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1. Introduction

In the control theory of linear systems, system transfer function provides a coordinate-free
and equivalent description for system dynamic characteristics, by which it is convenient to
conduct analysis and design. Therefore, frequency domain methods are commonly used by
engineers and widely applied in engineering practice. However, although the analysis and
design of linear systems in the frequency domain have been well established, the frequency
domain analysis for nonlinear systems is not straightforward. Nonlinear systems usually
have very complicated output frequency characteristics and dynamic behaviour such as
harmonics, inter-modulation, chaos and bifurcation. Investigation and understanding of
these nonlinear phenomena in the frequency domain are far from full development.
Frequency domain methods for nonlinear analysis have been investigated for many years.
There are several different approaches to the analysis and design for nonlinear systems,
such as describing functions [5, 13], harmonic balance [18], and frequency domain methods
developed from the absolute stability theory [10], for example the well-known Popov circle
theorem [12, 21] etc. Investigation of nonlinear systems in the frequency domain can also be
done based on the Volterra series expansion theory [11, 15, 16, 19, 20]. There are a large class
of nonlinear systems which have a convergent Volterra series expansion [2, 17]. For this
class of nonlinear systems, referred to as Volterra systems, the generalized frequency
response function (GFRF) was defined in [4], which is similar to the transfer function of
linear systems. To obtain the GFRFs for Volterra systems described by nonlinear differential
equations, the probing method can be used [16]. Once the GRFRs are obtained for a practical
system, system output spectrum can then be evaluated [9]. These form a fundamental basis
for the analysis of nonlinear Volterra systems in the frequency domain and provide an
elegant and useful method for the frequency domain analysis of a class of nonlinear
systems. Many techniques developed (e.g. the GFRFs) can be regarded as an important
extension of frequency domain theories for linear systems to nonlinear cases.
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4 Advances on Analysis and Control of Vibrations — Theory and Applications

In this study, understanding of nonlinearity in the frequency domain is investigated from a
novel viewpoint for Volterra systems. The system output spectrum is shown to be an
alternating series with respect to some model parameters under certain conditions. This
property has great significance in that the system output spectrum can therefore be easily
suppressed by tuning the corresponding parameters. This provides a novel insight into the
nonlinear influence in a system. The sufficient (and necessary) conditions in which the output
spectrum can be transformed into an alternating series are studied. These results are illustrated
by two example studies which investigated a single degree of freedom (SDOF) spring-
damping system with a cubic nonlinear damping. The results established in this study
demonstrate a novel characteristic of the nonlinear influence in the frequency domain, and
provide a novel insight into the analysis and design of nonlinear vibration control systems.

The chapter is organised as follows. Section 2 provides a detailed background of this study.
The novel nonlinear characteristic and its influence are discussed in Section 3. Section 4
gives a sufficient and necessary condition under which system output spectrum can be
transformed into an alternating series. A conclusion is given in Section 5. A nomenclature
section which explains the main notations used in this paper is given in Appendix A.

2. Frequency response functions of nonlinear systems

There are a class of nonlinear systems for which the input-output relationship can be sufficiently
approximated by a Volterra series (of a maximum order N) around the zero equilibrium as [2, 17]

N o n
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n=1 i=1
where h (7,,---,7,) is the nth-order Volterra kernel which is a real valued function of
7,, -+, 7, . For the same class of nonlinear systems, it can also be modelled by the following

nonlinear differential equation (NDE)

M m K

k;
Z Z Z Cp,m—p(kl’”"km)Hd (t) H d U(t) -0 (2)
= =0

i=1 dt i=p+1 dtl

d x(t)
where =x(t), O=)> () (-) , M is the maximum degree of nonlinearity
dtk k=0 ky .k ; 0 z Z
in terms of y(t) and u(t), and K is the maximum order of the derivative. In this model, the
parameters such as coi(.) and cio(.) are referred to as linear parameters corresponding to

k k
coefficients of linear terms in the model, i.e., dd}/ ,Et) and % for k=0,1,...,K; and <, q(-) for
t t ’

p+g>1 are referred to as nonlinear parameters corresponding to nonlinear terms in the model

k; ptq gk,
of the form Hddy(t) I1 ddu(t) , eg., y(BPu(t)?. The value p+q is referred to as the
i=1 t i=p+1 t !

nonlinear degree of parameterc, (-).
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By using the probing method [16], a recursive algorithm for the computation of the nth-

order generalized frequency response function (GFRF) for the NDE model (2) is provided in
[1]. Therefore, the output spectrum of model (2) can be evaluated as [9]

N n
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which is truncated at the largest order N and where,
H, (o, jo,) = Jf:o “'J-john(rl’“"Tn)exp(_j(wlrl +ot @,7,))dr - dr, 4)

is known as the nth-order GFRF defined in [4], and / " (r 10T n) is the nth-order Volterra
kernel introduced in (1). When the system input is a multi-tone function described by

u(t) = §|Fi|cos(a)it + ZF) (5)
i=1

Fl‘ is the modulus, and K isa positive
integer), the system output frequency response can be evaluated as [9]:

(where F; is a complex number, ZF, is the argument,

N
Y(jo) =Y~ Y Ha, - jo, )F@,)F@,) ©®)

n=1 o, o, =0
k1 Ky

iZF sig(k, —
where F(@, ) can be explicitly written as F(w, )= ‘Pk_ ¢ T g k, {i 1,---,iK} in

1 a=0

14<0 and oy e{ia)lfu,ia)lz} .

stead of the form in [9], sgn(a) = {

In order to explicitly reveal the relationship between model parameters and the frequency
response functions above, the parametric characteristics of the GFRFs and output spectrum
are studied in [6]. The nth-order GFRF can then be expressed into a more straightforward
polynomial form as

H,(jo, - jo,)=CE(H,(jo, -, jo,)) f,(jo, -, jo,) )

where CE (Hn( jo, -, ja)n)) is referred to as the parametric characteristic of the nth-order
GFRF H, (jw,, -+, jo,), which can be recursively determined as

n-1n—q n
CE(H, (jo,,+ jo,)) = Cy,, ® [fi ®C,,® CE(Hn_q_pH(-))] @ (gcw ® CE(Hn_pH(.))J ®)

with terminating condition CE(H W ja)i))z 1. Note that CE is a new operator with two
operations “ ®” and “® " defined in [6,7] (the definition of CE can be referred to Appendix



6 Advances on Analysis and Control of Vibrations — Theory and Applications

B and more detailed discussions in [22]), and C,  is a vector consisting of all the (p+g)th
degree nonlinear parameters, i.e.,

C,,=lc,,0,0)c,,(01)c, (K- K)]
p+g=m

In Equation (8), f,(j@,,:-,j®,)is a complex valued vector with the same dimension as
CE(Hn(ja)l,---,ja)n)). In [7], a mapping function ¢ (CE(H,());®,, -, ®,) from the
parametric characteristic CE(Hn(ja)l,---, ja)n)) to its corresponding correlative function
f,(jw,, -, jo,) is established as

Pus)Cpy 0, OO0, ()€ g, D @1y By s)

- 2 {fl(crw(’)' n(S); )+ Oyucsy) - 2 )y [f 255, 55, (5/6,, 0@y Ougsy-) (9a)
all the 2—partitions all the p—partitions all the different
for 5 satisfying for §/ € () permutations

5(5)=c, , () and p>0 of s,y s, |

r

Ao . <. 6= (5/c, ())o 5 O —

. X, /qu i ’ 7% ¥

I1 (s, (57, () 5, € /.40 @z I(X<z>+n<<—‘<s/cp,()m):H

i=1
where the terminating condition is k=0 and ¢,(1;®,) = H,(jw;) (which is the transfer function
when all nonlinear parameters are zero), {Sfl,"-sfp}is a permutation of {le,msxp},
Oy Oys) TEPTEsents the frequency variables involved in the corresponding functions,

I(i) for i=1...n(S) is a positive integer representing the index of the frequency variables,

5= Cpo.o (')Cpl,q1 () “Cp i, (), n(s,(5)) = Z;(pi +q,;)—x+1, x is the number of the parameters in

X
S., Y.(p; +4g;)is the sum of the subscripts of all the parameters in s, . Moreover,
i=1

_ i-1
()= 215 ) (9b)
. K k
Li(j@)= -3 ¢ o(k)(jw)" V@ eR (9¢)
k, =0
_ .. k. M)

Fi(€y g O)1(S); ) 7)) = (H(J“’l(n<§>—q+i)) " L) Z: @y;)) (9d)

_ P . . k.
faa(Sz, 55, (5/p, i@y Oug) ) = H(] DRy * 7 F IO yencs, (57c,, ) (%)

The mapping function ¢, (CE(H,(-);®,, -, ®,)enables the complex valued function
f,(joo,, -, jo,) to be analytically and directly determined in terms of the first order GFRF
and nonlinear parameters. Therefore, the nth-order GFRF can directly be written into a more
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straightforward and meaningful polynomial function in terms of the first order GFRF and
model parameters by using the mapping function ¢, (CE(H,(")); @, -, ®,) as

H, (jo, -, jo,) = CE(Hn(ja)l,---,ja)n)) : gon(CE(Hn(-));col,---,a)n) (10)

Using (10), Equation (3) can be written as

Y(jo) = §:CE(Hn(jwl,-~-,ja>n))-Fn(jco) (11a)

n=1

where F (jw) = .[ @, (CE(H, () @,,, a,n).Hu( jo,)do, - Similarly, Equation
i=1

Jn@ay e

(6) can be written as

Y(jo) = iCE(Hn(ja)kl,---,ja)k” ))-E (@) (11b)

n=1
. 1
where F (jo) =— ) ; o, (CE(H,,()); O, O ) 1:(wk1 )"'F(a’kn) . Note that the
O+t o, =0
expressions for output spectrum above are all truncated at the largest order N. The
significance of the expressions in (10-11) is that, the explicit relationship between any model

parameters and the frequency response functions can be demonstrated clearly and thus it is
convenient to be used for system analysis and design.

Example 1. Consider a simple example to demonstrate the results above. Suppose all the
other nonlinear parameters in (2) are zero except c1,1(1,1), co2(1,1), c20(1,1). For convenience,
c11(1,1) is written as c1,1 and so on. Consider the parametric characteristic of H3(.), which can
easily be derived from (8),

CE(H;(jw, -, joy))
2 2
= CO,3 @ Cl,l ® CO,2 @ Cl,l @ Cl,l ® CZ,O @ C2,1 @ Cl,Z @ CZ,O ® CO,Z @ C2,0 @ C3,0
= C1,1 ® Co,z ® C12,1 ® C1,1 ® Cz,o ® Cz,o ® Co,z ® C%,O
Note that C1,1= c1,1, Co2=co,2, C20=c2,0. Thus,
) . 2 2
CE(H;(joy,-++,j@y)) =11 1€ 2/€11:C11€2,0/C2,0€0,2/€2,061,17€2,0]

Using (9abc), the correlative functions of each term in CE(H s(Jay, -+, ja)3)) can all be
obtained. For example, for the term c1,1co2, it can be derived directly from (9abc) that

D5y (1,100 2 () D1y~ By y59)) = 93(C1 1 ()€ 5 (); @y -+~ 05)

= filey 10350 @3) - fr,(5,(c1 1()cg o () / €11 ()0, @5) - 93(5,(cq 5 (1)) 0y, @)

= [ile1 () 3@ 5) - fo,(Co o ()i y,@3) - @, (Cq 5 ()0, 0,)

_ ] 05 , joge, jonjo, jos(jo, + jo,)
Ly(jo, ++-+ jo,) Ly(jo, + jo,) Ly(jo, +-+ jo,)L,(jo, + jw,)

(jo, + jay)-
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Proceed with the process above, the whole correlative function of CE (H3( jo, -, ja)a)) can
be obtained, and then (10-1lab) can be determined. This demonstrates a new way to
analytically compute the high order GFRFs, and the final results can directly be written into
a polynomial form as (10-11ab), for example in this case

. . 2 2 . .
Hy(jooy,-++, jos) =[€1 160 2,61 1/€1,1C2,0/C2,0C0,27C2 0611/ €2,0]* P3(CE(H3(jooy -+, j3)); @y -+, @3)

e . oo 2 . 2 . .o 2 . 2 . DY
=C11C0,2 " P3(C1 1C0,05 @y, @3) +C 1 - P3(CT 15Oy, @3) + oo+ Ch - 93(Ch ;@ @3)

As discussed in [7], it can be seen from Equations (10-1lab) and Example 1 that the
mapping function ¢, (CE(H,(-);®,, -, ®,) can facilitate the frequency domain analysis of
nonlinear systems such that the relationship between the frequency response functions
and model parameters, and the relationship between the frequency response functions
and H,( ja)l(l))can be demonstrated explicitly, and some new properties of the GFRFs
and output spectrum can be revealed. In practice, the output spectrum of a nonlinear system
can be expanded as a power series with respect to a specific model parameter of interest
by using (11ab) for N-> . The nonlinear effect on system output spectrum incurred
by this model parameter which may represents the physical characteristic of a structural
unit in the system can then be analysed and designed by studying this power series in
the frequency domain. Note that the fundamental properties of this power series
(e.g. convergence) are to a large extent dominated by the properties of its coefficients, which
are explicitly determined by the mapping function ¢ (CE(H,(-);®,,"--,®,). Thus studying
the properties of this power series is now equivalent to studying the properties of the
mapping  function ¢ (CE(H,());®,,-,®,). Therefore, the mapping function
¢,(CE(H, (), ®,,-++,®,) introduced above provides an important and significant technique
for this frequency domain analysis to study the nonlinear influence on system output
spectrum.

In this study, a novel property of the nonlinear influence on system output spectrum is
revealed by using the new mapping function ¢, (CE(H,());®,,-,®,) and frequency
response functions defined in Equations (10-11). It is shown that the nonlinear terms in a
system can drive the system output spectrum to be an alternating series under certain
conditions when the system subjects to a sinusoidal input, and the system output spectrum
is shown to have some interesting properties in engineering practice when it can be
expanded into an alternating series with respect to a specific model parameter of interest.
This provides a novel insight into the nonlinear effect incurred by nonlinear terms in a
nonlinear system to the system output spectrum.

3. Alternating phenomenon in the output spectrum and its influence

The alternating phenomena and its influence are discussed in this section to point out
the significance of this novel property, and then the conditions under which system
output spectrum can be expressed into an alternating series are studied in the following
section.



Vibration Control by Exploiting Nonlinear Influence in the Frequency Domain 9

For any nonlinear parameter (simply denoted by c) in model (2), the output spectrum (11ab)
can be expanded with respect to this parameter into a power series as

Y(jo) = Fy(jo) + cF,(jo) + *Fy(jo) + -+ cF (jo) + - (12)

Note that when c represents a nonlinearity from input terms, Equation (12) may be a finite
series; in other cases, it is definitely an infinite series, and if only the first p terms in the
series (12) are considered, there is a truncation error denoted by o(p) . As demonstrated in
Example 1, F;(jw) for i=0,1,2,... are some scalar frequency functions and can be obtained
from E(jw) or f’l(]a)) in (11a,b) by using the mapping function ¢ (CE(H,(");®,, -, ®,).
Clearly, F,(jw) dominates the fundamental properties of this power series such as
convergence. Thus these properties of this power series can be revealed by studying the
property of ¢ (CE(H,(-);@,, -+, ®,) . This will be discussed more in the next section. In this
section, the alternating phenomenon of this power series and its influence are discussed.

For any v € (, define an operator as

sgn (v) =[sgn,(Re(v)) sgn,(Im(v))]

+1 x>0
where sgn (x)=10 x=0 for x e R.
-1 x<0

Definition 1 (Alternating series). Consider a power series of form (12) with c>0. If
sgn (F,(jw)) =-sgn (F,(jw)) for i=0,1,2,3,..., then the series is an alternating series.

The series (12) can be written into two series as
Y(jo) =Re(Y(jo)) + j(Im(Y(j)))
=Re(F,(jw)) + cRe(F,(jw)) + c? Re(F,(jw))+---+c” Re(F,(jw)) +-- (13)
+ j(Im(F,(jw)) + cIm(F, (jw)) + ¢ Im(F, (jw)) +---+c” Im(F,(jw))+---)

From definition 1, if Y(jw) is an alternating series, then Re(Y(jw))and Im(Y(j®w)) are both

alternating. When (12) is an alternating series, there are some interesting properties
summarized in Theorem 1. Denote

Y(jo),_, , = Fy(jo)+cF(jo)+ F(jo)+-+c’F,(jo) (14)

Theorem 1. Suppose (12) is an alternating series at a w ( € R+) for >0, then:

(1) if there exist T>0 and R>0 such that for i>T

min{_ Re(E(jo) _ Im(E(je)) }> 2
Re(F,(j))" Im(F,(je)
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then (12) has a radius of convergence R, the truncation error for a finite order p >T is
|o(p)| <Pt F,,,(jo)|, and for all n >0,

Y(jw)ell, =[[Y(j®) 7 2m

Y(ja))laT+2n ] and H,,H c Hn y

9

(2) ‘Y(ja))‘2 =Y(jw)Y(-jw) is also an alternating series with respect to parameter c;
Furthermore, Y(ja))‘ =Y(jw)Y(—jw)is alternating only if Re(Y(jw)) is alternating;

a|Y(jo)|
oc

(3) there exists a constant ¢ > 0 such that <0Ofor 0<c<c.

Proof. See Appendix C.o

The first point in Theorem 1 shows that only if there exists a positive constant R>0, the series
must be convergent under 0<c<R, its truncation error and limit value can therefore be easily
evaluated. The other two points of Theorem 1 imply that the magnitude of an alternating
series can be suppressed by choosing a proper value for the parameter c. Therefore, once the
system output spectrum can be expressed into an alternating series with respect to a model
parameter (say c), it is easier to find a proper value for c such that the output spectrum is
convergent, and the magnitude can be suppressed. Moreover, it is also shown that the
lowest limit of the magnitude of the output spectrum that can be reached is larger than
‘Y( JO)1 7 +1‘ and the truncation error of the output spectrum is less than the absolute value
of the term of the largest order at the truncated point.

Example 2. Consider a single degree of freedom (SDOF) spring-damping system with a
cubic nonlinear damping which can be described by the following differential equation

mij = —kyy — By —cy® +u(t) (15)

Note that ko represents the spring characteristicc B the damping characteristic and ¢
is the cubic nonlinear damping characteristic. This system is a simple case of NDE
model (2) and can be written into the form of NDE model with M=3, K=2,
¢ o(2)=m, ¢ (()=B, ¢, ,(0)=k,, c30(111)=c, ¢,,(0) =—1and all the other parameters
are zero.

Note that there is only one nonlinear term in the output in this case, the nth-order GFRF for
system (15) can be derived according to the algorithm in [1], which can be recursively
determined as

_SoLLDH, (o, -, jo,)
L (jo,+-+jo,)

H,(jo, -, jo,)

n

n-2
H, 5()= Z H(joy, -, jo)H, _; ,(jo, 1, jo,)(jo, +--+ jo,)
i-1
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H, (e, jo,)=H,(jo, -, jo,)(jo, ++ jo,)

Proceeding with the recursive computation above, it can be seen that H (jo,, -+, jo,) is a
polynomial of ¢;,(111), and substituting these equations above into (11) gives another

polynomial for the output spectrum. By using the relationship (10) and the mapping
function ¢ (CE(H (-));@,, -, ®,) , these results can be obtained directly as follows.

For simplicity, let u(t)=F,;sin(Qt) (F,>0). Then F(a)kl )=—jk,E;, for k, =41, o = k<, and
[=1,---,n in (11b). By using (8) or Proposition 5 in [6], it can be obtained that
CE(H2n+1 (]a)l PR jw2n+1 )) = (03,0 (191’1))’1 and CE(Hzn (]&)1 [ "ja)zn )) =0 for n=0/112/3/' .. (16)

Therefore, for n=0,1,2,3, ...

H,, 1(jo,, - jwy,. ) =c" '¢2n+1(CE(H2n+1('));w1/’"/a’zn+1) and H, (jo,, -, jo,,)=0 17)

Then the output spectrum at frequency Q can be computed as (N is the largest order after
truncated)

vyl
Y(jQ) = D " Fopy Q)+ (18)

n=0

where 1?2” 11 (JQ) can be computed as

-~ . 1 . \2n+1
F2n+1(]Q)=22n+1 ) +Z Q¢2n+1(CE(H2n+1('));wkl/"'/a)k2n+1)'(_]Fd) Tk, kg,
O+ Bhyyq =
1 n+1 . 2n+1 n
= S Y. 00 (CEH,, (o o, ) (CDE)T (D (19)
g+ 4 Dy =
. Fd 2n+1
= _](?) Z P21 (CE(Hy, 1 O); 0 0,0 )
Dyt o+ O, =2
and @, (CE(H,,1()); @+, @5,,1) = 05,,1(¢5 o(L,1L1D) "0, @,,,,1) can be obtained

according to equations (9a-c). For example,

H(]w) ;
93(c5 o (111); 0, @, , ;) = ———— H(]a)) HH (jo,) =—L—T[H,(j»,)
L (JZw,) = = L (szz) =
i=1 i=1

11
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95(c5 o(11)c; (A1) 0+, 05)

= fi(c30(111),5; @, -+, 05) - > > [fZa(le"'Sxp(c3,o(111))r'a’1'“0)5)
all the 3—partitions all the different
for c310(111) permutations of {0,0,1}

3
1w /e, 05z 3,0 LD @y g1y O R iyancs, 5/, A-)»)J
i=1 ! ’ ! ’

f2a(sososl(c3,0(111));a)l---a)s)(ol(l;a)l)¢1(1;w2)¢)3(c3,0(111);a)3---a)5)
= f1(c30(A11), 5@y ,+++, @5) - | + f5, (595150 (C3 o (111)); 0, -+ @5)py (L0 )5 (5 o (111); 0, -+~ 0y ) oy (L 05)
+ (518080 (€3 0 (111)); @0, -+~ 05)@5(c5 o (111); 00, -+~ 03) o (L, )y (1 05)

5 5 4 5 3 5
) GXe]Ge) Gre]Ge) Ge)]Ge) | s
— - . =3 5=l + =2 4=1 + i=1 :13=1 HHl(]wl)
L5(jzwi) Ls(jza’i) Ls(wai) La(jza’i) =
i=1 i=3 i=2 i=1

where o, €{Q,-Q}, and so on. Substituting these results into Equations (18-19), the output
spectrum is clearly a power series with respect to the parameter c. When there are more
nonlinear terms, it is obvious that the computation process above can directly result in a
straightforward multivariate power series with respect to these nonlinear parameters. To
check the alternating phenomenon of the output spectrum, consider the following values for
each linear parameter: m=240, ko=16000, B=296, Fe=100, and Q=8.165. Then it is obtained
that

Y(jQ) = E(Q) + cE5(Q) + 2Fy(Q) + -

2
E, F, , Q°|H,(jQ)|” H,(jQ)
= —j(-4)H, (jQ) + 3(-2)’ i .‘ !
2 2 L,(jQ)
4
Q°|H. (i) H.(iQ) i ; _i
palap SIUOLHGD oo | e | -3
2 L, (j&) L) L(j3Q) L, (-jQ)
=(-0.02068817126756 + 0.000001147041161)
+(5.982851578532449e-006 -6.634300276113922e-010i)c
+(-5.192417616715994e-009 +3.323565122085705e-011i)c*+... (20a)

The series is alternating. In order to check the series further, computation of
¢2n+1(c3,o(1,1,1)” ;@,,++,0,,.,) can be carried out for higher orders. It can also be verified that
the magnitude square of the output spectrum (20a) is still an alternating series, i.e.,

. 2
\Y(JQ)\ = (4.280004317115985e-004)-(2.475485177721052e-007)c
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+(2.506378395908398e-010)c2-.... (20b)

As pointed in Theorem 1, it is easy to find a ¢ such that (20a-b) are convergent and their
limits are decreased. From (20b) and according to Theorem 1, it can be computed that
0.01671739< ‘Y( jQ)‘ <0.0192276<0.0206882 for c=600. This can be verified by Figure 1. Figure 1
is a result from simulation tests, and shows that the magnitude of the output spectrum is
decreasing when c is increasing. This property is of great significance in practical
engineering systems for output suppression through structural characteristic design or
teedback control.

0.021
0.0205 |

e 002- g

=

(8]

g 0.0195- 4

(7]

5

o

3 0019~ s

ks

(0]

S 0.0185- g

=

(@)]

©

= 0.018" |
0.0175+ |
0017 | | | | | | |

| |
0 100 200 300 400 500 600 700 800 900 1000
c

Figure 1. Magnitude of output spectrum

4. Alternating conditions

In this section, the conditions under which the output spectrum described by Equation (12)
can be expressed into an alternating series with respect to any nonlinear parameter are
studied. Suppose the system subjects to a harmonic input u(t)=F,sin(Qt) (F,>0) and
only the output nonlinearities (i.e., cpo(.) with p=2) are considered. For convenience,
assume that there is only one nonlinear parameter cpo(.) in model (2) and all the other
nonlinear parameters are zero. The results for this case can be extended to the general one.

Under the assumptions above, it can be obtained from the parametric characteristic analysis
in [6] as demonstrated in Example 2 and Equation (11b) that

13
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Y(JQ) = Y,(JQ) + Y, () + -+ + Y,y 1 () ++- (21a)
=F(Q)+ Cp,o(')ﬁp(Q) o Crho(')nﬁ(

pDus1 () -

where o e{iQ} 7 Fpo1yusn (@) can be computed from (11b), and » is a positive integer.
Noting that F(a’k, )=-jkE,;, k =%, o = kQ,and [=1,---,n in (11D),

~ . 1
F(P_l)’”l(]Q) B H(p-T)n+1 o1
Z c, o ()50, @ )-(=iE)P I e ko k (21b)
Plp-1n+1\Cp o) s O s @ ) TR 1727 Kp-1)n+1
Oy *H Oy ty1 =

If p is an odd integer, then (p-1)n+1 is also an odd integer. Thus there should be (p-1)n/2
frequency variables being —-Q and (p-1)n/2+1 frequency variables being Q such that
@+t “’k( = Q. In this case,

p-1)n+l

)(P—l)n/Z ‘(Fd)(p_l)nﬁ-l .(_1)(;9—1);1/2 _ _]-(Fd)(p—l)n+1

(=jE,) Dt ek Ky gy = (1) (]'2
If p is an even integer, then (p-1)n+l is an odd integer for n=2k (k=1,2,3,...) and an even
integer for n=2k-1 (k=1,2,3,...). When n is an odd integer, A O = Q for o € {iQ} .
~ p-1)n+
This gives that F p-1yns1 (7€) =0. When 7 is an even integer, (p-1)n+1 is an odd integer. In this
case, it is similar to that p is an odd integer. Therefore, for n>0

( Fd j(p—l)nﬂ
~ . —J| —
Ep—l)n+1 (]Q) = 2

0 else

Z Doy (€,00)" 50, @, ) if pisoddorniseven 1¢)

O+t @y, Q

—n+l

From Equations (2la-c) it is obvious that the property of the new mapping

Pp-1yn +1(cp 0" SO Oy l) plays a key role in the series. To develop the alternating
4 p-1)n+

conditions for series (21a), the following results can be obtained.

Lem~ma 1. Tbat Pp-1yn +1(Cp,0(')n o -,a)k(p_l)m) is symmetric or asymmetric has no influence
on F(p—l)n+l(]Q) i
Lemma 1 is obvious since Z() includes all the possible permutations of

Oy +F Oy 1y =Q

(o, ,--,0, ). Although there are many choices to obtain the asymmetric
kl k211+1

- . . . .
(D(pfl)nJrl(Cp,O(') ’a)kﬂ""a)k(p_l)m) which may be different at different permutation

(@ o 0 ) , they have no effect on the analysis of ]?'( oty (J€2) -

(p-1)n+1
The following lemma is straightforward.

Lemma 2. For v,v,,veC, suppose sgn. (v)=-sgn.(v,). If Re(v)Im(v)=0, then
sgn (vv) =—sgn_(v,v) . If Re(v)Im(v)=0and v =0, then sgnc(ul/v) = —sgnc(uz/v) a.
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Theorem 2. The output spectrum in (21a-c) is an alternating series with respect to parameter
cpo(ky ke, ... kp) satisfying cpo(.)>0 and p =2r +1 for r=1,2,3,...

(1) if and only if

-1 . _ .
sgn. 2 D" @ 1n1(Cp0 )5 @pay = Oy aynany) | = COnst e,
Ot H Oy =

H,(j2) AN ¥
— > [T (r-1)5,+1(Cp,00) @Ry 1) Bk iya (p-15, 1))

=Qall the different combinations| i=1
Ef x; Xy pevs xp} satxsfymg
Xyt -+xp =n-1, 0<X;<n-1

&, (22)
k,

n. (X, ,X,)
x \*17 7 p ; H i
1(X(i)+1) 1I(X(1)+(p-1Xx;+1)
. . H(]w L ]a) P 1 )
nk (kl,' : '/kp) all the different i=1
ermutations of
ok

ol

L iQ
(p_1)n+1(] ) R

*

= const

where const is a two-dimensional constant vector whose elements are +1, 0 or -1;

q)(,p—l)nJrl(Cp,O(')n’. D1y Oy p-1yns1))

= — - > [1001e (600" 050 01s )

= . . -1)x,+18Cp,00) Oy (i) I(X (i) +(p-1)F, +1
Ly 1yne1(jyay + -+ JOyp-1)141))  all the different combinations| i=1 Py @D XOHp-0%+])

gf X, ,YE,...,YP } satisjying
X+ X, =n-1, 0<X;<n-1

n, (X, X)) 4
X 17 p . . k;
P 2 [TGoxqy -+ jousiyp1zm)
nk (klr"'rk ) all the different i=1
P
1germutations of
Ky k)

. ! .
the termination is ¢{(L;@,)=1; nk(kl,m,kp)z% , mt...+ne=p, e is the number of
nn,l-on !
1°°72 e

distinct differentials ki appearing in the combination, niis the number of repetitions of ki, and
a similar definition holds for n;(fl,- " X,)

H(GQ) o H ()

2) or if ki=ko=...=kp=k in cpo(.), Re( . 5
@ ’ ) Lep1ynin (72) Lep-1ynia(F2)

)=0, and

* p—
> > [, &y %)
@+t =Qall the different combinations
1 (Pl of {Yl,iz,...,ip} satisfying
sgn X; +~~~+YlD =n-1, 0<X;<n-1

= const (23)

4 _
" X,
: H(”(p—l)f,.ﬂ(cp,o(') YO i)+1) " PR (i) +(p-1)% +1))}
i=1

15
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"

o= X, . _ .
where if X, =0, (/7(p71)y,,+1(cp,0(') 'a)l(X(i)+1)"'wl()?(i)+(p—1)§i+1)) =1, otherwise,

" X; .
¢(p71)fi+l(cp,0(.) Oy Ri)+1) " PR (i) +(p-1)x +1))

. . k
(Ot + 1O (-5, 1)

_L(pfl)fi+1(ja)l()7((i)+1) Tt ja’l()’((m(p—l)z )

4
(X, X ) - " Y @ =
2 ne (Xp,mXp) H¢(p—l)xj+l(cp,0() 7 OUR(j)+1) a)l(X’(j)+(p—1)xj+l))
all the different combinations j=1

of {xy,X5 ..y xp}sat’isfying

X+ X, =X -1, OszSxi—l

. . " fi . : I —
The recursive terminal of q)(p—l)fi+1(cp,0(') SO R (i) 'a)l()z(i)+(p—1)fi+1)) is x;=1.

Proof. See Appendix D. o

Theorem 2 provides a sufficient and necessary condition for the output spectrum series (21a-
c) to be an alternating series with respect to a nonlinear parameter cpo(ks,kz,... kp) satisfying
cpo(.)>0 and p=2r+1 for r=1,2,3,.... Similar results can also be established for any other
nonlinear parameters. Regarding nonlinear parameter cpo(kikz,... kp) satisfying cpo(.)>0 and
p=2r forr=1,23,...., it can be obtained from (21a-c) that

Y(jQ) = £(Q) +c,,()*F

ap1y1 (Q) o+ cpro(-)znl:”

2(p-1yns1 () +--

Fz( -1y 1(Q) for n=1,2,3,... should be alternating so that Y(jQ)is alternating. This yields that

2n,
sgn, Z ¢2(p—1)n+1(cp,o(') nrw1(1)"'wz(2(p—1)n+1))
Dy +.“+a)k2(p—l)n+1 =
2(n+1),
=-sgn, Z ¢2(p—1)(n+1)+1(cp,o(') B )’a)l(l) "'a’z(z(p—l)(n+1)+1))
Dt .+wk2(p—])(n+1)+1 -

Clearly, this is different from the conditions in Theorem 2. It may be more difficult for the
output spectrum to be alternating with respect to cpo(.)>0 with p = 2r (even degree) than with

respect to cpo(.)>0 with p=2r+1 (odd degree).

Note that Equation (21a) is based on the assumption that there is only nonlinear parameter
cpo(.) and all the other nonlinear parameters are zero. If the effects from the other nonlinear
parameters are considered, Equation (21a) can be written as

Y() = F(Q) +¢, s (OB Q)+, (V' E Ly () 4+ (24a)

where
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Foy1ys1() = By 13,01 () + 81,1 (2 Cp o\ €, 0()) (24b)
C, ,includes all the nonlinear parameters in the system. Based on the parametric

characteristic analysis in [6] and the new mapping function ¢, (CE(H,(-);®,,"--,®,) defined
in [7], (24b) can be determined easily. For example, suppose p is an odd integer larger than 1,
then F(pfl)nJrl(jQ) is given in (21c), and §(p71)n+1(§2; Cp,,q, \Cp,(](')) can be computed as

r n(c, o"s ()
5(p_1)n+1 (€ Cp,,q, \ Cp,g(-)) © Z I:_](_dJ
7 \0()

all the monomails consisting of the parameters in C v 2
satisfying np+Y_ (p;+q!) is odd and less than N

n M DY
Z ¢n(cpyons(.)) (CP/O S(Cp!’q! \ CP,O( ))I a)kl a)kn(r " ):|
Gpy + o+ L =Q 0

”(Cp,O s(1))

where s(C g \cp o(*)) denotes a monomial consisting of some parameters in C o \cp 0()-

It is obvious that if (21a) is an alternating series, then (24a) can still be alternating under a
proper design of the other nonlinear parameters (for example the other parameters are
sufficiently small). Moreover, from the discussions above, it can be seen that whether the
system output spectrum is an alternating series or not with respect to a specific nonlinear
parameter is greatly dependent on the system linear parameters.

Example 3. To demonstrate the theoretical results above, consider again model (15) in
Example 2. Let u(t)=F,;sin(Qt) (F,>0). The output spectrum at frequency Q is given in
(18-19). From Lemma 3 in Appendix D, it can be derived for this case that

2n+1

1" [T G, Hy o))l
i=1

Ly a(joyqy + -+ j0y5,,1))

P201(¢30()"; D1y Oyaps1)) =

s (25a)
= .o " X; .
1, (%1%, %3) [ 1035 41(65,00) 50y iyemy O xiysz 1)
all the different combinations i=1

of {X; X, X, satisfying
X; +X, +X3=n-1, 0<Xx;<n-1

. —_ " Ei . — :
where, if X, =0, (P—1)§i+1(cp,0(') JOUR (11" PUR Gy +(p-1)F, +1)) =1, otherwise,
" X; .
¢’2fi+1(C3,0(') rOuRi)+1) " PuR i)+, +1))

. . k
oz iyeny * F ]a)l(f((i)+2§i+1))

= , , : (25b)
~Lox 11O x(iye1) T+ JOUR(iye2x 1)
3
* " X,
Z e (Xq,X5,X3)- H¢2xj+1(c3,0(') DOy a’z()?'(j)mxjﬂ))
all the different combinations j=1

of {x;,x, x;} satisfying
X;+X, +X5=X; 1, Oéxj <x;-1

17
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Note that the terminal condition for (25b) is at x; =1, i.e.,

(joyqy +--+ ja’l(3))k
—Ly(jayqy +--- + joys))

" fi- — A . —
¢2y,+1(c3,0(') fa’l()?(z‘)n)"'a’z()’((i)+2§,+1)) %=1 P3(C30() 0y @y 3)) = (25¢)

Therefore, from (25a-c) it can be easily shown that ¢, ,,(c; ,(-)"; @, - ®,,,;) can be written as

n,
Pri1(C30() @ 0y,1)
2n+1

)" [ jeoH,(jo,) nii

— i=1 Z
_ Ty (X4,X )H
. X\ X Xg e X .
L2n+1(]w1 Tt ]w2n+1) all the combination (x;,X,,...X, 1) L (]wl(l) "t ]wl(x,.))
satisfying x; e{2j+1l1<j<n— l}
x1 2X) 22X, and
happens only if x; +x;,; <2n-2

j“’z +"'+ja)l(xi) (26)

where 7y (x;,X,,....X, ;) is a positive integer which can be explicitly determined by (25ab) and

represents the number of all the involved combinations which have the same
L LR (TP

, , . Therefore, according to the sufficient condition in Theorem 2, it
1Ly (Gaygy + + joy )

can be seen from (26) that the output spectrum (18) is an alternating series only if the
following two conditions hold:

H.(jQ H.(jQ
@) Re(- Uy LU
Lyna (7€2) Lya (7€2)
n-1 (@ + 4+ JO
(a2) sgn, > > Ty (XyXo e X 1) / 1 J o
O Hot oy, =Qall the combination (x; ,x, 1) i=1 _in (]a)l(l) Tt ]a)l(xi))

satisfying x; e{2]+1|1<]<n 1}
x1 2X) 22X g, and
happens only if x; +x;,; <2n-2

Suppose Q= \/E which is a natural resonance frequency of model (15). It can be derived
m

that
S k 2
Ly (G ==Y ¢ o (k)™ =—(m(jQ)* + B(jQ) + ky) = —jBQ
k=0
. -1 1
H,(jQ)=——=—~
L,(j2) jBQ
It is obvious that condition (al) above is satisfied if ) = K . Considering condition (a2), it
m

can be derived that
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jOy ot Oy je(x,)Q

' ' - - (27a)
_in (]wl(l) et ]a)l(xi)) _Lx,- (je(x;)Q)

where &(x;) e {+(2j+ 1)‘0 <j< (n+1] and (n+1—’ denotes the odd integer not larger than
n+1. Especially, when &(x;) = +1, it yields that

ja)l(l) 4o+ ja)l(x,-) /[ i]Q _ i]Q _ L (27b)
—L, (Jou +-+jo,,) -L, (&) *BQ B
when >1,
om0y je()Q j&(x,)Q
=L, (joyqy +-+jo ) —L, (je(x;)2) m(je(x;)Q)” + B(je(x;)Q) + k
: , ’ 1 (27¢)
je(x;)Q 1
(1-e(x; )? ko +je(x; )QB B+ j(e(x; )—ﬁ),/kom
If B<<,kym, thenit gives
Oy +o ja)l(xi) 5 1 27d)

—L, (joygy +-+ jo,)  jle(x;) - g(il_))\/kom
Note that in all the combinations involved in the summation operator in (26) or condition
(a2), i.e.,

2 > ()

@+t =Qall the combination (x; X, ..., X,.1)
1 2n+1
satlsfymgx e{2]+l|1<]<n ]}
>x22..2xnl and

" happens only if x; +x;,; <2n-2
There always exists a combination such that
o Jomy oy 1

(28)

o1 Ly (o) +o+ joy ) B!
Note that (27b) holds for both &(x,) = 1, thus there is no combination such that

e R

o1 Ly oy +-o F jay, ) B!
Also noting that B << /k,m , all these show that

N (O T (T

max . . n—-1
all the involved i-1 —in (]a)l(l) R ]a)l(xi)) B

. . 1=
combinations

19
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which happens in the combination where (28) holds.

Because there are n+l frequency variables to be +Q and n frequency variables to be —Q
such that @, +---+@,,,; =Q in (18-19), there are more combinations where &(x;) >0 that is

(e(xi)—ﬁ)wlkom >0 in (27c-d). Thus there are more combinations where Im(

Joyqy + ja)l(x,.)

=L, (Joyqy +-+ joy )

) is negative. Using (27b) and (27d), it can be shown under the

condition that B << /k,m ,

=l ey e o 1 1
(1) I(x;)
max  (|Im( | | 1 ~ N =
i _ i e q -2 1 £(x;)=3 —2

L jayg, +"'+ja)l(
This happens in the combinations where the argument of ]
iz1 Ly (joyqy +- + joy, )

-90° or +90°. Note that there are more cases in which the arguments are -90°. If the argument
is -180°, the absolute value of the corresponding imaginary part will be not more than

%) is either

il jaygy et oy

max (Im(H ~ ‘ .=
th binati e i e g _ 3 |&(x;)=3 _ 3
B R B e O e R 27°B"Jkym
-180 i

1

278" Jkgm

Therefore, if B is sufficiently smaller than \/k,m , the following two inequalities can hold for n>1

which is much less than

ol joy g, +"'+ja’l(x

Re( Z Ty (XX ever nl)H

all the combination (x;,X ..., X1 ) L (] a)l(l) oot ] a)l(x ))
satlsfymgx e{2]+1ll<]<n 1}

12X 22X, and
= happens only if x; +x;,,<2n-2

)>0

L LR T [T
Im( Z Ty (X, X eers nl)1_[ @ ( )<0

all the combination (x; ,X; ..., X, 1) L (]wl(l) Tt ]wl(x ))
satisfying x; e{2]+1l1<]<n 1}

x1>x22 22X, 1, and

=" happens only if x; +x;,; <2n-2

/k
That is, condition (a2) holds for n>1 under B<<,k,m and Q= -0 Hence, (18) is an
m

alternating series if the following two conditions hold:

(b1) B is sufficiently smaller than /k,m,
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k
(b2) The input frequency is Q=,[-2 .
m

[k
In Example 2, note that Q= -0 ~ 8.165, B=296<< k,m =1959.592. These are consistent with
m

the theoretical results established above. As it has been checked numerically in Example 2
that (18) is an alternating series, the theoretical results above are well verified by the real
system.

Therefore, it can be seen that, at the driving frequency the system output spectrum (subject
to a cubic nonlinear damping) can be designed to be an alternating series by properly
designing system parameters (see conditions (b1-b2) above) and therefore can be suppressed
as shown in Example 2 by properly choosing a value for the nonlinear parameter c. This
result clearly demonstrate the mechanism for the nonlinear effect of the cubic nonlinear
damping in the frequency domain.

More simulation studies about the properties of the cubic nonlinear damping can be
referred to the simulation results in [8], where the effects of the cubic nonlinear damping are
studied in details and compared with a linear damping. The case study here theoretically
shows for the first time why and when these nonlinear effects happen and what the
underlying mechanism is.

Based on the discussions in Examples 2-3, it can be concluded that, the results of this study
provide a new systematic method for the analysis and design of the nonlinear effect for a
class of nonlinearities in the frequency domain.

5. Conclusions

Nonlinear influence on system output spectrum is investigated in this study from a novel
perspective based on Volterra series expansion in the frequency domain. For a class of
system nonlinearities, it is shown that system output spectrum can be expanded into an
alternating series with respect to nonlinear parameters of the model under certain
conditions and this alternating series has some interesting properties for engineering
practices. Although there may be several existing methods such as perturbation analysis
that can achieve similar objectives for some simple cases in practice, this study proposes a
novel viewpoint on the nonlinear effect (i.e., alternating series) and on the analysis of
nonlinear effect (i.e., the GFRFs-based) for a class of nonlinearities in the frequency domain.
As some important properties of a linear system (e.g. stability) are determined by the
positions of the poles of its transfer function, the fact of alternating series should be a natural
characteristic of some important nonlinear effects for nonlinear systems in the frequency
domain. This study provides some fundamental results for characterizing and
understanding of nonlinear effects in the frequency domain from this novel viewpoint. The
GFRFs-based analysis provides a useful technique for the analysis of nonlinear systems
which is just similar to the transfer function based analysis for linear systems. The method
demonstrated in this paper has been used for the analysis and design of nonlinear damping
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systems. Further study will focus on more detailed design and analysis methods based on
these results for practical systems.
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Appendix
Appendix A: Nomenclature

c,, q(kl,---,kp N q) - A model parameter in the NDE model, ki is the order of the derivative, p

represents the order of the involved output nonlinearity, g is the order of the involved input
nonlinearity, and p+q is the nonlinear degree of the parameter.

H (jo,, -, jo,) - The nth-order GFRF

C :[Cp,q(ol'"/O)ICp,q(O/"'/l)/'

(K,---,K)] - A parameter vector consisting of all the
PoA oL

.. P Cp’q
p+q=m

nonlinear parameters of the form ..
CE(.) - The coefficient extraction operator

CE(H,(jw,, -+, jo,)) - The parametric characteristics of the nth-order GFRF
f,(jeo,,-++, jo,) - The correlative function of CE(H (je,, -+, j®,))

® - The reduced Kronecker product defined in the CE operator

@ - The reduced vectorized summation defined in the CE operator

((?)C) and E—?)C) - The multiplication and addition by the reduced Kronecker product “® ”
and vectorized sum “@® ” of the terms in (.) satisfying (*), respectively

k

el DY - 1 1 k
gcp,q_cplq@s ®C, , - canbe simply writtenas C, .

Corio (-)cp], 0 O “Co s () - A monomial consisting of nonlinear parameters
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s.§. 8. -Ap-partition of a monomial Cooio (')Crwh (-)---cpk,qk )

x " x, x,
s, - A monomial of xi parameters of {c, . (),":*,c, , ()} of the involved monomial,

Xi

0<x; <k, and so=1

¢, :5-(n) =S f(n) - A new mapping function from the parametric characteristics to the
correlative functions, S-(n) is the set of all the monomials in the parametric characteristics
and S f(n) is the set of all the involved correlative functions in the nth order GFRF.

n(s,(s)) - The order of the GFRF where the monomial s (5) is generated

Appendix B: The Coefficient Extraction (CE) operator [6,7,22,23]

Consider a series

Hep=cifitefh+tc, f, €E

where the coefficients ¢ (i=1,..., o) are different monomial functions in a set P, of some
parameters in a set C, which takes values in C, fi for i=1,...,n are some complex valued scalar
functions in a set P, which are independent of the parameters inC,, = denotes all the finite
order series with coefficients in P, timing some functions in Pf , C=layey,..., c, ], and F=[
fufe,..., f, 1% Define a Coefficient Extraction operator CE:Z — C ° for this series such that

CE(Hp)=lcy,¢0,0,c,1=CeC?

where C?is the o -dimensional complex valued vector space. This operator has the
following properties, also acting as operation rules:
1. Reduced vectorized sum “® ”.
CE(He p +He g )=CE(He g )®CE(He ;) =C, ®C, =[C;,Gy], C,=VEC(C,-C,nG,),
where C, ={C,(i)[1<i<|C,

1,G={c,oi<i<|c,

}, VEC(.) is a vector consisting of all

the elements in set (.). C; is a vector including all the elements in C2 except the same

elements as those in Ci.

2. Reduced Kronecker product “ & ”.

CE(Hep. - He r,) = CE(He . )® CE(H . ) = C, ® C, = VEC {cs(i)

C; =[C,(1)C,,+,C1(|Cy|)C, ]
1<i<|Cy|

which implies that there are no repetitive elements in C; ®C, .

3. Invariant. (a)CE(a-H-)=CE(H-) VaeC but is not a parameter of interest; (b)
CE(Hep, +Hep )= CE(Hep ,p ) =C
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4. Unitary. If H;is not a function of ci for i=1...n, CE(H ;) =1.

When there is a unitary 1 in CE(Hcr), there is a nonzero constant term in the
corresponding series Hcr which has no relation with the coefficients ci (for i=1...n). In
addition, if H=0, then CE(Hcr)=0.

5. Inverse. CE(C)=Hcr.

6. CE(HClFl) zCE(HCZFZ) if the elements of Ci are the same as those of C2, where “~”
means equivalence, i.e., both series are in fact the same result considering the order of
cifi in the series has no effect on the value of a function series Hcr. This further implies
that the CE operator is also commutative and associative, for instance,
CE(HCIF1 + HC2F2 )=C,eC, ~ CE(HCZF2 + HC1F1 )=C, ®C, . Hence, the results by the CE
operator with respect to the same purpose may be different but all correspond to the
same function series and are thus equivalent.

7. Separable and interested parameters only. A parameter in a series can only be extracted
if the parameter is interested and the series is separable with respect to this interested
parameter. Thus the operation result is different for different purposes. [

Appendix C: Proof of theorem 1

(1) Y(jo) is convergent if and only if Re(Y(jw))and Im(Y(jw)) are both convergent. Since

Y(jw) is an alternating series, Re(Y(jw)) and Im(Y(jw)) are both alternating from Definition
1. Then according to [3], Re(Y(jw)) is convergent if ‘Re(cilfi(ja)))‘ >‘Re(c”1Fi+1(ja)))‘ and
lim ‘Re(cilfi( jco))‘ =0 . Therefore, if there exists T>0 such that ‘Re(ciFi( ja)))‘ > ‘Re(c”lFM( ja)))‘
for >T and }1_1)2 Re(ciFi( ja)))‘ =0, the alternating series Re(Y(jw)) is also convergent. Now

Re(F;(jo))
Re(F,;(jo))

since there exist T>0 and R>0 such that — > R for ©>T and note ¢<R, it can be

obtained that for >T

_Re(c"'E,,(j)) __Re(cE,(joo) _|Re(cF(jo))| _c _,

Re(c'E,(jo)) Re(F(jw)) | Re(E(jo)) | R
ie., Re(cil-"i( ja)))‘ > ‘Re(c”lFi ( ja)))‘ for i>T and c<R. Moreover, it can also be obtained that
for n>0
. 1 .
Re(Fy.,,,(jo))| < E|Re<FT(;w»|
It further yields that

Re(c™"Fy..,(jo) < ()" [Re(Er (jo)
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That is, %15)130 Re(cT+”FT ,(j®))|=0. Therefore, Re(Y(jw)) is convergent. Similarly, it can be

proved that Im(Y(jw))is convergent. This proves that Y(jw) is convergent. According to
[3], the truncation errors for the convergent alternating series Re(Y(jw)) and Im(Y(jw)) are
bounded by

Re(F,,( ja)))‘ and o,(p) < c”*!

log(p)] < Im(E,,(jo))

Therefore, the truncation error for the series Y(jw) is

lo(p) = \Jor(p)* +0,(p)* <c”1[E, (jo)

Since Re(Y(jw)) and Im(Y(jw)) are both alternating series and the absolute value of each

term  in Re(Y(jw)) and Im(Y(jw)) are monotone decreasing, ie.,
‘Re(cilfi(ja)))‘ >‘Re(c’+1F+l(]a)))‘ and ‘Im(c F(]a)))‘ ‘Im(c’”FH(]a)))‘ for i>T, then it can be
shown for Re(Y(jw)) and Im(Y(jw)) that for n=>0

[Re(Y(jo), 7.1)| <+ <[Re(Y(j@), ,1.5,1)] <[Re(Y(j))| < [Re(Y(j@)y 1.p,)| < < [Re(Y(j@)y 1))

(Y (jo), )| <+ <[In(Y(j0),_y 7 2000)| < [I(Y (j0))| < IM(Y (j0), 1.,5,)| < -+ < [Im(Y (jo), )|

Therefore,

()

<|Y(@)yrsamet]| <[Y(G0)| <[Y(GO) L1 s2n| <+ <|Y ()11 -

Y(jo) = Y(jo)Y(~jo)
= (F,(jo) + cF,(jo) + ¢*F, (jo) +--)(Fy(—j@) + cF,(=jw) + > Fy(=jo) +++*)
= > "X E(o)F, (-jo)
n=0,1,2,... i=0

It can be verified that the (2k)th terms in the series are positive and the (2k+1)th terms are
negative for k=0,1,2,.... Moreover, it is not dlfflcult to obtain that it needs only the real parts
of the terms in Y( ]a)) to be alternating for ‘Y (jo) ‘ =Y(jw)Y(—jw) to be alternating.

3)

oo 1 olY(e)
oc  2[Y(jo)| éc

—1 ! ; n— < . .
= 5 |Y(]a))| {RE(F()(]G))H(_]CU)) + Cn_ém nc™ 1 g{; F (]a))Fn_i(—]a))}
o|Y(jo)

oc

Since Re(F,(jw)F (-jw)) <0, there must exist ¢ >0 such that <0for O<c<c. This

completes the proof. o
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Appendix D: Proof of theorem 2

In order to prove Theorem 2, the following lemma is needed, which provides a fundamental
technique for the derivation of the main results in Theorem 2 by exploiting the recursive

nature of ‘/’n(g)(cp,o(‘)n?a’z(l) Osy) -
Lemma 3. Consider a nonlinear parameter denoted by cpq(ki,k2,...,kp+q).

(1) If p=2 and g=0, then

‘/’n(g)(cp,o(')n;wla) "'wl(n(i))) = ¢(p71)n+1(cp,0(.)n"a)l(l) “'a)l((p—l)rwl))
(p-1n+1

H Hl(ja’l(i))

p
_ i=1 . ! . Xi . _ =
1 (j ot ) H(D(pfl)?,ﬂrl(cp,o() FOU%(iy41) " UK (i) +(p-1)% +1))
(p-n+1 ]wl(l) ]wl((p—l)n+l)) all the different combinations| i=1
of {X;,X,,...,.X }satlsfymg
Xq+ee +xp7n 1 0<x;<n-1

m, (le -, X ) 4
P . ) K,
n (kK ) - ;f t q(]wl()?(i)ﬂ)+”'+]a)1()z(i)+(p—l)?i+l))
a e diiferen 1=
k Eermutations of

1k

where,

4"(’p71)n+1(cp,o )" @1y '”wl((p—l)rwl))
-1

' X; .
L ' i ' [100-15 106,00 @1y @iy v 1)
(p—l)n+1(]a)l(1) Tt ]wl((p—l)n+l)) all the different combinations| i=1
of {X; X, ,...,ip } satisfying
Xp++Xp=n-1, 0<X;<n-1
n. (X, ,X,) p
X 17 7p . . k;
T ) H(]wz()?(i)n) R ]wl()?(i)+(p—1)fi+1))
nk (kl/' e /kp) all the different i=1
1{;Jerrm.l’tations of

17 .’p

« ! .
the termination is ¢|(1;@,)=1. nk(kl,---,kp) P , mit+...4ne=p, e is the number of

nnyt--n,!
distinct differentials ki appearing in the combination, niis the number of repetitions of ki, and
a similar definition holds for n;(fl,' ).

(2) If p=2, =0 and ki=k>=...=kp=k, then

¢(p—1)n+1(cp, ()nrwz 1) 'WZ((p—l)nH))

p )n+1
H ]‘01(1) 1(]0)1(1))]
L(p—l)n+1(]wl(l) e F ]wl((p—l)n+l))

i e =
My le X ) H¢(p DX, +1 p,o(') 1 OyX(i)+1) wl(X(i)+(p—1)fi+l))
all the different combinations
of {X;,X, ,...,Yp} satisfying
X; +~-+§P =n-1, 0<X;<n-1
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X, _ .
where, if X;=0, (o(p D, +1(Cp,o(') ’wl(X(i)+1)“'a)l(f((i)+(p—1)fi+l))_1’ otherwise,

" X; .
P15, 416,00 O R0y DR (iy+ (p-1), 1))

(jwl(X(i)+1) Tt ja)l(i(i)ﬂnfl)fﬁl))

~Lp iy 1 U@ xeiyen + 0+ JOR ) (p-1)7, 1)

P
(X e . " Y9 m o Wy
Z n, (X, ’Xp) H¢(p—1)xj+1(cp,0() 7OR(j)+1) a)l(X'(j)+(p—1)x].+1))
all the different combinations j=1

of {xy,x, s Xp } satisfying

x1+~~~-¢—xp =x;-1, OijSEi -1

. . 4 f[ .
The recursive terminal of ¢(p—1)§i+1(cp,0(') SO R (iy+1) " PR (i) +(p-1)F, +1))1S x, =1.

Proof of Lemma 3.

Pus)(€p,00)" 5 @11y Oysy) = Ppo1yner (€000, 0 ()€ 0 (O Dty =+ @y 1yn))
= ) {fl(cp,o(')/(p =D+ Loy o, qy,.1))- )

all the 2—partitions all the p—partitions all the different
for 5 satisfying for §/ C30() permutations
51(5)=6, 0 () of [5,, 5|

n_l . - e
(605 Ep0 0 )z ”1<X(i>+n<sxi<c,,,o<~)"1>>>)H

X \p)

4
-1y,
|:f2a(s§1 Sy, (" O Ny Oysy)- 1_! P
i=

1 o ) k,
L (jwy g+ + jo ) 2 2, [1Gax FF IOR s (600
(p-1)n+1 1(1) I(p-1)n+1) all the p—partitions all the different | i=1 i
s/c o) permutatlons
of {s, =5, }
P
E n-1
' g‘pn(s@ (6,075 Ep 0O VO 1) Prgiyengs, <cp,0<->“>>>)}
— 1 P : . k;
L (jop 4t j© )‘ )y 2 H(]a’l(i{(im) o O R (i) (p-1)x, 41))
(p-1)n+1 J 1(1) J I((p—1)n+1)/ all the different combinations all the different | i=1
of {x;,X, - 1[7] satisfying permutations of
X+ X, =n-1, 0<% <n-1 each combination

Hw(p —1)x,+1 pO() 1Oy (i)+1) I()?(i)+(p—1)fi+1))j|
Note that different permutations in each combination have no difference to

p _

X, .
H¢(p—1)§,+1(cp,0(') fa’l()’((i)u)"'a’l()’((i)+(p—1)y,.+1)) , thus ¢(p—1)n+1(cp,o(')nra’1"""(p—1)n+1)Can be
i=1

written as
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¢(p71)n+1(cp,0(.)n; @ 'a)(pfl)rwl)

1 p _
1 o i ' )3 H¢(p—1)fi+1(cp,o(') SOy PR ) (p-DF, +1))
(p—l)n+1(]a)l(l) ]wl((p—l)nJrl)) all the dlfferent combinations i=1
of {X;,X, . xp satisfying
X;+++X3=n-1, 0<X; <n-1

P
. . k’
Z | I(]wl(X(i)+1) +"'+]wl()?(i)+(p—1)fi+1))
all the different i=1

permutations of
each combination

1 P v
L : . : Z H(/’(p—l)fin(cp,o(') ’?a’u}?(i)+1)"'a’z()?(i)+(p—1)f,.+1))
(p-1yn1 (J@y1y + "+ JOy(p_1)41))  all the different combinations i=1
of {X;,X; ...y ip} satisfying

§1+.H+§P:n—1, Oﬁii <n-1
n (X, X.) P
N 1% . . k;
—_ . H(]wl(f((i)ﬂ) oot ]a)l()?(i)+(p*1)fi+1))

nk (kll' : '/kp) all the different i=1
permutations of

ey P
n;(fl,- " X,) and n;(kl,- . -,kp) are the numbers of the corresponding combinations involved,
which can be obtained from the combination theory and can also be referred to [14].
Inspection of the recursion in the equation above, it can be seen that there are (p-1)n +1
H,(jo.) with different frequency variable at the end of the recursion. Thus they can be
brought out as a common factor. This gives

(p-Dn+1
¢(p71)n+1(cp,0(')n;wl(1)”'wl((pfl)nJrl)):(_1)n H Hl(]a)l(i))'qp('pfl)n+l(cp,0(')n;wl(l)”'a)l((pfl)nJrl)) (AT
i=1

where,

(”(’p-l)n+1(cp,0(')n?a’l(l) “Oy(p-1yns1))
» (a2)

p
L g H‘/’p iy 41(Cy, 0K SOR(iyr1) " PR i)+ (p-1)F +1)
(p—l)n+1(]w ]wl((p 1 n+1)) all the different combinations i=1
of {X;,X; .. X }satlsfymg
XX, :n—l, 0<x;<n-1

n. (X, X.) P

x 17 7p !

* (X (i)+1) (X (i) +H(p-1)T;+1)
—_— . Z H(]a) +ot jo, )
ny (k1/"'/kp) all the different  i=1

permutations of
(ke kb

the termination is ¢{(1;®;) =1. Note that when X, =0, there is a term ( ja)l()—((l.)ﬂ))k" appearing

n. (X, X.) P
X 17 /7p . . k; ..
from ———F". >, [ [z + o+ J@X(iys(p-1y5,+1)) " - It can be verified that
n, (k1/ t '/kp) all the different i=1
permutations of

{kl st 'rkp }

in each recursion of ¢f, y),.;(c, o()"; @1y @y, _1)41)), there may be some frequency

variables appearing individually in the form of (jo, % ; +1))kf , and these variables will not
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appear individually in the same form in the subsequent recursion. At the end of the
recursion, all the frequency variables should have appeared in this form. Thus these terms
can also be brought out as common factors if ki=k2=...=kp. In the case of ki=k>=...=kp=k,

Gy %y - | k.

(k) th;f t q(]”l(?(ml)+"'+]wl<>’<(i)+<p—1)z+1))1
’ all the different i

k . 1Fermutat’lons of

17" P}

*

— — . - ki
=1, (X, X)) H(]a’l(i(i)+1) et ]a’l()’((i)+(p—1)f,+1))
i=1

Therefore (A1) and (A2) can be written, if ki=k>=...=kp, as

¢(p—1)n+1(cp,o(')n; @1y "'a’l((p—l)nﬂ))
(p-1n+1

n . k . ' n (A3)
=" I [(Goys))" Hy(Goyiy))1 - @y 1ynia (€p,00) 5 @
i=1

) Oi(p-1yns1))

¢’(’p71)n+1(cp,o(')n? @) '“wl((pfl)n+1))
= >
= : Plp-1yx, 11 0() )" QUi+ (p-1, 1))
L(P 1)n+1(]wl + +]wl((}7 1)11+1)) allthedlfferentcombmatlonsz=1 (=D P ( XOh FOHp=ED

of {X; X, ,....X, } satisfying
X+ X, :n—l, 0<x;<n-1

(A4)

<=

k;(1-5(x;))
X1' H JO @y o IO )+(p-1)F,; 1))
i=1

(A4) can be further written as

("(/p—l)nﬂ(cp,o(')n? Wypy wl((p—l)n+1))
_ -1 (A5)
Liptyns1(G@yay + -+ jOypryniny)

all the different combinations
gf {x; Xy X, } sat1sjy1ng
X +--~+xp:n71, 0<x;<n-1

= = " X; .
Z y (X1f‘“/Xp)'1_!¢’(p-1)fi+1(cp,o(') fwl()?(i)+1)"‘a’l()’((f)+(p—1)fi+1))
1=

% _ ;
where, if X; =0, (o(p Dx 4(c p,o(') ’wl(X(i)+1)'.'a)l()?(i)+(pfl)fi+l))_1’ otherwise,

29
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"

%,
q)(pfl)fiJrl(Cp,O(') 'a’l()?(i)+1)"'a’z(i(i)+(p—1)§i+1))

. . k o X .
= (o x i1y +"'+]a)l()’((i)+(p—1)x,.+1)) ¢’(p—1)yi+1(cp,0(') f‘”l()’((i)ﬂ)"'a’z(i(i)+(p—1)xi+1))

. . k

(O (i) T IO xiye(p-1)%,+1) _ > (XX,
. . X 1, 4 p

_L(p—l)fi +1 (]a)l()?(i)+l) Tt ]a)l()?(i)+(p—1)ii +1)) all the different combinations

of {x;,x, seeerXop } satisfying

e +~~-+xp =X; -1, 0<x, <x; -1

k(1-8(x,)) 1

4
. . X,
: H(]”l()?'(i)+1) e F ]a’z()’(’(i)+(p—1)x,.+1)) ¢(p—1)xi+1(cp,0(') rOuxG)+1) " PR )+ (p-D)x, 1))
i=1

i . k
U0y giyeny + 0+ 190y +p-1yz,+1)

Lz U0y 0 IO -1z 41))

P
* " x . - e —
2 X)) T a6 00" Oy @iyt )
all the different combinations i=1

of {x;,%, reeer X } satisfying

Xyt tX, =x;-1, 0<x;<x;-1

The recursive terminal of (A6) is x; =1. Substituting (A2) into (A1) gives the first point of the

lemma and substituting (A5) and (A6) into (A3) yields the first point of the lemma. This
completes the proof. o

Now proceed with the proof of Theorem 2. For convenience, denote
sgn_(v,) * sgn_(v,) =sgn_(v,0,) = [sgnr(Re(vluz)) sgn, (Im(uluZ))]

for any v,,v, C.

Proof of Theorem 2. (1). From Lemma 1, any asymmetric Pp-1yn +1(cp 0" SO O is
’ p-1)n+
sufficient for the computation of IE( p-1yn+1(J€2) - It can be obtained that
= . . Fd (p-1)n+1 n.
Sgnc(F(p—l)n+l(]Q)) = sgnc(_](?) ) * Sgnc( Z (p(p—l)n+1(cp,0(') ’ a)kl I .’a)k( ynel ))
O+ H O 1y T '

F
From Lemma 2, sgn (- j(?d)(p_l)"”) has no effect on the alternating nature of the sequence

F( pyn 1(jQ) for n=1,2,3,.... Hence, (21a-c) is an alternating series with respect to cpo(.) if and

. " _ .
only if the sequence E ¢(p_1)n+1(cp,0(-) ,a)kl,---,a)k( —l)v1+l) for n=1,2,3,... is
@+ = !

1 (p-1)n+1

alternating. This is equivalent to

-1 . B
Sgnc Z (_1)n ¢(p—1)n+1(cp,0(')nrwl(1) ‘“a)l((p—l)n+1)) = const

O+t =Q
1 (p-1)n+1
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In the equation above, replacing ¢, ,, +1(Cp,0(')n"a’k1""f ) by using the result in

p —1)n+1

Lemma 3 and noting (p-1)n+1 is an odd integer, it can be obtained that

(p-1)n+1
[l HiGoy)
Z i=1
R Lp-1ynr GOy + -+ JOp_1yn11)
4 _
! Yivmy e (D =
sgnc . z H(P(p_1)fi+1(cp,o(') /a)l(X(i)+1) a)l(X(i)+(p—1)fi+1))
all the dlfferent combinations| i=1
of {X;, Xy ../ X . } satisfying
X+ +xp7n 1, 0<x<n-1
n. (X, X.) p
X 17 7p . . kl,
B —— > [ TGy ++ JO iy p-1y5 +1)
n, (kl,"',kp) all the different i=1
1ioermutatlons of
17" P}
(p-1)n/2 )
Hi(j) [ [Hi(Q)
i=1
L(p—l)n+1(jQ)
4 _
Z Z H¢’p x, (e o o ;a)l()?(i)+l)'.'a)l()?(i)+(pfl)fi+l))
O + -+ =Qall the different combinations| i=1
=sgn | DML of (%) X, ... X, | satisfying = const

x1+-~+xp:n—1, 0<x;<n-1

n. (X, X.) P
x 17 7p . . k;
T : H(]a’l(i(i)u) +'”+]a)l()7((i)+(pfl)fi+l))
o (kl,"',kp) all the different i=1
Eermutations of

kp}

(p—)n/2

Note that [] |H1( jQ)| ? has no effect on the equality above according to Lemma 2, then

i=1
the equation above is equivalent to (22).

(2). It additionally, ki=k>=...=kp=k in cpo(.), then using the result in Lemma 3, (22) can be

written as
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o~k .
() H,(j¢) 3 ¥ R %)
L Q x AT
(p—l)n+l(] )a)k +otay =Qall the different combinations
! (P Dmlof (%, X, X, | satisfying
sgn. Ry X =1, 0<%, <n-1 = const
P X,
i i . - e —
.H¢(p71)fi+l(cp,0(.) OR(i)+1) wI(X(i)+(p71)fi+1))}
i=1

From Lemma 2, (jQ)" has no effect on this equation. Then the equation above is equivalent to

H,(jQ .
—1(] ) Z Z [nx (ill...,gp)
L(p—l)n+l (] Q) W+ F O =Qall the different combinations
(Pl of X)Xy ,ers X, } satisfying
sgn,. Xy 44X, =n-1, 0<X; <n-1 = const
4 _
" X; .
: H¢(p—1)fi+1(cp,o(') G 'a’l()?(i)+(p—1)yi+1))}
i=1
H,(jQ H,(jQ H.(jQ
If Re( 10 ) ) Im ( U ), )=0, then L),has no effect, either. This gives
L(p—l)n+1(]Q) L(p—l)n+1(]Q) L(p—l)n+l(]Q)

Equation (23). The proof is completed.
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