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1. Introduction 

The work of operators in heavy machinery requires constant attention to gather information 

about the machine’s surroundings, its current status and the operations performed. 

Operators have to analyse the received information on the continuous basis and make 

decisions accordingly, to have them implemented via the control system and to perform the 

scheduled tasks in the optimal manner. The more powerful the machine, the more serious 

the consequence of errors committed by operators. The typical frequency range of vibration 

of machines and their equipment is determined based on testing done on heavy machines 

used in Europe [1] and is found to be 0.5- 80 Hz. 

Machine vibrations are induced by the drives’ action, movements of the equipment, variable 

loading and machine ride. The ride of heavy machines, tractors, forestry vehicles over a 

rough terrain lead to cyclic tilting of the machines, which can be regarded as low-frequency 

(up to several Hz) and high-amplitude (about 10 degrees) vibration of the machine. The 

angular motions of the frame are transmitted onto the cab, and the higher the cab position, 

the larger the amplitude range of linear vibration of the point SIP (about 70 cm). Vibrations 

negatively impact on the machine structure, control processes, performance quality and the 

operator’s comfort. Growing ergonomic concerns and competition on the market have 

prompted the design of machines ensuring the better comfort for the operator.  

Cab suspensions are now incorporated in the machine structure as a new solution. The active 

suspension is a system whose components are based on existing vibration reduction solutions. 

Early vehicles were also provided with suspension systems to suppress vibrations due to the 

ride in the rough terrain. At first these were passive suspension systems, in which the 

characteristics of the components i.e. elastic and damping elements are fixed. Suspensions 

incorporating semiactive elements perform better as vibration isolation systems since their 

characteristics can be varied according to the adopted control strategy. Active suspensions 
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lend a new quality to control of low-frequency vibrations in vehicles. The operating ranges of 

passive, semiactive and active suspensions, given as velocity-force characteristics, are shown 

in Fig 1. 

 

Figure 1. The range of velocity-force characteristics of passive, semiactive and active suspensions [2] 

Passive suspensions are described with a damper characteristics with fixed parameters (broke 

line). These suspensions typically comprise elastic elements featuring a linear or nonlinear 

elasticity and damping elements with nonlinear characteristics. On one hand, stability of 

parameters of a passive suspension system is considered an advantage as its construction can 

be made simple, but on the other hand the vehicle suspension will not perform optimally in 

response to inputs other than average. Steel and rubber connectors used as joint components 

in vehicle suspensions play a major role in damping higher-frequency vibrations.  

The areas in the first and third quadrant have relevance to the family of semiactive 

characteristics. A semiactive element comprises a damping element whose damping ratio can 

be varied through the real-time control process. A semiactive suspension does not generate 

any active force, hence the power demand remains on a low level. The damping ratio can be 

varied using throttling valves or through application of rheological fluids whose stiffness and 

viscosity depend on electric or magnetic field intensity. The work [3] investigates the potential 

applications of dry friction in semiactive dampers. Another solution uses a lever system 

wherein the attachment point of the spring can be varied and its elasticity controllable [4]. The 

upper frequency limit for the effective performance of semiactive suspension systems is about 

100 Hz. Because of their low power demand, semiactive suspensions systems are being 

vigorously researched and widely implemented in vehicles. 

The operation of active suspension systems is revealed in characteristics in all four 

quadrants, whereas the second and fourth quadrant capture the conditions where the 

actuator requires an external energy source, otherwise it acts as a passive element, 

dissipating energy. Active suspension systems incorporate a force actuator, either 

independent, or connected in parallel to a damper or a spring. Active suspensions prove 
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most effective in the case of low-frequency vibrations [5], about 5 Hz and are often added to 

passive systems which well handle high-frequency vibrations. High efficiency of active 

systems, however, comes at the cost of high power demand. Active suspension systems 

typically utilise small hydraulic cylinders to achieve high accelerations of masses subjected 

to considerable loads. Pneumatic cylinders are capable of delivering higher velocity than 

hydraulic ones, yet the acceleration is strongly dependent on the external load applied. 

There are also hydro-pneumatic cylinders, displaying the advantages of the two previous 

types. Active suspension systems in truck cabs utilise electric cylinders DC and AC-servo. 

The new developments of the operator’s seats are in line with the advancements in vehicle 

suspensions. In the simplest solution where the seat is fixed rigid to the machine frame or to 

the cab floor, vibrations are transmitted from the cab attachment point onto the operator. 

The mobile seat support allows it to be moved only in the vertical so the passive, semiactive 

or active vibration reduction system can be added along this direction only. Typically, a 

shearing mechanism is used as seat support [6], though other solutions with a greater 

number of DOFs are reported as well [7]. On account of small mass of the seat together with 

the operator, the upper frequency limit is reached and the active support becomes more 

effective than a vehicle suspension. Active suspension systems are now incorporated in 

agricultural and forestry machinery, where typical excitations are in the form of low-

frequency and high-amplitude vibrations [8]. 

The correct control strategy is a key element in active and semiactive vibration reduction 

systems, resulting in a good compromise between numerous and sometimes mutually 

excluding requirements. Optimal control techniques that handle this problem include the 

linear quadratic regulator LQR [9] and the linear Gaussian regulator LQG [10]. In simpler 

cases the PID control can be applied. Active control systems may also use regulators based on 

neural networks [11] and fuzzy logics [12]. The control schemes that are commonly used for 

semiactive suspension systems include the ‘sky-hook’ control strategy [13] where the 

damping force is related to the absolute velocity of the vehicle body. The H∞ control is 

insensitive to uncertain input quantities, encumbered with major errors (for instant: time 

constant, reduced mass, damping force, acceleration, velocity, damping ratio for the tire [14]. 

The H∞ control scheme concurrently executes the mutlicriterial optimisation and in active and 

semiactive suspension systems it takes into account the acceleration of sprung mass, peak 

accelerations, jerks of the front and rear suspension, road holding, forces acting upon the 

relevant masses, deflection of the tire and of the suspension [15]. The work [16] focused on H∞ 

control in an active suspension of vehicle investigates the influence of the time delay on 

stability of the control process. It is shown that the delay time (i.e. time before the cylinder in 

the active system is activated), the reduced mass and power ratings are major determinants 

of the frequency limit for effective operation of these type of suspensions. The stability 

condition is formulated for the predetermined range of time delay and system parameters. 

Extensive expertise prompts the use of filters, beside robust control for the purpose of 

estimation. The Kalman filter, reported in literature on the subject [17], is now widely used. 

To improve the operator’s comfort, an active suspension of a cab can be incorporated in the 

machine structure (Fig 2), to reduce the cab’s vibration. The active suspension system 

comprises several sub-systems: 
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Figure 2. Block diagram of the active suspension of a cab 

1. The actuator mechanism, connected to the machine frame and the cab is placed in 

between. The main element (link) of the mechanism is a mobile platform to which the cab 

is attached. The platform is suspended or supported on the frame and depending on the 

mechanism’s mobility, it can move with respect to the frame in the selected DOFs. 

2. The drives set in motion the passive links in the active suspension mechanism. On 

account of the stiffness requirements and availability of the given type of energy, and to 

ensure fast response the control signals the hydraulic drives are going to be used. The 

drives are provided with actuators to capture the instantaneous velocities, derived in 

the control sub-system. 

3. Measuring sub-system. Displacement and velocity are chosen as control quantities for 

the active suspension system. Directly measured data yield the error signal to be used 

in the control process. The machine frame subjected to kinematic excitations executes a 

spatial movement, measured with a set of sensors. 

4. Control sub-system. Errors of drive positions and their derivatives are going to be used 

in the feedback control of the active suspension system. Basing on the frame motion 

measurements, the control sub-system performs the real time calculation of the 

anticipated loads and the required drive velocities.  

2. Actuator mechanism in the active suspension system 

The active suspension mechanism, shown schematically in Fig 3 has been engineered 

specifically for the purpose of modelling and simulations and its design involves a certain 

trade-off between functionality and simplicity. The presented active suspension mechanism 

is capable of reducing the amplitudes of the cab’s linear vibrations in the direction yr and its 

angular vibrations around the axes xr, yr. The active suspension mechanism comprises just 
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three passive links, set in motion by two linear drives. The separate seat suspension 

mechanism reduces the vibrations along the axis zr. The main function of the active 

suspension system is to stabilise the cab such that the correct control of the drives 1 and 4 

should enable its vertical movement in the direction of the gravity force. The active 

suspension system comprises a platform p suspended on three limbs with spherical pairs 

having the centres B1, B2, B3. The two limbs are rocker arms 2 and 3, connected to the 

machine frame r via a revolving pair. The third limb is the actuator l with the length s1. The 

cylinder in the actuator 1c is connected to the frame r via a cross pair with the point A1. The 

piston in the actuator 4t is connected to the rocker arm via a spherical joint with the point C4. 

The length of the actuator 4 equals s4. The part of the active suspension system comprising 

the rocker arms 2 and 3, a actuator and the platform p along the line segment B2B3 can be 

treated as a planar mechanism where the points A4, C4, A2, B2 and A3 are on the plane yrzr 

and the axes of joints A2 and A3 are parallel to xr. The structure of the mechanism is such that 

the actuators 1 and 4, when in their middle position, do not carry the cab’s gravity load and 

when in their extreme positions, the load due to the gravity force is carried mostly by the 

joints A2, A3. Besides, the performance of the mechanism is affected by manufacturing 

imprecision, though this influence is found to be negligible. 

 

Figure 3. Platform mechanism stabilising the cab in the vertical: r - machine frame, p - platform, 2,3 - 

rocker arms,4w - forks in cross joints, 1c, 4c - cylinders in actuators, 1t, 4t - pistons in cylinders 

The cab is rigidly attached to the platform p. The centre of gravity (c.o.g) of the cab is at the 

point Qk. The reference systems associated with the platform {Qpxpypzp} and with the cab 

{Qkxkykzk} are parallel and immobile with respect to one another. Inside the cab there is a 

movable operator’s seat f, which can be moved with respect to the cab, along its vertical axis 

zk. The seat suspension mechanism with the operator is not the subject matter of the present 
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study. The centre of gravity of the seat and the operator is at the point Qf, whose vertical 

coordinate in the reference system associated with the platform is controlled by the drive 5, 

implementing seat elevation. 

3. Model of the kinematic excitation of the machine frame motion 

To implement the control, we need to know the angles of deflection of the vertical frame 

axis in the direction of the gravity force (Fig 4). The first measured angle defines the frame 

rotation around the longitudinal axis x , the other angle defines the frame rotation round 

the lateral axis y .  

 

Figure 4. Model of the kinematic excitation inducing the motion of the machine frame 

The model of the active suspension mechanism uses several reference systems. The 

immobile system {Qgxgygzg} is associated with the road travelled by the machine. This system 

is used to define the function of road profile on which the machine travels. The mobile 

system {Qrxryrzr} is associated with the machine frame (Fig 3, Fig 4). Its origin Or=A2 is one of 

the attachments points of the active suspension mechanism to the frame. This system is 

recalled to define all kinematic and dynamic quantities (no superscript on the left). The 

system {Qhxhyhzh} (Fig 4) is intermediate between the inertial system associated with the road 

and the mobile system associated with the frame. The origins of the reference systems 

{Qhxhyhzh}and {Qrxryrzr} will coincide: Oh=Or. The axes zh and zg are parallel and the plane 

determined by xhzh contains the axis xr. In the model of the active suspension, the directional 
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versor of the gravity force [0,0, 1]h o T
g  z  given in the reference system {Qhxhyhzh} should be 

expressed in the system {Qrxryrzr}: 

 o r h o
g h gz R z   (1) 

where: 

cos 0 sin

( , ) sin sin cos sin cos

cos sin sin cos cos

y y

r
h x y x y x x y

x y x x y

 

      

    

 
 
  
 
  

R - the transition matrix from the 

system {Qhxhyhzh} to {Qrxryrzr}, derived basing on the frame deflection angles x , y  

measured in the measuring sub-system. 

Underlying the simulation procedure is the model of the kinematic excitation applied to the 

machine frame, shown in Fig 4. 

The machine frame is represented by a front bridge (PP, PT), a longitudinal frame (P, T) and a 

joint at the point Or, where the active suspension mechanism is connected to the frame. The rear 

bridge (TL, TP) is connected to the longitudinal frame via a revolving pair T. It is assumed that: 

- the longitudinal axis of the frame TP moves in the plane xgzg, 

- velocity components of the extreme points of the front and rear bridge along the axis xg 

are identical and equal to h
Pxv , whilst their velocity components in the direction of yg 

are negligible, 

- velocity components in the direction zg are associated with vertical displacements of the 

wheels during the ride in rough terrain. 

The vertical displacement of the centre of the front right wheel is governed by a harmonic 

function: 

 1 cos 2
P

h
Px

P o g
g

v t
z h h

L


  
    

    
  (2) 

When t t , then vertical displacement of the centre of the front left wheel is taken to be 

LP oz h . When t t , vertical displacement of the centre of the front left wheel is expressed 

as the harmonic: 

 
( )

1 cos 2
L

h
Px

P o g
g

v t t
z h h

L


  
    

    
  (3) 

When 
ml

t t , the vertical displacement of the centre of the rear right wheel is taken to be 

PT oz h . When 
ml

t t , the vertical displacement is expressed as harmonic: 

 
( )

1 cos 2 m

P

h
Px l

T o g
g

v t t
z h h

L


  
    
  

  

 (4) 



 
Advances on Analysis and Control of Vibrations – Theory and Applications 112 

When 
ml

t t t  , the vertical displacement of the centre of the rear left wheel is taken to be 

LT oz h . When 
ml

t t t  , the vertical displacement is expressed as harmonic: 

 
( )

1 cos 2 m

L

h
Px l

T o g
g

v t t t
z h h

L


   
    
  

  

 (5) 

where: 
2

g

h
Px

L
t

v





 - phase shift time between the left and right hand side of the machine, 

m

m
l

Px

l
t

v
 - phase shift time between the front and rear part of the machine, 

Lg - distance corresponding to the full wave, hg- amplitude, wm - width of the front and rear 

bridge,  

lm -distance between the front and rear bridge,   - phase shift angle of the road profile 

between the left and right-hand side of the machine. 

4. Kinematic model of the active suspension mechanism 

To determine the influence of the active suspension system on the cab motion, the kinematic 

model is developed based on vector calculus. Versors used to define the positions of the 

active suspension mechanism links are shown in Fig 5. 

 

Figure 5. Versors in the kinematic model of cab stabilisation in the vertical 
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4.1. Direct kinematics problem of links position 

Solving the direct problem consists in finding the cab orientation and position of its centre of 

gravity Qk and of the point Qf - the centre of gravity of the seat-operator system with respect to 

the reference system associated with the machine frame. The cab orientation is determined by 

directional versors in the reference system associated with the platform o
px , o

py , o
pz . The cab 

position (and of the platform and the seat) and rkr - the radius vector of the of the cab’s c.o.g 

with respect to the reference system associated with the frame depend on variable lengths of 

actuators s1, s4 and the known constant dimensions of links in the active suspension 

mechanism. The radius vector of the c.o.g of the seat-operator system; rfr  is controlled by the 

lengths of three actuators s1, s4, s5 and the fixed dimensions of links in the active suspension 

mechanism. The solution of the simple problem involving the link position is explicit and 

consists in determining versors on the basis of two already known or already established ones. 

The versor 2
oc  is derived basing on two known versors 4 4 4[0, , ]o o o T

y za aa  and [1,0,0]o T
r x : 

 

2
2 2 2 2 2 2
2 4 4 2 4 4

2 4 4
4 2 4 2

( ) 1
2 2

o o o o
r

c s a c s a

a c a c

    
      

 
c a a x   (6) 

where: : 4 4 4s A C  , 2 4rc O C , 4 4ra O A . 

The versor 4
os  is obtained basing on 4

oa  and 2
oc : 

 4 2
4 4 2

4 4

o o oa c

s s
  s a c   (7) 

The versor 2
od  is obtained basing on o

rx  and 2
oc : 

 2
2 22 2 22 21 ( )o o o o

rc c   d c x c   (8) 

where: 22 2 2 2 2cos ( , )o o o oc   c d c d , 2 2( , )o oc d - a known fixed angle. 

The versor 6
os  is obtained basing on 2

od  and [0,1,0]o T
r y : 

 32
6 2

6 6

o o o
r

ad

s s
  s d y   (9) 

where: 2 2
6 2 3 2 3 2 32 ( )o os d a d a   d a , 2 2rd O B , 3 3ra O A . 

The versor 3
od  is obtained basing on 6

os  i and o
rx : 

 

2
2 2 2 2 2 2
3 23 6 3 23 6

3 6 6
6 3 6 3

1
2 2

o o o o
r

d b s d b s

s d s d

    
    
 
 

d s s x   (10) 
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where: 3 3 3d A B , 23 2 3b B B . 

The versor o
py  is obtained basing on 6

os  and 3
od : 

 6 3
6 3

23 23

o o o
p

s d

b b
 y s d   (11) 

The versor 7
os  is obtained basing on 2

od  and 1 1 1 1[ , , ]o o o o T
x y za a aa : 

 2 1
7 2 1

7 7

o o od a

s s
  s d a   (12) 

where: 2 2
7 2 1 2 1 2 12 ( )o os d a d a   d a , 1 1ra O A . 

The versor 8
os  is obtained basing on 7

os  and o
py : 

 7 2
8 7

8 8

o o o
p

s b

s s
 s s y  (13) 

where: 2 2
8 7 2 7 2 72 ( )o o

ps s b s b   s y , 2 2pb O B . 

The versor 1
os  is obtained basing on 7

os  and 8
os : 

 
2 2 2
78 71 81 78 71 8171 78 81 81 78 71

1 7 8 7 82 2 2
78 78 78

1 2
( )

1 1 1

o o o o oc c c c c cc c c c c c

c c c

    
   

  
s s s s s  (14) 

where: 
2 2 2
7 1 12

71
1 72

s s b
c

s s

 
 , 

2 2 2
7 8 2

78
7 82

s s b
c

s s

 
 , 

2 2 2
8 1 1

81
1 82

s s b
c

s s

 
 , 1 1pb O B , 12 1 2b B B . 

The versor o
px  is obtained basing on 1

os  and 8
os : 

 81
1 8

1 1

o o o
p

ss

b b
  x s s   (15) 

where: 1 1pb O B . 

The versor o
pz  is obtained basing on o

px  and o
py : 

 o o o
p p p z x y   (16) 

Eq (11), (15) and (16) yield the versors of the platform p, and the matrix r
pR - the direction 

matrix of the reference system associated with the platform with respect to the system 

associated with the frame: 
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o o o o o o
p r p r p r

r o o o o o o
p p r p r p r

o o o o o o
p r p r p r

   
 
    
 
    

x x y x z x

R x y y y z y

x z y z z z

  (17) 

The solution to the simple problem involving the link position is complete when the 

positions of points Ok. and Of are found in relation to s1, s4, s5. The radius vector from the 

origin of the reference system associated with the frame Or to the point Of becomes (Fig 5): 

 2 2 2
po o r

rf p p pfd b  r d y R r   (18) 

where: ( ) ( ) ( )( ) [ ]p p p p p T
p f pf pf x pf y pf zO O r r r r - radius vector of the point Or in the system 

associated with the platform, ( ) 5
p

pf z zr df s  - variable vertical coordinate of the seat 

controlled by the seat elevating drive 5. ( )
p

pf xr , ( )
p

pf yr , zdf - fixed coordinates. 

The radius vector from the origin of the reference system associated with the frame Or to the 

point Ok becomes: 

 2 2 2
po o r

rk p p pkd b  r d y R r   (19) 

where: ( ) ( ) ( )( ) [ ]p p p p p T
p k pk pk x pk y pk zO O r r r r - radius vector of the point Ok in the system 

associated with the platform. ( ) ( ) ( ), ,p p p
pk x pk y pk zr r r  - fixed coordinates 

4.2. Inverse kinematics problem of link position 

The inverse problem handled in the coordinate system associated with the machine frame 

involves the orientation of the platform p. The platform should be stabilised in the vertical 

whilst the active suspension system is in use. The platform position is related to the gravity 

force versor o
gz (Fig 4, 5, 6), which can be expressed in the coordinate system associated with 

the frame according to the formula (1).  

In order to solve the inverse problem it is required that the lengths of the actuators s1o, s4o 

should be established, corresponding to the predetermined and expected platform position 

with respect to the system associated with the frame and expressed by versor coordinates: 
o
pox , o

poy  and o
poz . Actually, the cab will reach the position nearing the expected one. The 

anticipated values (indicated with a subscript ”o”) obtained from solving the inverse 

problem will be used to derive the error signal required for the control process. The 

direction of the cab’s vertical axis versor should be opposite to that of the gravity force 

versor o o
po g z z . 

The versor o
poy  is obtained basing on o

poz  and o
rx : 

 o o o
po po r y z x    (20) 
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Figure 6. Solving the inverse problem- schematic diagram 

The versor o
pox  is obtained basing on o

poy  and o
poz : 

 o o o
po po po x y z    (21) 

The modulus of the vector between points Or and C and its versor are computed using the 

triangle OrA3C (Fig 6): 

 2 2
9 23 23 23 232 ( )o o

po rs a b a b   y y    (22) 

 
23 23

9
9

o o
r poo

a b

s




y y
s    (23) 

The versor 2
o

od  is obtained basing on 9
os , s9, d2 and d3: 

 

2
2 2 2 2 2 2
2 3 9 2 3 9

2 9 9
9 2 9 2

1
2 2

o o o o
o r

d d s d d s

s d s d

    
      
 

d x s s    (24) 

The versor 2
o

oc  is obtained basing on o
rx  and 2

o
od : 

 2
2 22 2 22 21 ( )o o o o

o o r oc c   c d x d    (25) 

The expected length of the drive 4 and its versor are obtained from the triangle A4A2C4: 

 
2 2 2

4 4 4 4( ) ( ) ( )o o o
o o r o r o rs      s x s y s z ,          4

4
4

o o
o

os


s
s  (26) 

where: 4 2 2 4 4
o o

o oc a s c a - vector of the drive 4. 

The expected length of the actuator and its axis versor are obtained on the basis of a polygon 

A1A2B2OpB1: 

9

o
s

o

rz

o

ry

rz
o

gz

2

o

od 3

o

od 3

o

odo

poz

pz

o

poy

o

poy

ry

py

rO

C

2B 3B

3A

pO

9s 


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2 2 2

1 1 1 1( ) ( ) ( )o o o
o o r o r o rs      s x s y s z ,            1

1
1

o o
o

os


s
s   (27) 

where: 1 2 2 2 1 1 1
o o o o

o o po pod b a b   s d y a x - vector of the actuator 1. 

4.3. Direct kinematics problem of links velocity 

In order to solve the simple problem to derive velocity of the active suspension system in 

the coordinate system associated with the frame it is required that the following vectors 

have to be determined: 

, , ,p r k r f r ω ω ω - identical angular velocity of the platform p, of the cab k and the operator 

seat f, 

,kO rv - linear velocity of the cab’s c.o.g Qk, 

,fO rv - linear velocity of the c.o.g. in the seat-operator system Of as functions of cylinders’ 

velocity. 

The kinematic chain determined by points A4C4A2 (Fig 5) satisfies the closing condition: 

 4 4 4 4 2 2
o o oa s c a s c    (28) 

Differentiating Eq (28) over time yields: 

 4 4 4 4, 4 2 2, 2( ) ( )o o o
r rs s c   s ω s ω c    (29) 

The versor o
rx  determines the direction of the angular velocity vector of the rocker arm 2: 

 2, 2,
o

r r rω x    (30) 

Scalar-multiplying Eq (29) by 4
os  yields: 

 4
2,

2
r

s

r
 


  (31) 

where: 2 2 2 4[( ) ]o o o
rr c  x c s . 

The kinematic chain determined by points A2B2B3A3 (Fig 5.) satisfies the closing condition: 

 2 2 23 23 3 3
o o o o

p rd b a d  d y y d    (32) 

Differentiating Eq (32) over time yields: 

 2 2, 2 23 , 3 3, 3( ) ( ) ( )o o o
r p r p rd b d    ω d ω y ω d    (33) 

The versor o
rx  determines the direction of the angular velocity vector of the rocker arm 3: 
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 3, 3,
o

r r rω x    (34) 

Substituting (30), (31) and (34) into Eq (33) and scalar-multiplying all vectors by the versor 
o
py , yields the modulus of angular velocity vector 3,rω : 

 4
3,

3
r

s

r
 


   (35) 

where: 
3 2 42 3

3
2 2

[( ) ][( ) ]

( )

o o o o o o
r p r

o o o
r p

c d
r

d

   


 

x d y x c s

x d y
. 

The angular velocity vector of the platform p can be expressed as the sum of three 

components whose axis directions are determined by versors o
px , o

py  and o
pz : 

 , ( , ) ( , ) ( , )p p p

o o o
p r p r x p p r y p p r z p    ω x y z    (36) 

Recalling Eq (30), (31), (34), (35), (36), Eq (33) can be rewritten as: 

 4 4
2 2 23 ( , ) 23 ( , ) 3 3

2 3

( ) ( )
p p

o o o o o o
r p r x p p r z p r

s s
d b b d

r r
     x d z x x d

 
 (37) 

Scalar-multiplying Eq (37) by o
px  yields: 

 4
( , ) p

p

p r z
pz

s

r
 


  (38) 

where: 23

32
2 3

2 3

( )
ppz

o o o o
p r

b
r

dd

r r


 

    
 

x x d d

. 

Scalar-multiplying Eq (37) by o
pz  yields: 

 4
( , ) p

p

p r x
px

s

r
 


   (39) 

where: 23

3 2
3 2

3 2

( )
ppx

o o o o
p r

b
r

d d

r r


 

    
 

z x d d

. 

The closed kinematic chain comprising a actuator s1 and represented as a pentagon 

A2A1B1OpB2 in Fig 5 satisfies the closing condition: 

 1 1 1 1 1 2 2 2
o o o o o

p pa s b d b   a s x d y   (40) 
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Differentiating Eq (40) over time yields: 

 1 1 1 1, 1 1 , 2 2, 2 2 ,( ) ( ) ( ) ( )o o o o o
r p r p r p r ps s b d b       s ω s ω x ω d ω y  (41) 

Recalling the relationships expressing the angular velocity vector of the platform (Eq 36) 

and angular velocity vector of the rocker arm 2 (Eq 30), Eq (41) can be rearranged 

accordingly: 

4
1 1 1 1, 1 1 ( , ) ( , ) 2 2 2 ( , ) ( , )

2

( ) ( ) ( ) ( )
p p p p

o o o o o o o o
r p r z p p r y p r p r x p p r z p

s
s s b d b

r
          s ω s y z x d z x


  (42) 

Scalar multiplying vectors present in Eq (42) by 1
os  yields the coordinate of the angular 

velocity of the platform in the direction determined by the versor o
py : 

 1 4
( , )

1 4
p

p p

p r y
py py

s s

r r
  

 
   (43) 

where: 1 1 1( )
p

o o
py pr b z s , 

1 1

4

1 2 2 2
2 1

2

( )

p

p p p

o o
p

py

o o o o o o
p r p p

pz px pz

b
r

b d b b

r r r r



 
     
 
 

z s

y x d z x s

. 

The angular velocity vector of the platform, based on (36), (39), (43), (38), will become: 

 4 1 4 4
,

1 4

( )

p p p p

o o o
p r p p p

px py py pz

s s s s

r r r r
   ω x y z
   

   (44) 

Finally, the angular velocity vector of the platform, cab and the seat is linearly related to the 

velocity of actuators s1 and s4: 

 , , , 1 1 4 4p r k r f r s s   ω ω ω h h     (45) 

where: 1
1p

o
p

pyr


y
h , 4

4p p p

o o o
p p p

px py pr r r
  

z

x y z
h . 

Eq (45) can be written in the matrix format: 

 ,p r ω J s   (46) 

where: 1 4    J h h 0 , 1 4 5

T
s s s   s    . 

The radius vector of the point Ok - the origin of the reference system associated with the 

frame (Fig 5), is expressed as: 

 2 2 2
o o

rk p pkd b  r d y r   (47) 
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where: ( ) ( ) ( )
p p po o o

pk p pk x p pk y p pk zr r r  r x y z . 

Differentiating Eq (47) over time yields the linear velocity vector of the point Ok: 

 , 2 2, 2 , 2( ) ( )
k

o o
O r r p r p pkd b    v ω d ω y r  (48) 

Recalling Eq (30), (31), (45), Eq (48) can be rewritten as: 

 , 1 1 4 4k k kO r O Os s v k k     (49) 

where: 1 1 2( )
k

o
O p pkb  k h y r , 2

4 2 4 2
2

( ) ( )
k

o o o
O r p pk

d
b

r
    k x d h y r . 

Eq (49) can be expressed in the matrix format: 

 ,kO r vkv J s    (50) 

where: 1 4k kvk O O
   J k k 0 . 

The radius vector of the c.o.g of the seat-operator system Of becomes: 

 2 2 2
o o

rf p pfd b  r d y r    (51) 

where: ( ) ( ) 5( )p po o o
pf p pf x p pf y p zr r s df   r x y z . 

Differentiating Eq (51) over time yields the linear velocity of the point Of: 

 , 2 2, 2 , 2 5( )
f

o o o
O r r p r p pf pd b s     v ω d ω y r z   (52) 

Recalling Eq (30), (31), (45), Eq (52) can be rewritten as: 

 , 1 1 4 4 5 5f f f fO r O O Os s s  v k k k      (53) 

where: : 1 1 2( )
f

o
O p pfb  k h y r , 2

4 2 4 2
2

( ) ( )
f

o o o
O r p pf

d
b

r
    k x d h y r , 5 f

o
O pk z . 

Eq (53) can be expressed in the matrix format: 

 ,fO r vfv J s    (54) 

where: 1 4 5f f fvf O O O
    

J k k k . 

To define the operating conditions of the drives in the active suspension mechanism, 

velocity vectors related to the road system are of key importance. The absolute angular 

velocity of the cab in the reference system associated with the frame becomes: 

 , , , ,p g p r r g r g   ω ω ω J s ω   (55) 
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where: ,r gω  - angular velocity of the frame with respect to road, based on measurement data. 

Absolute linear velocities of points Ok and Of expressed in the reference system associated 

with the frame are: 

 , , , ,( )
k m kO g O g r g mr rk O r    v v ω r r v   (56) 

 , , , ,( )
f m fO g O g r g mr rf O r    v v ω r r v   (57) 

where: ,mO gv - measured linear velocity of the control point Om associated with the frame 

with respect to the road; ( ) ( ) ( )[ , , ]Tmr mr x mr y mr zr r rr - vector between the points Om and Or 

expressed in the reference system associated with the frame. 

4.4. Inverse kinematics problem of links velocity 

The inverse problem involves finding the drive velocities for the predetermined cab velocity 

with respect to the road. As the active suspension mechanism displays three degrees of 

freedom (DOFs), three constraints can be imposed upon the cab velocity. The function of the 

active suspension system is to stabilise the cab in the vertical direction, hence the condition 

is adopted prohibiting the absolute rotating motion of the platform around its two axes o
pox  

and o
poy . The third condition implicates that the absolute value of linear velocity of the point 

Of in the direction of the gravity force should be zero: 

 ( , ) 0o
p g o po ω x    (58) 

 ( , ) 0o
p g o po ω y   (59) 

 ( , ) 0
f

o
O g o g v z   (60) 

Recalling Eq (55) and conditions (58), (59), we get the formulas expressing the expected 

velocities of actuators 1 and 4: 

 
1 1 4 4 ,

1 1 4 4 ,

0

0

o o o
o o po o o po r g po

o o o
o o po o o po r g po

s s

s s

      


      

h x h x ω x

h y h y ω y

 

 
  (61) 

When the actuators 1 and 4 should move at velocities governed by Eq (61), the cab will 

perform a slight rotating motion around in the direction o
poz  only. 

The third condition (60) in relation to Eq (54), (57) gives: 

 1 1 4 4 5 5 , , ( )( ) ( ) ( ) [ ( )] 0
f f f m

o o o o o
o O g o O g o O g O g g r g mr rf o gs s s           k z k z k z v z ω r r z    (62) 

The solution to linear system of equations (61) and (62) can be written as a matrix equation: 

 o s Jv    (63) 
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where: 
1

4

5

o

o o

o

s

s

s

 
   
  

s


 


, 

1

1 4 1 3

1 4 1 3

1 4 5

0

0

( )
f f f

o o o
o po o po po

o o o
o po o po po

o o o o o
O g O g O g g mr rf g







       
         
           

h x h x 0 x

J h y h y 0 y

k z k z k z z r r z

, 
,

,

mO g

r g

 
 
  

v
v

ω
. 

4.5. Constraining the motion of the drive responsible for the seat movement in 

the vertical direction 

The machine, when in service or during the ride, may change its position in the vertical 

direction such that in order to stabilise the seat position in this direction the operating range of 

the actuator 5 should be exceeded. To solve this problem, it is suggested that a penalty 

function should be introduced, its argument being the instantaneous length of the actuator s5: 

 

2 1

5 5
5 5 5 max

5max 5min0.5( )

n

śr
k k

s s
s K s

s s


 

  
  

     (64) 

where: 5 5max 5min0.5( )śrs s s  , K5 - amplification factor penalty function 5 maxks - maximal 

velocity of the actuator, n N  . 

The final expected velocity of the actuator 5 should involve a term responsible for the seat 

“drifting” towards the middle position: 

 *
5 5 5o o ks s s       (65) 

where: 5os - expected velocity in the actuator 5, derived from formula (63). 

The second term in (65) represents the seat movement towards the middle position being 

superimposed on its relative movement. The assumed penalty function (64) guarantees that 

the relative velocity during the seat’s return movement (Fig 7) to the middle position should 

be significant at extreme points of the actuator’s displacement range. 

4.6. Cab and seat acceleration 

In order to solve the simple problem involving acceleration of the active suspension 

mechanism in the reference system associated with the frame, it is required that certain 

quantities should be determined in the function of length, velocity and acceleration of 

actuators 1,4,5. These include: ,p rε - angular acceleration of the platform, cab and seat, ,kO ra - 

linear acceleration of the cab’s c.o.g, ,fO ra - linear acceleration of the c.o.g of the seat-

operator system. Differentiating Eq (46), (50), (54) with respect to time yields the angular 

acceleration of the platform, cab and seat and linear acceleration at points Ok and Of: 

 ,p r   ε J s J s      (66) 

 ,kO r vk vk a J s J s    (67) 
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 ,fO r vf vf a J s J s    (68) 

where: 1 4 5

T
   s s s s    . 

 

 

Figure 7. Penalty function 

The inertia loads are determined basing on absolute acceleration values related to the 

inertial reference system {Ogxgygzg}. In accordance with Eq (55), the absolute angular 

accelerations of the platform, cab and seat expressed in the mobile reference system 

associated with the frame become: 

 , , , , , , ,p g k g f g r g p r r g p r     ε ε ε ε ε ω ω    (69) 

Recalling Eq (56), (57), the absolute linear acceleration of the points Or, Ok and Of in the 

mobile reference system associated with the frame become: 

 , , , , ,( )
r mO g O g r g mr r g r g mr     a a ε r ω ω r    (70) 

 , , , , , , , ,2 ( )
k r k kO g O g r g rk r g O r r g r g rk O r        a a ε r ω v ω ω r a  (71) 

 
, , , , , , , ,2 ( )

f k f fO g O g k g kf k g O k k g k g kf O k        a a ε r ω v ω ω r a  (72) 

where: ,mO ga - measured linear acceleration of a point on the frame Qm with respect to the 

inertial reference system {Ogxgygzg}, ,r gω , ,r gε  - measured angular velocity and acceleration 

of the machine frame with respect to the inertial reference system {Ogxgygzg}, 

, , , ,k g p g r g p r  ω ω ω ω , kf k fO Or


, rk r kO Or


, mr m rO Or


. 

5śrs

5s

5 maxks

5 maxks
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penalty function on velocity in the 

actuator 5 

o
pz

5 
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5. Inverse problem of dynamics 

The external loads acting on the active suspension mechanism involve the gravity forces, 

inertia forces and moments of inertial force of the platform together with the cab, the seat 

and the operator. These are governed by the Newton-Euler equations, referenced in [18]: 

 ,kbk k O gm P a    (73) 

 , , ,bk k g k k g k k g  M ε I ω I ω    (74) 

 
,fbf f O gm P a    (75) 

 , , ,bf f g f f g f f g  M ε I ω I ω    (76) 

where: 

0

0

0

z y

z x

y x

 

 
 

 
 

  
   

ω , r k r T
k p k pI R I R , fr r T

f p f pI R I R , 

k
kI , f

fI - mass moments of inertia of the cab and the seat with operator in their own 

reference systems.  

The sum total of instantaneous power applied by the active suspension mechanism and 

power of the gravity and inertia forces are brought down to zero: 

, , , , , ,( ) ( )
k k

T T T
s k O r O g k r k k g k g k k gm     s F v g a ω I ε ω I ω    

 , , , , , ,( ) ( ) 0
f f

T T
f O r O g f r f f g f g f f gm     v g a ω I ε ω I ω  (77) 

where: 1 4 5[ , , ]Ts F F FF - forces developed by the drives. 

Recalling Jacobean matrices (46), (50), (54), Eq (77) can be rewritten as: 

, , , ,[ ( ) ( )
k

T T T
s k vk O g k k g k g k k gm      s F J g a J I ε ω I ω   

 , , , ,( ) ( )] 0
f

T T
f vf O g f f g f g f f gm      J g a J I ε ω I ω  (78) 

Knowing the loads due to gravity and inertia, Eq (78) yields the forces acting in the drives: 

 , , , , ,( ) ( ) {( ) [ ( ) ]}
k f

T T T
s k vk O g f vf O g k f k g k g f k k gm m        F J a g J a g J I I ε ω I I ω  (79) 

6. Simulation of the active suspension system 

The operation of the active suspension system is investigated using two mutually 

supportive programmes. MSC visualNastran 4D is used to develop the model of the input 
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inducing the machine motion, of the machine suspension, the active suspension mechanism 

for the cab and the seat. All these modelled elements are simplified (Fig 8).  

 

Figure 8. Model of the road input, machine suspension mechanism, active suspension of the cab and 

seat developed in MSC visualNASTRAN 4D 

The programme enables the measurements of the actuator length, the angle of frame tilting 

x  and pitching y , velocity and acceleration Om and of velocity and acceleration of the 

cab’s angular motion. These are shown in the block diagram “Measurements of the machine 

frame movements”. During the simulation procedure, these quantities are sent to be further 

handled by Matlab/Simulink (Fig 9).  

The proposed control strategy to be applied to the active suspension of the cab uses the 

feedback control system with compensation for the measured disturbances in the form of 

the machine frame movements. The expected states of the cab motion, determined in the 

block “Preset cab motion” involve the requirement whereby the cab is to be stabilised in the 

vertical direction and the seat must not be displaced along the cab’s vertical axis, at the same 

time the operating range of the actuator 5 should be duly taken into account. Once frame 

movements are known from measurements and assumptions as to the anticipated cab 

movements being taken into account, an unambiguous procedure is applied to compute 

drive movements in the active suspension mechanism. On the output from the block 

“Inverse problem of kinematics of the active suspension mechanism” we get the  

expected velocities and accelerations of three drives, represented by vectors  

1 4 5[ ]To o o os s ss , 1 4 5[ ]To o o os s ss    . Actuators should be equipped with sensors for 

measuring their actual lengths 1 4 5[ ]Ts s ss  in order to determine the control error 
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1 1 4 4 5 5

T

o o os s s s s s     e . The control error should tend to zero if the velocities 

implemented in actuators are in accordance with the formula: 

 w o P s s K e     (80) 

where: 

1

4

5

0 0

0 0

0 0

p

P p

p

k

k

k

 
 
 
 
  

K - gain matrix in the position path. 

 

 

Figure 9. Model of drives control in the active suspension system - schematic diagram 

Computed accelerations s  and measured velocities s  and displacements s  of the drives 

become the inputs to the block “Direct problem of kinematics of the active suspension 

mechanism problem of kinematics of the active suspension”, which calculates the 

Preset motion  

of the cab 

KP

Direct problem of 

kinematics of the active 

suspension mechanism 

Inverse problem of 

dynamics of the active 

suspension mechanism 

.

F

+
+

+ 
_ 

Displacement 

of the machine 

frame 

 

d

dt

AZK

Inverse problem of 

kinematics of the 

active suspension 

mechanism 

os os

s
s

e

ws

s

,x y 

.

wsns

MSC.visualNastran 4D Matlab Simulink

Model of drives in the active 

suspension system 



 
The Active Suspension of a Cab in a Heavy Machine 127 

anticipated movement of the active suspension mechanism of the cab and of the cab itself. 

Basing on anticipated cab movements, inertia interactions are found which, alongside the 

gravity forces, become the major loads applied to the cab. The inverse problem of the 

active suspension dynamics involves the calculation of the driving forces in the form of a 

vector 1 4 5[ ]TF F FF , counterbalancing the external loads. The contribution of gravity 

forces to the load of particular drives depends on the frame tilt angles: x , y . Basing on 

computed loads F and the required instantaneous velocities ws , the block “ Model of 

active suspension drives” generates the realisable instantaneous velocities of actuators 

1 4 5

T

n n n ns s s   s    . Velocity values ns  are sent to be further processed by 

MSCvisualNASTRAN 4D. This work does not include the analysis of the drive model. It is 

assumed in simulations n ws s  . 

The control of the active suspension system gives rise to certain errors e, and in consequence 

the constraints imposed on the angular velocity of the cab and linear velocity of the cab and 

the seat cannot be accurately reproduced. These errors are attributable to inaccurate 

measurements of the frame movements, the time delay involved in implementation of the 

drive velocity or the drives’ failure to implement the required velocity (moving beyond the 

limits of their typical operating range). 

7. Dependings of link dimensions of the active suspension cab 

mechanism 

It is demonstrated in [19] that dimensions of key parts of the mechanism A2A3B3B2 can be 

chosen such that the instantaneous centre of the platform rotation with respect to the 

machine frame Cpr should be included in the road unevenness path when the active 

suspension system is on. When this condition is satisfied, the actuator 4, controlled in 

accordance with the cab vertical stabilisation requirement, will at the same time reduce the 

absolute movement of the platform in the direction transverse to the ride.  

Assuming the central position of the cab on the machine frame, the points A2 and A3 should 

be arranged symmetrically with respect to the frame’s longitudinal axis and the lengths of 

the rocker arms 2 and 3 should be identical 2 3d d d  . 

The road unevenness range and a typical crescent - shaped field of instantaneous centres of 

the platform rotation with respect to the frame prC  are shown in Fig 10. It is assumed that 

when the machine frame is in a horizontal position, prC  is found on the line of wheel-

ground contact. The distance of joints in the rocker arm connections A2 and A3 from the 

ground is hm. The relevant dimensions are related as follows: 

 

2

2 23 23

2

a b
h d

 
  
 

,        
3 23

m mh h h

a b


    (81) 

where: h - distance between the platform and the points of joints A2 and A3 for the frame in 

the horizontal position. 
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Figure 10. Distribution of the field made of points 
pr

C  

Eliminating h from Eq (81) yields the relationship between the dimension of the four bar 

linkage A2A3B3B2 and hm. When this condition is satisfied, prC  is found in the road 

unevenness path: 

 

2

223 3 23

3

1
2m

b a b
h d

a

   
         

   (82) 

Displacements of the four bar linkage in the active suspension mechanism are constrained 

by the occurrence of singular positions. The mechanism should not come near the singular 

position, when controllability of the system deteriorates and the loads acting upon the 

drives and mobile connections tend to increase. For the predetermined maximal height of 

the road unevenness range 2hg and for the machine wheel spacing wm, the maximal angle 

max  a of the machine tilting with respect to the axis yg should be such that the four bar 

linkage should not assume a singular position (Fig 9): 

 maxx  
2 2 2
3 23

3 23

2 ( )
arcsin arccos

2 ( )

g

m

h a b d d

w a b d

  



  (83) 

When the dimensions of links in the four bar linkage A2A3B3B2 as well as hg satisfy the 

condition (83), the mechanism is able to operate in a single configuration. 

Another geometric condition stems from the assumption that the cab can move freely 

without colliding with the joints A2, A3, when the machine assumes its extreme position due 

to tilting by the angle maxx  (Fig 9): 

A4 
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A3 yr 
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 23
3 maxcos

2 2
k

x w

b w
a d        (84) 

where: wk - cab width, 23kw b , w - allowable distance between cab walls and the point of 

the joint A2 or A3. 

 

 

Figure 11. Frame tilt angle in relation to the singular position of the four bar linkage 

Satisfying the inequality (84) quarantines a fail-safe operation of the four bar linkage 

A2A3B3B2 and of the cab. Conditions (82), (83), (84) yield the dimensions: a3, b2, d. When the 

machine is operated in uneven terrain where 2hg exceeds the predetermined value, the 

active suspension mechanism can reach the limits of its working field and the cab will 

momentarily deviate from the vertical direction. 

8. Simulation data of the active suspension system 

Machine specification data used in simulations: 

2.810 [ ]ml m - distance between the front and rear axle of the machine frame, 

1.980 [ ]mw m - wheel spacing, wr =1.4 [m] - frame width, [ 2.1, 0.818,1.6][ ]
rPO m  r - 

position vector of the point Or, 1.200 [ ]kw m - cab width, ( ) 0.000 [ ]p
pk xr m , 

( ) 0.000 [ ]p
pk yr m , ( ) 0.685 [ ]p

pk zr m  
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( ) 0,000 [ ]p
pf xr m , ( ) 0,000 [ ]p

pf yr m , 0.335 [ ]zdf m , mk=480 [kg] - cab mass, mf=160 [kg] - 

mass of the seat with an operator, 2

180 0 0

0 208 0 [ ]

0 0 133

k
kJ kg m

 
   
  

- inertia matrix of the cab in 

the reference system associated with the cab, 2

23.8 0 0

0 24.7 0 [ ]

0 0 13.2

f
fJ kg m

 
   
  

- inertia matrix 

of the seat and operator in the system associated with the seat,  

Road profile: 

2hg= 0.250 [m] - height of the unevenness range, Lg= 2[m] - wave length of the road 

unevenness, / 2 [ ]rad   - the phase shift angle between the left-and right-hand side of the 

machine, ,max 2.82 [ / ]
2

gh
Px

g

L g
v m s

h
   maximal speed of the machine ride computed for 

the free wheel in contact with the road surface. 

Active suspension mechanism for the cab: 

2.420 [ ]mh m - distance of joints in the rocker arm connections A2 and A3 from the ground, 

0.05 [ ]w m  - admissible distance between the cab’s side wall from the joint axis A2 or A3, 

3 1.636 [ ]a m , 3 0.227 [ ]d d d m   , 23 1.490 [ ]b m , 2 0.099 [ ]c m , 2 2( , ) 4.5606 [ ]o o radc d

4 0.541[ ]a m , 4 [0.0000,0.2181, 0.9759][ ]o m a , 1 1.182 [ ]a m , 

1 [ 0.7218,0.6921,0.0000][ ]o m a , 2 3 230.5b b b  , 1 0.850 [ ]b m , 5min 0.415 [ ]s m , 

5max 0.715 [ ]s m , 5 max 1[ / ]ks m s , 5 50 [ ]K   . 

20 0 0

0 20 0 [1 / ]

0 0 0
P s

 
   
  

K - matrix of gain in the position path. The distance covered during the 

simulation - 10[m]. The time step in the simulation procedure - 0.005 [s]. 

Simulation data relating to the cab’s and machine frame angular motion are given in Fig 12 

and 13, each showing two plots of one angular velocity component in the function of time.  

Simulation data relevant to the linear movement of the point Of on the seat are given in Fig 

14, showing the plots of vibration reduction factors for the three components of the rms 

acceleration derived from the formula: 

 2 2
, , , ,

0 0

s sT T

l f off l f on la dt a dt      (85) 

where: l = (xg, yg, zg), , ,f off la - linear acceleration in the direction l, the active suspension 

system being off, , ,f on la - linear acceleration in the direction l, the active suspension system 

being on; Ts - simulation time associated with the ride velocity.  
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Figure 12. Coordinate xr of angular velocity of the frame and platform in the function of time, 

expressed in the system associated with the frame. 

 

Figure 13. Coordinate yr of angular velocity of the frame and platform in the function of time, 

expressed in the system associated with the frame. 

The mean power expended by the drives (shown in Fig 15) is derived from the formula: 

 0
,

sT

j

med j
s

N dt

N
T






   (86) 

where: j = (1, 4, 5), jN - instantaneous positive power expended by the drive j. 
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Figure 14. Vibration reduction of the point Of on the operator seat, in the directions xr, yr, zr 

Plots in Fig 14 and 15 show the relevant parameters in the function of the coefficient   linearly 

related to the machine ride velocity, whilst for ,max
h h

Px Pxv v the value of   becomes 1. 

 

Figure 15. Mean power ratings of the drives 1, 4, 5 

9. Conclusions 

Simulations of the active suspension system performance have proved its adequacy in 

vibration reduction of angular vibrations of the cab around the longitudinal axis of the 

machine xr and around the transverse axis yr. Seat vibrations along the vertical axis zr are 

successfully controlled, too. The applied procedure of dimension synthesis of the active 
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suspension mechanism links leads to significant reduction of the cab and seat vibration in 

the direction yr. Reduction of angular cab vibration around yr leads to reduction of linear 

seat vibrations in the direction xr. 

The operation of the active suspension system involves the real-time measurements of 

mechanical quantities which can be accurately measured with state-of-the-art sensors: 

angular velocity and acceleration of the frame, linear acceleration of a selected point on the 

machine frame, two angles of the frame tilting from the direction of the gravity forces and 

the length and velocities implemented by actuators. 

Underlying the simulation procedure is that assumption that each computed drive velocity 

will be implemented without any time delay (provided that is allowed by collaborating 

programmes). Results therefore can be utilised when selecting drives which, when in extreme 

conditions, may not be able to perform the required movements. Besides, the overall time 

constant, taking into account the response time of the measurement system, the controls and 

drives becomes another limiting factor, particularly at higher frequencies of road input. 

The actuator 4 handles two DOFs (i.e. the cab rotation around the xr axis and its translation 

along the yr-axis) and induces slight movements of the cab in the direction of the zr-axis, 

hence its power demand is higher than in drive 1. 
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