE H H CE H CE H C C C C      , 2 2 1 2( )C VEC C C C    , 

where    1 1 1 2 2 2( ) 1 , ( ) 1C C i i C C C i i C      , VEC(.) is a vector consisting of all 

the elements in set (.). 2C  is a vector including all the elements in C2 except the same 

elements as those in C1.  

2. Reduced Kronecker product “ ”.  

1 1 2 2 1 1 2 2

3 1 2 1 1 2
1 2 3

3

[ (1) , , ( ) ]
( ) ( ) ( ) ( )

1
C F C F C F C F

C C C C C C
CE H H CE H CE H C C VEC C i

i C

         
   


 

which implies that there are no repetitive elements in 1 2C C . 

3. Invariant. (a) ( ) ( )CF CFCE H CE H     ℂ but is not a parameter of interest; (b) 

1 2 1 2( )( ) ( )CF CF C F FCE H H CE H C    
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4. Unitary. If CFH is not a function of ci for i=1…n, ( ) 1CFCE H  .  

When there is a unitary 1 in CE(HCF), there is a nonzero constant term in the 

corresponding series HCF which has no relation with the coefficients ci (for i=1…n). In 

addition, if CFH =0, then CE(HCF)=0. 

5. Inverse. CE-1(C)=HCF. 

6. 
1 1 2 2

( ) ( )C F C FCE H CE H  if the elements of C1 are the same as those of C2, where “  ” 

means equivalence, i.e., both series are in fact the same result considering the order of 

cifi in the series has no effect on the value of a function series HCF. This further implies 

that the CE operator is also commutative and associative, for instance, 

1 1 2 2 2 2 1 11 2 2 1( ) ( )C F C F C F C FCE H H C C CE H H C C       . Hence, the results by the CE 

operator with respect to the same purpose may be different but all correspond to the 

same function series and are thus equivalent.  

7. Separable and interested parameters only. A parameter in a series can only be extracted 

if the parameter is interested and the series is separable with respect to this interested 

parameter. Thus the operation result is different for different purposes. � 

Appendix C: Proof of theorem 1 

(1) ( )Y j  is convergent if and only if Re( ( ))Y j and Im( ( ))Y j  are both convergent. Since 

( )Y j is an alternating series, Re( ( ))Y j and Im( ( ))Y j  are both alternating from Definition 

1. Then according to [3], ))(Re( jY  is convergent if 1
1Re( ( )) Re( ( ))i i

i ic F j c F j 
 and 

lim Re( ( )) 0i
i

i
c F j


 . Therefore, if there exists T>0 such that 1

1Re( ( )) Re( ( ))i i
i ic F j c F j 

  

for i>T and lim Re( ( )) 0i
i

i
c F j


 , the alternating series Re( ( ))Y j  is also convergent. Now 

since there exist T>0 and R>0 such that 
1

Re( ( ))

Re( ( ))
i

i

F j
R

F j




   for i>T and note c<R, it can be 

obtained that for i>T 

1
1 1 1Re( ( )) Re( ( )) Re( ( ))

1
Re( ( )) Re( ( ))Re( ( ))

i
i i i

i
i ii

c F j cF j cF j c

F j F j Rc F j

  
 


         

i.e., 1
1Re( ( )) Re( ( ))i i

i ic F j c F j 
  for i>T and c<R. Moreover, it can also be obtained that 

for n>0 

1
Re( ( )) Re( ( ))T n Tn

F j F j
R

    

It further yields that 

Re( ( )) ( ) Re( ( ))T n n T
T n T

c
c F j c F j

R
 

   
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That is, lim Re( ( )) 0T n
T n

n
c F j


 . Therefore, Re( ( ))Y j  is convergent. Similarly, it can be 

proved that Im( ( ))Y j is convergent. This proves that ( )Y j  is convergent. According to 

[3], the truncation errors for the convergent alternating series Re( ( ))Y j  and Im( ( ))Y j are 

bounded by 

1
1( ) Re( ( ))R c F j

  
  and 1

1( ) Im( ( ))I c F j
  
  

Therefore, the truncation error for the series ( )Y j  is 

2 2 1
1( ) ( ) ( ) ( )R I c F j

      
    

Since Re( ( ))Y j  and Im( ( ))Y j  are both alternating series and the absolute value of each 

term in Re( ( ))Y j  and Im( ( ))Y j  are monotone decreasing, i.e., 

1
1Re( ( )) Re( ( ))i i

i ic F j c F j 
  and 1

1Im( ( )) Im( ( ))i i
i ic F j c F j 

  for i>T, then it can be 

shown for Re( ( ))Y j  and Im( ( ))Y j  that for n  0 

1 1 1 2 1 1 2 1Re( ( ) ) Re( ( ) ) Re( ( )) Re( ( ) ) Re( ( ) )T T n T n TY j Y j Y j Y j Y j                   

1 1 1 2 1 1 2 1Im( ( ) ) Im( ( ) ) Im( ( )) Im( ( ) ) Im( ( ) )T T n T n TY j Y j Y j Y j Y j                   

Therefore, 1 1 1 2 1 1 2 1( ) ( ) ( ) ( ) ( )T T n T n TY j Y j Y j Y j Y j                  . 

(2)  

2

2 2
0 1 2 0 1 2

0,1,2,... 0

( ) ( ) ( )

( ( ) ( ) ( ) )( ( ) ( ) ( ) )

( ) ( )
n

n
i n i

n i

Y j Y j Y j

F j cF j c F j F j cF j c F j

c F j F j

  

     

 
 

 

         

  

   

It can be verified that the (2k)th terms in the series are positive and the (2k+1)th terms are 

negative for k=0,1,2,…. Moreover, it is not difficult to obtain that it needs only the real parts 

of the terms in ( )Y j  to be alternating for 
2

( ) ( ) ( )Y j Y j Y j     to be alternating.  

(3)  

2

1
0 1

1,2,... 0

( ) ( )1

2 ( )

1
Re( ( ) ( )) ( ) ( )

2 ( )

n
n

i n i
n i

Y j Y j

c cY j

F j F j c nc F j F j
Y j

 


   





 

 


 

      
  

 
 

Since 0 1Re( ( ) ( ))F j F j  <0, there must exist 0c  such that 
( )

0
Y j

c





for 0 c c  . This 

completes the proof. □ 
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Appendix D: Proof of theorem 2 

In order to prove Theorem 2, the following lemma is needed, which provides a fundamental 

technique for the derivation of the main results in Theorem 2 by exploiting the recursive 

nature of ( ) ,0 (1) ( ( ))( ( ) ; ) n
n s p l l n sc    . 

Lemma 3. Consider a nonlinear parameter denoted by cp,q(k1,k2,…,kp+q).  

(1) If 2p  and q=0, then  

( ) ,0 (1) ( ( )) ( 1) 1 ,0 (1) (( 1) 1)

( 1) 1
1

1 ( )
1

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the 1( 1) 1 (1) (( 1) 1)

( ( ) ; ) ( ( ) ; )

( 1) ( )

( ( ) ; )
( )

i

i i

n n
n s p l l n s p n p l l p n

p n
n

pl i
xi

p x p l X i l X i p x
ip n l l p n

c c

H j

c
L j j

     


  

 

   

 



     

   

  

 
  

  




 




1 2 p

1 p i

1 p

different combinations
of {x ,x ,...,x } satisfying
x x 1, 0 x n-1

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

(x , ,x )
( )  

(k , ,k )
i

i

n

p
x k

l X i l X i p x
ik

n
j j

n
 

     

   



    





 










 

where,  

1 2 p

1 p

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x

( ( ) ; )

1
( ( ) ; )

( )
i

i i

n
p n p l l p n

p
x

p x p l X i l X i p x
ip n l l p n

c

c
L j j

  

  
 

   

     
   

 

 

   
  










i

1 p

1, 0 x n-1

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

(x , ,x )
( )  

(k , ,k )
i

i

n

p
x k

l X i l X i p x
ik

n
j j

n
 

   

   



    





 







 

the termination is 1(1; ) 1i   . *
1

1 2

!
( , , )

! ! !k p
e

p
n k k

n n n



 , n1+…+ne=p, e is the number of 

distinct differentials ki appearing in the combination, ni is the number of repetitions of ki, and 

a similar definition holds for *
1( , , )x pn x x . 

(2) If 2p  , q=0 and k1=k2=…=kp=k, then 

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1
1

( ) 1 ( )
1

( 1) 1 (1) (( 1) 1)

*
1 p ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

all the different 1

( ( ) ; )

( 1) [( ) ( )]

( )

(x , ,x ) ( ( ) ; )i

i i

n
p n p l l p n

p n
n k

l i l i
i

p n l l p n

p
x

x p x p l X i l X i p x
i

c

j H j

L j j

n c

  

 

 

  

   

 




   

     







 

  









 

1 2 p

1 p i

combinations
of {x ,x ,...,x } satisfying
x x 1, 0 x n-1n     




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where, if ix =0, ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; ) 1i

i i

x
p x p l X i l X i p xc          , otherwise,  

1 2 p

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

( ( ) 1) ( ( ) ( 1) 1)

( 1) 1 ( ( ) 1) ( ( ) ( 1) 1)

*
1 p

all the different combinations
of {x ,x ,...,x } satis

( ( ) ; )

( )

( )

(x , ,x )

i

i i

i

i i

x
p x p l X i l X i p x

k
l X i l X i p x

p x l X i l X i p x

x

c

j j

L j j

n

  

 

 

     

   

     

 

 
 
  









1 p j

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
1

fying
x x 1, 0 x -1

( ( ) ; )j

j j

i i

p
x

p x p l X j l X j p x
j

x x

c        


     

  





 

The recursive terminal of ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; )i

i i

x
p x p l X i l X i p xc          is ix =1.  

Proof of Lemma 3.  

 


1 ,0

( ) ,0 (1) ( ( )) ( 1) 1 ,0 ,0 ,0 (1) ( ( 1) 1)

1 ,0 (1) (( 1) 1)
all the 2 partitions all the different
for satisfying permutations

( ) ( ) o

( ( ) ; ) ( ( ) ( ) ( ); )

( ( ),( 1) 1; )

p

n
n s p l l n s p n p p p l l p n

p l l p n

s
s s c

c c c c

f c p n

     

 

   

 


 

    

    
  



3,0

x x1 p

1 1
1 ,0 ,0

all the p partitions
for ( )

f {s , ,s }

1 1
2 0 (1) ( ( )) ,0 ( ( ) 1)( ( ( ) )) ( ( ) ( ( ( ) )))

1

( ( ( ) ); ) ( ( ( ) ); )n n
p ix p x pi i

s c

p
n n

a x x p l l n s x p l X in s c l X i n s c
i

f s s c s c     




 
  



      

 





  

 

 

1
,0

,0

x x1 p

1
,0

( ( ) 1) ( ( ) ( ( ( ) )))
all the p partitions all the different 1( 1) 1 (1) (( 1) 1)
for ( ) permutations

of {s , ,s }

1
,0( ( ( ) ))

1
( )

( )

( ( ( ) )

i
n

x pi

p

n
ix pi

p
k

l X i l X i n s c
ip n l l p n

s c

n
x pn s c

j j
L j j

s c

 
 







  
    






   

  

 

  





1
,0

( ( ) 1) ( ( ) ( ( ( ) )))
1

; )n
x pi

p

l X i l X i n s c
i

    





 

 

 

1 2 p

1 p

( ( ) 1) ( ( ) ( 1) 1)
all the different combinations all the different 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying    permutations of

 each combinationx x

1
( )

( )
i

i

p
k

l X i l X i p x
ip n l l p n

n

j j
L j j

 
     

   

  


   

  
 






i1, 0 x n-1

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
1

( ( ) ; )i

i i

p
x

p x p l X i l X i p x
i

c  

  

     


  



 

 

Note that different permutations in each combination have no difference to 

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
1

( ( ) ; )i

i i

p
x

p x p l X i l X i p x
i

c       


  , thus ( 1) 1 ,0 1 ( 1) 1( ( ) ; )n
p n p p nc       can be 

written as 
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1 2 p

1 3 i

( 1) 1 ,0 1 ( 1) 1

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x 1, 0 x n-

( ( ) ; )

1
( ( ) ; )

( )
i

i i

n
p n p p n

p
x

p x p l X i l X i p x
ip n l l p n

n

c

c
L j j

  

  
 

   

     
   

     



  
  








1

( ( ) 1) ( ( ) ( 1) 1)
all the different 1

   permutations of
 each combination

( ) i

i

p
k

l X i l X i p x
i

j j    


  



  

 

1 2 p

1 p i

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x 1, 0 x n-1

*
1 p

*
1 p

1
( ( ) ; )

( )

(x , ,x )
(

(k , ,k )

i

i i

p
x

p x p l X i l X i p x
ip n l l p n

n

x

l

k

c
L j j

n
j

n

  
 



     
   

     

  
 

 

 










1 p

( ( ) 1) ( ( ) ( 1) 1)
all the different 1

   permutations of
 {k , ,k }

) i

i

p
k

X i l X i p x
i

j   


  




  

*
1( , , )x pn x x and *

1( , , )k pn k k  are the numbers of the corresponding combinations involved, 

which can be obtained from the combination theory and can also be referred to [14]. 

Inspection of the recursion in the equation above, it can be seen that there are (p-1)n +1

1( )iH j  with different frequency variable at the end of the recursion. Thus they can be 

brought out as a common factor. This gives 

( 1) 1

( 1) 1 ,0 (1) (( 1) 1) 1 ( ) ( 1) 1 ,0 (1) (( 1) 1)
1

( ( ) ; ) ( 1) ( ) ( ( ) ; )
p n

n n n
p n p l l p n l i p n p l l p n

i

c H j c      
 

       


        (A1) 

where, 

1 2 p

1 p

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x 1

( ( ) ; )

1
( ( ) ; )

( )
i

i i

n
p n p l l p n

p
x

p x p l X i l X i p x
ip n l l p n

n

c

c
L j j

  

  
 

   

     
   

   

 

   
  








i

1 p

, 0 x n-1

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

(x , ,x )
( )           

(k , ,k )
i

i

p
x k

l X i l X i p x
ik

n
j j

n
 

 

   


   



 







 (A2) 

the termination is 1(1; ) 1i   . Note that when ix =0, there is a term ( ( ) 1)( ) ik
l X ij   appearing 

from 

1 p

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

(x , ,x )
( )

(k , ,k )
i

i

p
x k

l X i l X i p x
ik

n
j j

n
    



   






. It can be verified that 

in each recursion of ( 1) 1 ,0 (1) (( 1) 1)( ( ) ; )n
p n p l l p nc        , there may be some frequency 

variables appearing individually in the form of ( ( ) 1)( ) ik
l X ij  , and these variables will not 
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appear individually in the same form in the subsequent recursion. At the end of the 

recursion, all the frequency variables should have appeared in this form. Thus these terms 

can also be brought out as common factors if k1=k2=…=kp. In the case of k1=k2=…=kp=k,  

 

1 p

*
1 p

( ( ) 1) ( ( ) ( 1) 1)*
all the different 11 p

   permutations of
 {k , ,k }

*
1 p ( ( ) 1) ( ( ) ( 1) 1)

1

(x , ,x )
( )

(k , ,k )

(x , ,x ) ( )

i

i

i

i

p
x k

l X i l X i p x
ik

p
k

x l X i l X i p x
i

n
j j

n

n j j

 

 

   


   


  

   

 










 

 

 

Therefore (A1) and (A2) can be written, if k1=k2=…=kp, as 

 

 
( 1) 1 ,0 (1) (( 1) 1)

( 1) 1

( ) 1 ( ) ( 1) 1 ,0 (1) (( 1) 1)
1

( ( ) ; )

( 1) [( ) ( )] ( ( ) ; )

n
p n p l l p n

p n
n k n

l i l i p n p l l p n
i

c

j H j c

  

    

   

 

   




   




 (A3) 

 

1 2 p

1 p

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
all the different combinations 1( 1) 1 (1) (( 1) 1)
of {x ,x ,...,x } satisfying
x x 1

( ( ) ; )

1
( ( ) ; )

( )
i

i i

n
p n p l l p n

p
x

p x p l X i l X i p x
ip n l l p n

n

c

c
L j j

  

  
 

   

     
   

   

 

   
  








i, 0 x n-1

(1 ( ))*
1 p ( ( ) 1) ( ( ) ( 1) 1)

1

(x , ,x ) ( )                     i i

i

p
k x

x l X i l X i p x
i

n j j  

 


   



   



 

 (A4) 

 

(A4) can be further written as 

 

1 2 p

( 1) 1 ,0 (1) (( 1) 1)

( 1) 1 (1) (( 1) 1)

*
1 p ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

all the different combinations 1
of {x ,x ,...,x } satisfy

( ( ) ; )

1

( )

(x , ,x ) ( ( ) ; )i

i i

n
p n p l l p n

p n l l p n

p
x

x p x p l X i l X i p x
i

c

L j j

n c

  

 

  

   

   

     


 




 

  





 

1 p i

ing
x x 1, 0 x n-1n     





 (A5) 

where, if ix =0, ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)( ( ) ; ) 1i

i i

x
p x p l X i l X i p xc          , otherwise,  
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( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)

( 1) 1 ,0( ( ) 1) ( ( ) ( 1) 1) ( ( ) 1) ( ( ) ( 1) 1)

( ( ) 1) ( ( ) ( 1) 1)

( 1) 1 ( ( )

( ( ) ; )

( ) ( ( ) ; )

( )

(

i

i i

i

ii i

i

i

x
p x p l X i l X i p x

xk
p x pl X i l X i p x l X i l X i p x

k
l X i l X i p x

p x l X i

c

j j c

j j

L j

  

    

 



     

        

   

  

 

   

 





 



1 2 p

1 p i

*
1 p

all the different combinations1) ( ( ) ( 1) 1)
of {x ,x ,...,x } satisfying
x x 1, 0 x -1

(1 ( ))
( 1) 1 ,0( ( ) 1) ( ( ) ( 1) 1) ( ( ) 1)

(x , ,x )
)

( ) ( ( ) ;

i

i i

i i i

ii

x
l X i p x

x x

k x x
p x pl X i l X i p x l X i

n
j

j j c




   

  

     


       


 

   










1 2 p

1 p i

( ( ) ( 1) 1)
1

( ( ) 1) ( ( ) ( 1) 1)

( 1) 1 ( ( ) 1) ( ( ) ( 1) 1)

*
1 p

all the different combinations
of {x ,x ,...,x } satisfying
x x 1, 0 x -

)

( )

( )

(x , ,x )

i

i

i i

i i
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l X i p x
i

k
l X i l X i p x

p x l X i l X i p x

x

x x

j j

L j j

n



 

 

   


   

     

     

 
 
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









 ( 1) 1 ,0 ( ( ) 1) ( ( ) ( 1) 1)
1

1

( ( ) ; )    i

i i

p
x

p x p l X i l X i p x
i

c        


   

 

The recursive terminal of (A6) is ix =1. Substituting (A2) into (A1) gives the first point of the 

lemma and substituting (A5) and (A6) into (A3) yields the first point of the lemma. This 

completes the proof. □ 

Now proceed with the proof of Theorem 2. For convenience, denote 

1 2 1 2sgn ( ) * sgn ( ) sgn ( )c c c    1 2 1 2sgn (Re( )) sgn (Im( ))r r        

for any 1 2,  ℂ.  

Proof of Theorem 2. (1). From Lemma 1, any asymmetric
1 ( 1) 1( 1) 1 ,0( ( ) ; , , )

p n

n
p n p k kc  

      is 

sufficient for the computation of ( 1) 1( )p nF j   . It can be obtained that 

1 ( 1) 1

1 ( 1) 1

( 1) 1
( 1) 1 ( 1) 1 ,0sgn ( ( )) sgn ( ( ) ) sgn ( ( ( ) ; , , ))

2 p n

k k p n

p n nd
c p n c c p n p k k

F
F j j c

 
  

 

 

 
   

  
    



   

From Lemma 2, ( 1) 1sgn ( ( ) )
2

p nd
c

F
j   has no effect on the alternating nature of the sequence 

( 1) 1( )p nF j    for n=1,2,3,…. Hence, (21a-c) is an alternating series with respect to cp,0(.) if and 

only if the sequence 
1 ( 1) 1

1 ( 1) 1

( 1) 1 ,0( ( ) ; , , )
p n

k k p n

n
p n p k kc

 
  

 

 

 
  




  for n=1,2,3,… is 

alternating. This is equivalent to  

1 ( 1) 1

1
( 1) 1 ,0 (1) (( 1) 1)sgn ( 1) ( ( ) ; )

k k p n

n n
c p n p l l p nc const

 
  

 


   

  

 
     
 




  
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In the equation above, replacing 
1 ( 1) 1( 1) 1 ,0( ( ) ; , , )

p n

n
p n p k kc  

     by using the result in 

Lemma 3 and noting (p-1)n+1 is an odd integer, it can be obtained that 
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Note that 
( 1) 2

2
1

1

( )
p n

i

H j




 has no effect on the equality above according to Lemma 2, then 

the equation above is equivalent to (22). 

(2). If additionally, k1=k2=…=kp=k in cp,0(.), then using the result in Lemma 3, (22) can be 

written as 
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From Lemma 2, ( )kj has no effect on this equation. Then the equation above is equivalent to 
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has no effect, either. This gives 

Equation (23). The proof is completed. 
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