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1. Introduction 

Laser-induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy. Atoms 

are excited from the lower energy level to high energy level when they are in the high 

energy status. The conventional excitation energy source can be a hot flame, light or high 

temperature plasma. The excited energy that holds the atom at the higher energy level will 

be released and the atom returns to its ground state eventually. The released energy is well-

defined for the specific excited atom, and this characteristic process utilizes emission 

spectroscopy for the analytical method. LIBS employs the laser pulse to atomize the sample 

and leads to atomic emission. Compared to the conventional flame emission spectroscopy, 

LIBS atomizes only the small portion of the sample by the focused laser pulse, which makes 

a tiny spark on the sample. Because of the short-life of the spark emission, capturing the 

instant light is a major skill to collect sufficient intensity of the emitting species. Three major 

parts of the LIBS system are a pulse laser, sample, and spectrometer. Control system is 

usually needed to manage timing and the spectrum capturing. Figure 1 illustrates those 

three major components and a computer in the conventional LIBS.  

The LIBS has been used for the materials detection and analysis in various applications, 

such as steel and alloys[1-8], paints and coatings[9-15], wood pre-treatment[16], polymers 

[17], bacteria[18], molds, pollens, and proteins[19,20], and space exploration[21]. The great 

majority of LIBS results were consolidated in the reviews[22] and books[23, 24]. 

In spite of its advantage in analytical spectroscopy, LIBS application is still restricted within 

certain areas and propagation of the technology is not very wide. Many laboratory LIBS 

systems are built in schools, research labs and companies with discrete optical parts. Their 

pioneering approach in the new application seemed promising for a certain samples, but 

actual use in the application field is usually very limited. We can explain the situation with 

other analytical techniques, for example, Gas Chromatography (GC). The GC can separate 

the volatile species. However, one GC setup can work for a narrow range of species grouped 

in the sample. For different applications, the user must change the GC column, detector,  
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Figure 1. The conventional LIBS system configuration  

carrier gas or at least use a new column temperature cycle. The application of LIBS also 

needs case-by-case adjustment. Many new applications start with looking at the advantages 

of LIBS and choosing a LIBS setup, and it still needs a detailed investigation for successful 

analysis.  

This chapter describes how the LIBS system works and explains the major parts of LIBS to 

select specific functional requirements for its intended application. The three major parts: 

laser, sample and spectrometer are explained. The laser provides the breakdown energy and 

plasma generation. Analytical sample is the target of the laser shot and the source of 

emission species. The spectrometer comprises detection system with light detector and 

computer. Their disadvantages and limitations are discussed then suggesting how to select 

the equipment type and configuration to maximize the advantages of LIBS. This will 

provide a beginning inspiration of LIBS systems to install and apply the desired specific 

analytical purpose or application area.  

2. LIBS system design with modern technology 

a. Laser as a breakdown energy source 

LIBS uses pulsed-laser light and focuses it onto the sample surface to make a plasma plume 

that contains the highly excited species of the sample composition. For generating plasma, 

there is a threshold value of the energy density. The threshold level will depend on the 

absorption coefficient of the sample surface of the laser wavelength, which is highly 

different by the sample phase. Gas and liquid need more energy to make breakdown. Solids 

with a dark color surface easily make a strong breakdown compared to clear or highly 

reflective solids. Figure 2 shows the effect of laser energy to make breakdown by the relation 

of laser power and focusing. Starting with a laser beam as 1 cm diameter, this light beam can 

be condensed by a convex lens. The focused beam density becomes 160 J/cm2 as in Figure 

2(a). Also, the laser is operating in the pulsed mode, assuming a10 nsec duration, total 

power per unit of time will be 16 GWatt/ cm2 as  
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Figure 2. Laser energy delivery for breakdown condition. (a) focusing effect, (b) pulsing effect 

in Figure. 2(b). Most of breakdown needs a few GW (106 Watt) of energy density, indicating 

that 50 mJ of laser energy is sufficient to make breakdown and evaporate most of material.  

At the early stage of LIBS development, several types of pulse laser were used to make 

laser-induced breakdown plasma. An eximer laser was an important pulse laser especially 

for the UV light pulse. XeCl-eximer with 308 nm was used in the LIBS to measure elemental 

distribution on the paper coating[25]. The laser energy of 0.2 mJ was focused and made a 

crater of 30 µm diameter. This energy is corresponding to 108 W/cm2. More than 90 % of 

ingredients in the paper coating are pigment, binder and other agents. The pigment’s main 

component is usually aluminum oxide, silicon dioxide and calcium carbonate. The mass of 

coating material ablated by single laser pulse was estimated to be about 2 ng by a laser shot. 

A typical nitrogen laser has a wavelength 337.1 nm and a pulse duration of 10 nsec. Just like 

the eximer laser, the nitrogen laser LIBS configuration in Figure. 3 also includes discharge 

from the wide shape of the electrode. The laser beam is usually a few cm wide, so a tight 

focusing is needed. The surface of solar cell was measured by nitrogen laser breakdown and 

only a 40-nm-thick TiO2 layer was detected[26]. The very popular pulse laser is Nd:YAG 

laser because it has a solid laser oscillator in a small size and light weight. The fundamental 

wavelength is 1064 nm with a pulse duration of 10 nsec typically. The Nd:YAG laser does 

not require any gas supply. The laser model for LIBS size usually has a closed loop water 

cooling that excludes external connection. A typical LIBS setup was shown in an earlier 

paper[27] as in Figure 4. A 50 mm focal length convex lens makes a simple optics 

configuration to make plasma on the sample. 

b. Optical arrangement for laser–induced breakdown spectroscopy 

When a laser shoots on the sample surface, a plasma plume arises from the inner to the 

outer surface. The actual size of plasma plume made by a 100 mJ laser pulse will be few 

millimeters. During the plasma propagation from the sample surface, the time profile 

features can be observed. The very initial emission is generated at the bottom of the plasma  

D=1 

D=100 µm

T=10 nsec

Laser=50 mJ/ pulse 

power=160 J/cm2 x 10 nsec 

           = 16 G Watt/cm2 

Fluence=50 mJ/πr2 

=16 mJ/cm2 

Fluence=50 mJ/πr2 

              =160 J/cm2 

(a) (b)
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Figure 3. A LIBS setup with nitrogen laser. 

 

Figure 4. Schematic diagram of the LIBS setup with ND:YAG laser 

plume, and then expanded to the outer plume. Depending on the light collecting optics, 

plasma propagation is captured at the different time. At the initial LIBS design uses a side-

view emission collection as in the Figure. 5 (a). The angle between the laser light path and 

the collecting optic can be any angle, but is typically 30-45 degrees. Some experiments use 90 

degrees, which is a complete side view of the plasma and will lose some portion of emission 

by the shadow of the sample itself. This configuration is occasionally used for plasma 

physics study. The collateral view design Figure. 5 (b) is a useful optical configuration for 
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non-fixed sample distances. Laser light path shares emission collection optics. A selective 

wavelength reflector or prism can be used to separate laser light and emission through the 

light path. This design has several optical parts and needs complicated adjustments for 

optimum light measurement. The collateral configuration has many advantages. Collecting 

optics looks at the plasma in front of the plasma (or top of the plasma)at every point in the 

light axis and in the focus cone, which means they capture every light emitting species 

during plasma propagation to the space. Because some elements have different propagation 

profile than others, propagation height changes the signal significantly at the angled 

collection. The next advantage is that the optical part can be integrated in the compact 

enclosure, and it allows the operator to move the optics (detector head of LIBS) more freely. 

Remote monitoring LIBS, hand held design LIBS, should be compact and have a mostly 

collateral optics configuration.  

 

Figure 5. Side collection and (b) collateral collection configuration of plasma emission 

c. Sampling technique 

The first mentioned advantage of LIBS has been no-sampling step. In the very beginning 

review in the Encyclopedia of analytical Chemisstry, Yueh, Singh and Zhang described it as 

“LIBS uses a very small amount of samples, and no sample preparation is necessary. It has 

the ability to perform real-time analysis because it prepares and excites the sample in one 

step”. They then consecutively mentioned, “The disadvantage of LIBS is that the plasma 

conditions vary with the environmental conditions as well as the laser energy 

fluctuation.”We can infer from the description of LIBS that no-sampling is both an 

advantage and a disadvantage. Most of analytical the techniques need a certain sampling 

procedure to bring the sample to the technique (or machine). During the sampling 

procedure, like the acid digestion in the flame analysis, the sample is homogenized and their 

matrices become concordant. However, if LIBS analyzed the sample without any pre-

treatment process, then the irregular homogeneity is inevitable. As a result LIBS will include 

Pulsed laser 

Plasma Emission 

(a) (b)
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severe matrix effects at the real sample. It will mitigate the biggest advantage, i.e., no-

sample process. In other words, if the sample is measured as it is, the species in same 

concentration do not make a consistent signal, the analytical result will be severely diverted.  

 

Figure 6. Solid sample and liquid sample under LIBS measurement 

The fluctuation will be more serious because LIBS takes only a small amount of the sample, 

usually a micron sized spot. Two possible sample types are depicted in the Figure. 6. A solid 

sample is the most convenient sample type. Metal and ceramic samples include elements 

with strong atomic and ionic emission. Their emission spectra are measured at the range 

from UV to visible light, which is feasible by the most spectrometers. The spectra from many 

elements from the tool steel are shown by the Nd:YAG laser excitation[28]. In this research, 

the microscopic view of the ablated holes made on tool steel is about 10 microns in diameter. 

This resolution indicates that any inhomogeneity more than 10 microns will be clearly 

observed from each laser pulse measurement. The intensity of element-specific spectra 

provides a simple qualitative analysis. Their method was sufficient to characterize the 

nature of the defect by a simple estimation of the elemental composition between the basic 

material and the defect. 

d. Capturing emission light 

The LIBS signal is instantaneous and decays quickly. Temporal control of the detecting 

device is very important. In spite of the fact, overall emission can be captured by opening 

entire time of the spectrometer, most of LIBS measurement is controlled by time gate 

operation. Time control improves the signal-to-noise ratio by eliminating the continuum 

emission. A typical emission profile shown in the Figure 7, recorded at the different heights 

from the sand/ soil mixture sample[29]. As soon as the laser fires with the duration of a few 

nsec of pulse width, the plasma intensity is propagating outward from the sample surface. 

At about 0.5 µsec, plasma is observed at 0.3 mm away from the surface. At the propagating 

distance is 3 mm at 12 µsec, then plasma cool down with decreasing intensity until 20- 30 
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µsec. The plasma size will be much smaller and life is shorter when a weak laser power is 

used. The experiment uses aluminum[30] with a diode-pumped Nd:YAG laser, which can 

run at a faster repetition rate (kHz) with a laser energy of 80 µJ, was setup under the 

microscope excitation and detection optics. Like other flash lamp pumped lasers, the 

temporal profile of continuum emission is shown in Figure. 8 for aluminum atom (Al 396.1 

nm) and aluminum ion (Al II at 358.6 nm) emission lines. The laser pulse was fired at the 

zero time of the x- axis. This profile indicates, the broad band continuum emission, which 

comes from high temperature heated plasma and regardless of the species in the plasma, 

has a lifetime of about 13 nsec. The ionic line from Al ion has shorter lifetime about 24 nsec. 

The neutral lines stay much longer, up to 80 nsec.  

 

 

Figure 7. Spectra as a function of decay time measured at three observation distance from the sample 

surface. The original figure is rearranged to indicate observation height more clearly. 

The lifetimes of laser-induced plasma are easily compared at various excitation energies 

from the silicon sample[25]. The time profile shows the plasma emission signal depends on 

the excitation pulse energy. Absolute intensity of the signal will increase by increasing laser 

pulse energy. The decay plot in the Figure 9 is normalized to a maximum intensity for 

comparison. This research explains the decay time dependence by the excitation energy that 

the probability of excitation to higher energy level is increased and more populated, leading 

to a longer decay time. Also, the upper state of the monitored transition receives population 

from this higher state at later times and lengthening of the rise time of the signal 

sample 

plasma 

laser 
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Figure 8. Temporal profile of continuum emission and aluminum (atom and ion) emission. 

will result. As a result, the lifetime point of LIBS will be changed by the system setup, 

especially using laser power. Capturing time of emission signal should be determined 

empirically by looking at the profile, usually at peak intensity point.  

  

Figure 9. Time resolved signal-to-background ratio of the silicon line at 251 nm at various excitation 

energies. 

e. Spectrometer and detector 

Spectrometer completes the detecting part with a photo sensor and a manipulating 

computer. The spectrometer must have proper resolution and sensitivity. Also, in many 

cases the plasma emission needs to be separated from the continuum background signal, the 

detector has to be operated by timing control or gating operation. Various types of 
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spectrometer with CCD array detector are available in the market. The wavelength range 

needed for LIBS is UV to visible range to have detection of most elements. If the dispersion 

of the spectrometer is 0.3 nm to measure 1 nm peak with three pixel, the pixel to pixel 

dispersion should be 0.3 nm. Total of 1024 pixel CCD array can have coverage 1024 x 0.3 = 

307 nm, which can assign the range as 250 nm to 557 nm span. In many cases, the sample 

will have mixed elements and the emission lines will be overlapped and difficult to 

distinguish with 0.3 nm resolution. A conventional CCD array detector may not provide 

sufficient resolution and coverage to measure LIBS.  

 

Figure 10. Echelle spectrometer dispersion image (a) Hg lamp, (b) LIBS spectrum of Sn metal 

A correction of the array detector resolution is accomplished using multiple stacked 

spectrometers. For example, 5 spectrometers with 1000 array CCD stacks will cover a 500 

nm span, in which each spectrometer covers a 100 nm range with 0.1 nm resolution. Echelle 

spectrometer uses very high orders of dispersion. One or two prisms are used to separate 

each diffraction order. As a result, the spectra are dispersed in two dimensional surfaces as 

shown Figure 10. The CCD detector in the Echelle spectrometer should be a two 

dimensional, the same as in the image camera. The continuum emission from the spark also 

engages in the Echelle spectrometer, so the detector must have gated operation. To satisfy 

those requirements, such as two dimensional, sensitive and gated operation, the cost of CCD 

detectors for the Echelle spectrometer is still significantly high. 

3. Sample type and their application 

This section illustrates various application examples that have performed from the authors’ 

research group. As we have mentioned in the previous section, the LIBS technique needs 

individual verification for an application, because it does not need sampling. Three typical 

applications are explained in this section. 
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a. Paint and coating identification 

Materials and techniques of paints and coatings require an appropriate verification process 

to achieve the desired property of the protective finishing. The organic coating involves a 

multi-step process in which the quality of the metal finish required for an industrial product 

would determine the number and the type of steps in a given process[31]. These multi-step 

coating processes include the selection and composition verification of substrates, surface 

cleaning, surface pre-treatment, primer, topcoat, and the application of paint curing 

methods. The paint formulation is a mixture of multi-ingredients, composing: resins, 

solvents, pigments, fillers, corrosion inhibitors, and other rheological additives. The organic 

coating in metal finishing practice is extremely complex. The complexities of paint 

compositions, paint types, and painting processes make their chemical analysis very 

difficult. In spite of some elemental analysis methods that have been well established for the 

general purpose in chemistry, the determination of metallic components in paint has been 

relied on the indirect analytical methods. For example, the metallic zinc dust in the Zn-rich 

epoxy primer was determined by differential scanning calorimetry (DSC)[32]. The DSC 

method measured the apparent heat of fusion of the paint sample, and compared this 

measured value to the standard value of pure zinc as an indirect measurement of zinc 

composition in paint. Infrared absorption spectroscopy is useful sometimes for the 

composition analysis if the paint ingredients contain any specific functional groups which 

are spectroscopically active[33], such as the isocyanate group in the urethane. The direct 

analysis of these functional groups may be possible only if the paint sample is uncured, and 

contained a relatively simple composition. In practice, there is no direct way for identifying 

a cured paint film. Once the paint, e.g. epoxy or urethane, is applied and fully cured, no 

more epoxy or isocyano functional group would remain in the paint film. Even though, the 

researchers have attempted to characterize the fully cured paint products by identifying the 

hydroxyl or amino groups, and use them for differentiating the epoxy paint or urethane 

paint. The results are generally inconclusive because the majority of other cured paints also 

have those functional groups as reaction products. The LIBS technique described in this 

section shows the capability of coating identification at the specimen surface. [34]  

3.1. Materials of paints and coatings 

The substrates selected for spectral fingerprinting by LIBS technique are: (i) aluminum 

alloys (2024-T3, 3003, 7075-T6 from Advanced Coating Technologies, Inc. (ACT), Hillsdale, 

MI) and pure aluminum foil (Aldrich Fine Chemicals), and (ii) cold-rolled steel (CRS from 

Q-PANEL, Cleveland, OH and Caterpillar’s OEM facility) and pure iron (Aldrich). The 

surface pretreated substrates used for LIBS studies are: (i) Al 2024-T3/Clad, a ultra thin layer 

of pure aluminum is treated on 2024-T3 aluminum alloy, (ii) Al 2024-T3 Bare/Alodine 1200, 

the surface of 2024-T3 aluminum alloy is treated with Alodine 1200 solution which contains 

chromates (i.e., hexavalent chromium), (iii) phosphated (Bonderite 1000, or B-1000) and 

phosphated/chromated (B-1000/P-60) from ACT, and (iv) galvanized (electroplated and hot-

dipped) and galvalume steel plates that have a treated surface layer of Zn and Zn/Al, 

respectively. Eleven heavy-machine OEM paint samples (four urethane, three epoxy, and 
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four alkyd) were used for the spectral fingerprinting by LIBS technique. The paints were 

applied on 2 x 4 inch steel panels using a spray coating method and cured thermally or by 

air-dry as directed by the paint manufacturer. 

3.2. LIBS: An in situ and quasi-nondestructive analytical technique 

LIBS technique is capable of carrying out a depth profile analysis of successive surface 

layers by controlling and calibrating the working parameters of LIBS system. A Q-switched 

Nd-YAG laser (Continuum, Minilite II) operating at a wavelength of 1064 nm was employed 

as the excitation source. The pulse laser has a power of 50 mJ per pulse and a pulse width of 

8 ns. The laser beam was focused onto the sample with a 5 cm focal length lens. A fiber optic 

cable collected the breakdown plasma emissions at the sample surface and directed them to 

a portable, miniature, CCD array fixed-grating spectrometer. Figure 11 shows the optical 

microscope images of some LIBS-measured sites on a painted steel panel: (a) paint surface 

before analysis, (b) one laser pulse applied, (c) two laser pulses applied, and (d) five laser 

pulses applied. The scale bars are 50 m in length. The first shot of the focused laser beam (70 

mJ/pulse) made a burn pattern on the paint surface (Figure. 11b). The successive laser pulses 

penetrated into the coating layers and eventually reached the metal substrate (Figure. 11d). 

In principle, the LIBS spectrum recorded after each laser pulse, or for each layer of the 

multilayer paint samples, should generate the characteristic breakdown spectral peaks of the 

corresponding chemical compositions. The affected coating area by the laser pulse is limited 

to less than 100 µm in diameter (Figure. 11b, 11c and 11d). The layer thickness of materials 

that each laser pulse can penetrate is a function of laser fluent at the focal point, optical 

geometry and material type. It is important to mention that a well-established elemental 

analysis method, such as EDX can also perform a similar analysis. However, the sample 

used in EDX analysis must be cut into a few millimeter sizes for fitting inside the detection 

stage in a vacuum chamber. Also, the cut samples need to be covered with a conductive 

coating for EDX analysis because paints are the dielectric materials. This film deposition of 

conductive layer is again done under another vacuum facility. These complicated sampling 

processes are eliminated in the LIBS analysis. 

3.3. LIBS characterization of substrates 

A less trivial experiment was performed to determine whether the LIBS system could be 

used to distinguish between different alloys of the same main metal content or between the 

same metal alloys obtained from different manufacturing sources. Aluminum has many 

alloys in common use, and these alloys frequently need specific protective coatings for 

aerospace applications. The 2024-T3 Al alloy contains copper as the main dopant (i.e., 4.4% 

Cu, 0.6% Mn, and 1.5% Mg). The 7075-T6 Al alloy contains zinc as the main dopant (i.e., 

5.6% Zn, 1.6% Cu, 2.5% Mg, and 0.23% Cr). The 3003 Al alloy contains no specific main 

dopant (0.0-0.6% Si, 0.0-0.7% Fe, 0.05-0.20% Cu, and 0.0-0.10% Zn). The Al alloys, 2024-T3 

and 7075-T6 have high surface protection strength, whereas Al alloy 3003 displays a good 

pitting corrosion resistance. All three alloys should show aluminum peaks in LIBS spectra, 

and 7075-T6 Al should display zinc and magnesium peaks and 2024-T Al should display  
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Figure 11. Microscopic images of laser burn patterns on paint film in LIBS experiment after (a) zero, (b) 

one, (c) two, and (d) five laser pulses 

copper and manganese peaks in their breakdown spectra. Figure 12 compares the LIBS 

spectra recording from 250 nm to 450 nm for pure aluminum foil (spectrum a) and three Al 

alloys (spectra b, c, and d). As expected, spectrum 13a gives only aluminum peaks at 281.6 

nm, 306.3 nm, 308.2/309.3 nm, 358.0 nm and 394.4/396.1 nm. 

The spectrum of aluminum alloy shows, in addition to the aluminum peaks, three spectral 

peaks at 328.2 nm, 330.2 nm, and 334.8 nm are due to zinc (I) ionic states. The 7075-T6 Al 

alloy gives also the LIBS peaks at 278.6 nm, 285.2 nm and 383.5 nm for Mg and at 325.0 nm, 

327.7 nm and 423.0 nm for Cu emission. The LIBS technique is not only able to identify the 

chemical compositions of alloys, but also capable of differentiating the possible 

contaminants in those alloys. For example, the contamination of Mn has been detected in Al 

7075-T6 sample as illustrated in spectrum 13d. The contaminants of Mn and Mg are 

observed in spectrum 13b for Al 3003 sample.  

The qualitative LIBS spectral assignment is also carried out for pure iron strip, cold-rolled 

steel, and industrial steel coupons used in the Caterpillar’s OEM facility (referred to as CAT 

machine steel). The bare cold-rolled steel (CRS, SAE 1010) has a composition of 0.08-0.13 % 

C, 0.3-0.6% Mn, 0.04% P(max), and 0.05% S(max). The LIBS spectra recorded from 250 nm to  
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Figure 12. LIBS spectra of aluminum alloys, (a) pure Al foil, (b) 3003 alloy, (c) 2024-T3 alloy, and (d) 

7075-T6 alloy 

 

Figure 13. LIBS spectra of steel panels, (a) pure iron piece, (b) cold-rolled steel from Q-PANEL, and (c) 

CAT machine steel 
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400 nm are shown in Figure 13: (a) pure iron strip, (b) cold-rolled steel, and (c) CAT machine 

steel. Spectrum 13a shows LIBS peaks for the pure iron piece at 259.9 nm, 262.6 nm, 275.0 

nm, 358.1 nm, 373.4 nm and 373.7 nm. The laser breakdown emission for CRS as shown in 

spectrum 13b is almost identical to that of the pure iron strip, except an additional peak at 

344.3 nm which may be assigned to Mn as incorporated in the cold-rolled steel. The 

spectrum 13c indicates that CAT machine steel is not a pure iron piece or a standard CRS 

sample, but rather is a surface pretreated CRS. The surface layer of CAT machine steel 

contains Ca, Mg, Al, Mn, and P (at 589.1 nm), in addition to Fe. The results indicate that 

CAT machine steel is an iron phosphate treated CRS, containing a substantial quantity of Ca 

and Mg, and some small amount of Al, and Mn in the phosphating bath. 

3.4. LIBS characterization of surface pretreatment layer on substrates  

Another important part of this research is to establish the effectiveness of LIBS spectral 

fingerprinting technique for characterizing the composition of any metal surface 

pretreatment that may have been applied on the substrates. The common metal surface 

pretreatment used on aluminum alloys today is a chromium-based pretreatment (such as 

Alodine 1200 or Alodine 1000), which usually contains the chromates (i.e., the compounds 

contain hexavalent chromium). There are different processes used for surface pretreatment 

on aluminum alloys; some processes cause a color change of the metal surface to a yellowish 

color, and some cause no color change at all. In the latter case, it is almost impossible to tell, 

visually, whether the metal alloy has been pretreated. In this work, the different panels 

analyzed by LIBS are aluminum alloys of 2024-T3 bare, and 2024-T3 Clad (Clad: a thin layer 

of pure aluminum on 2024-T3 substrate). The surface pretreatment layer on 2024-T3 bare 

panel is Alodine 1200. The main active ingredient of Alodine solution is potassium 

dichromate or strontium chromate. Upon the deposition of a thin layer of pure aluminum 

on Al 2024-T3 bare, the LIBS spectrum of Al 2024-T3/Clad should give only the pure 

aluminum peaks which are the same as spectrum 12a for pure aluminum foil.  

 

Figure 14. LIBS spectra of surface pretreated layers on CRS substrate, (a) untreated, (b) B-1000, and (c) 

B-1000/P60 panel 
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The surface pretreatment of metal prior to the application of a coating or adhesive is a 

conventional industrial practice to improve the coating adhesion and inhibit substrate 

corrosion. For cold-rolled steel, the phosphate conversion coating (e.g., Bonderite® B-1000) 

and phosphating/chromating (using parcolene 60) pretreatment (e.g., B-1000/P60) are 

commonly used. The LIBS technique is used to fingerprint the differences in chemical 

compositions of the surface pretreated layer. The LIBS spectra were taken at the first laser 

shot spot on (a) untreated CRS panel, (b) B-1000 CRS panel, and (c) B-1000/P60 CRS panel. 

The laser-induced breakdown spectra of untreated and different chemically treated CRS 

panels are clearly identifiable and their spectral assignments are marked in Figure 14. The 

LIBS peaks in spectrum 13a are assigned to Fe and Mn, and are similar to those in spectrum 

14b. The phosphate treated B-1000 panel gives a few additional LIBS peaks in spectrum 14b, 

such as P at 589.1 nm and Ca at 315.8 nm, 318.2 nm, 358.3 nm, 394.0 nm, 423.0 nm, and 527.1 

nm. In spectrum 16c, the additional P60 treatment on B-1000 CRS is evident by the 

appearance of chromium peaks at 373.9 nm, 396.8 nm, and 527.1 nm. When these LIBS 

spectra are compiled in the software system as a standard library file, they can be used to 

determine if the surface pretreatment processes (including composition, uniformity, and 

thickness) have been done in according to the products specification. 

 

Figure 15. LIBS spectra of EZG panel, (a) from ACT Laboratories, Inc., (b) from China Steel Corp., 

Taiwan, (c) pure Zn metal piece, and (d) B-1000 CRS panel 

Zinc-coated steel (such as Zn/B-1000) is known to inhibit iron corrosion, similar to the effect 

of zinc anodes. The addition of aluminum to zinc is highly beneficial in improving its 

corrosion resistance and has resulted in the development of coatings with aluminum 

contents between 5 and 55% (i.e., “galvalume” zinc-coated steel). Zinc coatings may be 

applied to steel panel by hot dipping (i.e., hot dipped galvanized steel, HDG) and 

electroplating (i.e., electrogalvanized steel, EZG). Due to the high degree of variations in the 

processing of EZG, HDG, and galvalume, it is critically important to have a versatile 

materials characterization technique, such as LIBS CoatID, to verify the manufacturing 
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conditions of zinc-coated steel at the different factory sites. For a simple illustration, we use 

LIBS system to test two EZG panels (ACT Laboratories, Inc. vs. China Steel Corp., Taiwan), 

two HDG panels (ACT vs. Valspar Corp.), and two galvalume panels (Valspar Corp. vs. 

China Steel Corp.). Figure 15 compares the breakdown emission spectra (recorded from 250 

nm to 450 nm) for (a) EZG panel from ACT, (b) EZG panel from China Steel Corp., (c) pure 

Zn metal piece, and (d) B-1000 CRS panel from ACT. The LIBS spectra of EZG panels 

(spectra 15a and 15b) should resemble those of the combined spectra of pure Zn (spectrum 

15c) and B-1000 CRS (spectrum 15d), depending on the thickness of both phosphate layer on 

bare CRS and Zn-galvanized layer on B-1000 CRS panel. By comparing the EZG panels 

processed at ACT Laboratories, Inc. (spectrum 15a) and that processed at China Steel Corp. 

(spectrum 15b), it shows that both EZG panels have been subjected to the electrogalvanizing 

process as stated in their products data sheet. However, the LIBS was able to distinguish a 

thinner Zn-galvanized layer in the Taiwanese sample, because the steel plate was not 

covered fully by the Zn-layer and thus the B-1000 steel peaks are still quite visible as shown 

from 350 nm to 450 nm in spectrum 15b. On the other hand, both Zn-galvanized layer and 

B-1000 phosphate layer in ACT sample are thicker than those in the Taiwanese sample, as 

indicated by the appearance of a strong P emission doublet and also several intense Zn 

peaks. In ACT sample, the thicker Zn and phosphate layers give a higher coverage on the 

steel panel, and thus almost no steel peak is observed in Figure. 15a. 

3.5. LIBS identification of paints and coating ingredients 

Eleven paints from Caterpillar’s OEM coating facility were selected for the 

identification test by LIBS technique, and listed in Table 1.It is noted that all paint 

samples have the same color (i.e., Caterpillar yellow) with only slightly different tint, 

the differences are hardly distinguishable with naked eyes. Samples 1 to 4 are two-pack 

urethane paints, 5 to 7 are two-pack epoxy paints, and 8 to 11 are one-pack alkyd paints. 

The paint samples 1 and 5-9 are primers, whereas those of 2-4 and 10-11 are topcoats. 

The processing methods used in coating applications, such as drying and thermal 

curing conditions are specified in the remark column of Table 1. The paint systems used 

in Caterpillar’s OEM facility were specifically formulated by the paint manufacturers 

that have been successfully tested and verified for the required protection of heavy duty 

machines. Once the paint formulations were established, the manufacturer would 

strictly maintain the composition of paint ingredients in an effort to achieve a good 

quality control. This is the reason that LIBS technique may be effectively used for 

fingerprinting a specific brand of paint. 

Figure. 16 displays the LIBS spectra for the eleven paint samples listed in Table 1. The 

topcoat paints (samples 2-4 and 10-11) display a relatively simpler LIBS spectrum than 

that of the primer paints (samples 1 and 5-9). In all spectra, the LIBS peaks grouped 

around 250 nm may be attributed to iron oxide as a dispersed pigment. The peaks 

originated from calcium at 393.3 nm and 396.8 nm are predominantly shown in the primer 

type paints. Calcium carbonate has been used at high levels for certain paints because of 

their low oil absorption. Calcium compound imparts some film structure to the wet paint 

by improving the stability to sedimentation of other heavier pigments in paint. It is not 
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surprising that primer paint for CRS coating contains a rich calcium ingredient. The 

primer paints, samples 1, 6, 8, and 9, are shown to contain not only calcium carbonate but 

also magnesium silicate, as their corresponding LIBS peaks displayed at 279.8 nm and 

383.5 nm. 

In the previous section, the peak picking algorithm has been successfully used for 

characterizing substrates and surface pretreatment layers which contain only a few elements 

and have the well-characterized LIBS peaks. Since paint formulation contains a rather 

complex mixture of multi-ingredients, thus the decisions for paint identification could best 

be made by peak correlation algorithm. Any spectral pairs of identical samples must show a 

100% correlation value. Due to the possible fluctuation in laser power density, the 

inhomogeneity of paint film compositions, and the variation in thickness of a paint film, the 

LIBS spectra for both testing and reference samples were measured at ten (10) different 

spots for each painted panel. A statistical average spectrum was made to achieve the 

reproducibility for the identification of a paint sample. The correlation values of identical 

samples show a 96-99% of reproducibility. On the other hand, the correlation values 

between two different types of paints, such as urethane and epoxy, show to be around 86.8 ± 

0.7%. These correlation values give a clear discrimination between types of paints. Based on 

the correlation values, we can say that the test sample has a good match to the reference 

sample, if the correlation values are greater than 95%. We estimate from the use of peaks 

correlation algorithm, the LIBS system is capable of correlating the test paint samples to the 

standard paint films to give a 90-95% of perfect match. The remaining 5-10% near match or 

no match may due to the complex nature of paints and coatings, including the possible 

surface contaminations. In this case, a careful spectroscopic analysis is further required to 

achieve the proper paint sample identifications. 

 

 

 

Sample No. Resin Type of paint Remark 

1 Urethane Primer 2-part system, cured at 66 oC 

2 Urethane Top coat 2-part system, low temperature curing 

3 Urethane Top coat 2-part system, high temperature curing 

4 Urethane Top coat 2-part system, cured at 66 oC 

5 Epoxy Primer Low temperature curing (54 oC) 

6 Epoxy Primer Medium temperature curing (66 oC) 

7 Epoxy Primer High temperature curing (82 oC) 

8 Alkyd Primer Air-dry system 

9 Alkyd Primer Baking system 

10 Alkyd Top coat Air-dry system 

11 Alkyd Top coat Baking system 

 

 

Table 1. The sample paints obtained from Caterpillar Inc. 
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Figure 16. LIBS spectra for the eleven industrial paint samples obtained from Caterpillar Inc. 

b. Organic and bio material screening 

Biomaterial application has two areas depending on the analytical goal. The first goal is the 

analysis of metallic component in the biomaterial. The conventional elements like Na, K, Ca, 

Mg are included in plant, wood, grain, tissue and bio-remains. Their analysis is similar to 

other solid samples except those samples include high level of carbon compound. The 

second application of biomaterial is characterization of biomaterial itself. Breakdown 

spectrum from LIBS can have information of specific sample group. One of the researches 

has been made for classification of bacterial strains by major components analysis with 

LIBS[35]. A pulsed Nd:YAG laser (Continum, Powerlite8000, 10-ns pulse width) was 

focused on the sample solution by using a 20-cm-focal-length lens. The frequency-doubled 

laser output at 532 nm was used for plasma generation. The laser power used on the 

bacteria analysis was 50 mJ/pulse. A light collecting optical fiber was placed near the sample 

surface to detect the plasma emission which was sent to a spectrometer (Acton research, 

1200 grooves/mm grating). The spectra were captured with a photodiode-array detector 

(OMA IV, EG&G, 1024 array) with a spectral resolution of 0.061 nm. The available spectral 

range is limited to about 50 nm from the full OMA coverage of 76 nm because of the shadow 

of optical components in the monochromator. The OMA output was processed and stored 

by using a personal computer. 
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Several bacterial strains have been classified depending on their major components 

analyzed by laser-induced breakdown spectroscopy (LIBS). The bacteria studied were 

Bacillus megaterium, B. Subtillis, B. Thuringiensis, and Escherichia Coli. Each strain was streaked 

on the cultivating plate and grown to prepare the colonies of vegetative or spore forms. The 

major inorganic components of the bacteria samples, including Ca, Mn, K, Na, carbon, and 

phosphorus, were clearly identified from the LIBS data. The vegetative forms of bacteria, 

beginning step of bacteria life, represent the similar quantities of analytical components 

between bacteria. After the bacteria have used up the available food supply the bacillus 

enter into their non-vegetative spore form. The bacteria spores accumulate a lot of calcium 

on the spore shell which showed strong emission of 393.7 nm and 396.9 nm in the LIBS 

spectrum. The diverse emission from phosphate at 588.1 nm and 588.7 nm provides a 

fingerprint of the bacteria. The relative change of inclusions of bacteria was clearly 

distinguished on the 2-dimensional chart of the bacterial components. This work 

demonstrates the potential of this method for the rapid and precise classification of bacteria 

with minimum sample preparation. The quick process of LIBS expected to be used in the 

real-time analysis of intentionally cultured bulk bacteria in the industrial or weaponized 

microorganism. 

3.6. Preparation of microorganism  

Five types of bacterial samples were prepared from the biology lab. Te laboratory stock 

stains used were Bacillus Megaterium QM B1551 (seven indigenous plasmid), Bacillus 

Megaterium PV361 (QM B1551 with all plasmid removed), Bacillus Subtillis 168M, Bacillus 

Thuringiensis T34, and Escherichia Coli carrying pHT315. QM and PV of B. Meg are closely 

related on their genetic origin and B. thu. is a divergence of B.sub. Only E. Coli is a gram-

negative genus among them with antibiotic and enzyme resistive cell wall, and E. Coli does 

not make dormant spore on the contrary to other bacillus. All bacterial genera used are 

biosafety level 1 (non pathogenic). Each stain was streaked on Luria-Bertani (LB) plates (10.0 

g tryptone, 5.0 g yeast extract and 5.0 g of NaCl, 15% agar, in 1 L double distilled H2O) and 

grown overnight for both tests. LB plates were then spread with 0.1 mL of culture and 

grown for 24 hours for confluent plate test. The same set of vegetative bacteria were kept 

more than 5 days at room temperature to be spore forms after consuming nutrient and 

drying .  

The series of bacteria cultured on the plastic dish are measured on the LIBS system without 

any pretreatment. The bacteria colonies on the top of the culturing medium (LB) are grown to 

roughly a 0.5 mm thickness in the wet condition. The areas of the colonies are wide enough for 

manual mounting on the sample stage and focusing into less than 50 micron diameter of 

breakdown diameter. The LIBS spectra from bacteria and culturing medium in the UV and 

visible spectral range have higher background level compare to solid metallic samples such as 

aluminum, copper and steel. The lack of light absorption on the sample requires a more 

intense laser for the breakdown. The threshold intensity of the laser pulse for stable and 

sufficient breakdown was 40 mJ. This value is bigger than 10-20 mJ of the solid LIBS 

application because the solid samples are not transparent and thus absorb more of the light.  
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3.7. LIBS spectra of bacterial strains 

Although the entire spectrum, from the UV to visible range was initially scanned it was 

experimentally determined that the three ranges mentioned contained most of the peaks of 

possible interest. The presence of certain elements was investigated in the micro-organisms 

such as chlorine, sulfur, phosphorous, calcium, sodium, and potassium. Also of interest 

were the possible trace elements such as zinc, magnesium, manganese, cadmium, nickel, 

cobalt, and strontium. Listed in the table are peaks that could be candidates for these 

possible elements. Because of the atomic elemental nature of the LIBS we expect to match 

the major or minor peaks to the above mentioned elements certain series of peaks. The peaks 

were matched to the possible elements in microorganism using the library available in the 

NIST data base  In our preliminary studies we were unable to match several trace elements 

such as Mg, Cd, Ni, Co, and Sr. The complexity of the iron emission can make it difficult to 

distinguish it from other elemental peaks of interest. Despite the different outward 

appearance and life cycle of the bacterial species they all shared a similar elemental 

composition. Strong peaks were found at 252.8 nm, 279.7 nm, 393.7 nm, 396.9 nm, 398.3 nm, 

578.9 nm, 588.1 nm, and 588.7 nm. Using a spectrometer with 1200 gr/mm grating at 50 nm 

blocks of the spectrum four of the major peaks of interest were identified. The spectra 

shown in Figure 17 are emissions from bacteria around 400 nm. The peaks at 393.7 nm and 

396.9 nm attributed to the calcium atomic transition 4s2S0,1/2 – 4p 2P1,1/2, and 4s2S0,1/2 – 4p 2P0,1/2, 

the strongest emissions from calcium used in many other atomic spectroscopy. These 

calcium emission were verified by using CaCl2, CaPO4 as spectral references. 

 

Figure 17. Spectrum after cell death and sporulation of the bacillus has occurred. 
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At the spore stage of the bacteria, after remaining for 5 days at room temperature to 

consume all of the nutrients, most of the surface water evaporated. It is known that the 

water content of spores is only about 10-30% of the water content of vegetative cells (active 

bacteria) to survive spores at levels of dehydration that would kill vegetative cells. The low 

water content also provides the spore with chemical resistance (to chemicals such as 

hydrogen peroxide) and it causes the remaining enzymes of the spore cell to become 

inactive. This inactivity makes the immunological detection hard to improve sufficient 

sensitivity. One chemical produced by spores that is thought to lend to their high resistance 

is dipicolinic acid. Dipicolinic acid interacts with calcium ions to form calcium dipicolinate, 

which is the main substance believed to lend spores their resistance and represents about 

10% of the dry weight of a spore. The intensity of calcium is strong on the spore sample of B. 

Meg, B. Sub., and B. Thu. colonies. E. Coli colonies have low calcium content and the 

composition does not change after aging. This is a proper result that because E. coli does not 

make spores. The spore cell also contains special spore proteins. These protective wall 

structures are highly resistant to heat desiccation, chemical disinfection and radiation. These 

functions are to protect DNA from harsh environments, but also disturb measurement 

chemical property on the conventional spectroscopy. Another component of spores that 

contributes to their resistance to chemical agents is the strong spore coat, which is composed 

of highly cross-linked keratin. Laser breakdown is strong enough to break the protective 

shell of the spores and take out inner component of the cell. The peak at 398.3 nm is 

overlapped to Mn emission from library data. The strong intensity in this wavelength could 

not be assigned as Mn because of relative intensity of Mn in other wavelengths. On the other 

hand, the peak on this wavelength is observed on the samples of organic compounds such 

as LB of culture medium, cellulose, and many organic polymers. This result leads to 

assigning this peak as carbon compound fragment.   

 

Figure 18. Spectrum to show the amount of phosphate compound in three different bacteria samples. 
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Figure 18 shows LIBS spectra of 3 bacteria colonies. The doublet peaks appeared at 588 nm 

is due to phosphate functional compound in the bacteria. In spite of phosphorus elemental 

emission library doesn’t have significant emission on this wavelength, we assign this peak 

as phosphate because of strong peak observed from some other phosphate compound 

examination. PV shows strongest peak at the phosphate emission. E. coli shows weaker 

intensity. The other bacteria have intermediate peak height, like B. meg. in the middle. The 

amount of phosphate seems to be related to the strain of the bacteria not to the life progress 

of the microorganism. The phosphate intensities are always weak at the vegetative step and 

then increase at the spore. The increment of phosphate is biggest for PV bacteria. The peak at 

578.9 nm is not assigned properly for a certain component of our culturing system. Every 

bacterial sample and culturing medium shows similar intense peak at this wavelength. With 

the result of LIBS experiments for several organic compounds, this component is identified 

as an organic functional group. The proper identification is still on the research.  

Figure 19 shows distribution of bacteria on the spread chart of intensity ratio. The X axis is the 

intensity ratio to represent calcium amount on the bacteria samples. B. meg and its plasmid 

treated PV bacteria strains are at high amount of calcium. B. sub and B. thur are at a relatively 

lower than B. meg strains. E. coli does not store calcium whether vegetate or aged colonies. The 

outstanding feature of phosphate intensity is on the difference of B. Meg and PV. These two 

strains are genetically same organism but only PV have been removed their plasmid from B. 

Meg type bacteria. The modification of PV leads more storage of phosphate in the spore cells. 

To identify the selective intake of certain element from culturing medium, we examine the 

components of the culture medium. The calcium in the medium was lower level than LIBS 

detectable. This result shows the sporation of bacteria absolutely needs calcium and they 

collect calcium very efficiently.     

 

Figure 19. Intensity ratio of two selected wavelength range plotted against each other. The values for X 

axis are made the intensity of the samples at 393.6 nm divide by their intensity at 398.24 nm. The values 

for Y axis are made by intensity of the samples at 58 
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c. Application of LIBS for metallic  component in aqueous solution  

As mentioned at the LIBS property, solid samples are most convenient and strong LIBS 

signal. Liquidor gas samples need more specific optical arrangement to generate breakdown 

and emitting light collection. There are several ideas to overcome the sampling difficulty of 

gas and liquid samples. One of the publications here is a typical sample type conversion 

from liquid sample to solid with concentrating effect. Ion-exchange resins are conventional 

substances used to capture metal ions and hold them in the solid resin matrix. Chemically 

activated microporous membranes functionalized with polycarboxylic acid are typically 

employed[36]. The matrix encapsulation technique has been applied to collect trace metals 

from water, and converting metal ions to a solid form. The pre-concentration of analyte 

from a liquid sample into the ion exchange membrane was extensively studied for LIBS 

measurement by Schmidt and Goode[37]. The captured Cu on the small area of the ion 

exchange membrane has shown that the pre-concentration can provide a large volume of 

liquid filtration. Many of the test elements gave results in the sub mg/L range of detection 

limits by liquid filtration method. Total chromium elements were captured in the membrane 

and measured by LIBS[38] in the range of ng/mL detection limit, where Cr(VI) was 

chemically converted to Cr(III). A fast analysis technique with automated LIBS analyzer is 

configured for monitoring of metal ions in water[39]. The ion exchange membrane is used to 

develop Copper solutions were used to establish pre-concentration parameters. The 

chelating resin based filter membrane was used to capture Cu ions in water. A series of 

standard solutions were filtered through the ion exchange membrane by using a vacuum 

suction system to reduce the filtration time. The LIBS signals of copper absorbed on the 

layers of the membrane were investigated to determine parameters for practical analysis.  

  

Figure 20. Experimental set up for ion-capture filtering and LIBS (top) and detail of collection optics 

(bottom). 
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3.8. Solution samples and instrumentation  

The stock solutions were prepared using copper salts as the source of the copper ions from, 

cupric nitrate (Cu(NO3)2· 3H2O, Fisher), cupric chloride and cupric sulfate, at a 500 mg/L 

concentration, which were then diluted to make a series of test solutions with well-defined 

concentrations. A copper sheet (99.9% Cu) was obtained. A commercially available 

extraction membrane was obtained from 3M filtration Products (St. Paul, MN). The original 

purpose of using the ion-exchange membrane was to extract multivalent metal ions for 

environmental analysis by chelating in the PTFE matrix. The ionic selectivity of the 

membrane is known to follow roughly along the EDTA complex formation constants. The 

membrane was affixed between the edges of two Teflon tubes with a 12 mm inner diameter. 

The upper tube was connected to the supply manifold valve for switching sample solutions, 

flushing water and drying air. The lower tube was depressurized for filtering and suction 

through a drain reservoir. The drainage tube held a round glass filter to support the 

membrane during solution filtering.  

For this LIBS system, an ion-exchange membrane concentrator was assembled as shown in 

the Figure 20 for use in the experiment. A fiber optic cable collected the breakdown 

emissions through collection optics (L1 and L2) and directed them to a fixed-grating 

spectrometer. The spectrometer has a 3600-sensor array and covers a spectral range of 250 

nm – 800 nm. The samples on the motorized stage were moved 0.5 mm to 1 mm stepwise to 

collect an averaged spectrum from a membrane sampler.  

3.9. Operation conditions for membrane concentrator 

A 10 mg/L copper solution prepared from Cu(NO3)2 was used to test the filtering conditions 

of the membrane concentrator. The LIBS spectra were obtained in the measurable intensity 

range. The inset in Figure 21 shows the major copper peak that was used for this test. The 

metal capturing function of the ion exchange membrane is known as that of the EDTA 

chelating process, therefore the chelating speed must be fast enough to capture all the 

copper ions during filtration. The estimated filtering time through a 0.2 mm thickness of 

membrane filter is 3 min when 20 mL of solution is passed through a 12 mm diameter filter 

at the vacuum suction pressure of 20 kPa. The amount of copper captured on the membrane 

filter should be proportional to the observed LIBS intensity. As shown in Figure 21, the 

average intensity for the LIBS peak at 324.75 nm is almost constant throughout the changes 

of suction pressure which control the filtering speed of test solution. The experimental 

results show that there is a large uncertainty in capturing Cu on membrane filter (a large 

error bar in Figure 21) when the sample solutions are filtered very slowly with low suction 

pressure. If the filtration process took more than 30 minutes at a pressure of less than 10 kPa, 

the error in measurement increased. It was also found that soaking for extended periods of 

time in test solution would lead to wrinkles on the membrane filter, due to membrane 

swelling. On a wrinkled membrane, the liquid filtration path is biased in certain areas of the 

filter paper resulting in uneven dispersion of captured ions on the membrane surface. On 

the other hand, when the test solution was filtered at a very high speed, i.e., the suction 
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pressure is more than 80 kPa, the ions just pass through the membrane. A 20 mL solution 

takes only 10 sec to filter and ions begin to pass through without being captured which 

leads to a weaker intensity on the LIBS spectra. Based on this membrane operation test, a 

suction pressure of 30 kPa was maintained as the standard condition, so 20 mL of solution 

can be completely filtered within 2 minutes. 

 

Figure 21. LIBS intensity of Cu at 324.7 nm sampled by filtering at different suction pressure. The inset 

shows the Cu emission that was concentrated from a 10 mg/L of Cu solution. 

 

Figure 22. LIBS intensity measurements for low concentration samples. Each of the data points were 

obtained by averaging five individual measurements on a single filter surface at five different spots. The 

line was made using the data points from 0.5 mg/L to 15 mg 



 
Advanced Aspects of Spectroscopy 156 

3.10. LIBS intensity from the top membrane surface 

Figure 22 shows LIBS intensity of low concentration samples (a few mg/L Cu solutions) for 

the peaks at 324.75 nm. All data points were obtained by averaging five individual 

measurements at five different spots on a single membrane filter. Since the sample surface 

required for a single laser breakdown shot is less than 0.1mm in diameter, multiple 

measurements and their average values are easily obtained over the surface of the 

membrane filter. The LIBS intensity of copper displays a linear correlation over 

concentration ranges below 15 mg/L. The line in Figure 22 was made by using the data 

points from 0.5 mg/L to 15 mg/L of Cu solutions with the exclusion of higher concentration 

data. The results give a relatively too narrow dynamic range for general analytical use. 

However, the correlation of the line is R2=0.9926 and it can be an acceptable analytical 

calibration concentration. The reason for the extremely limited dynamic range is 

investigated further in the next section. 

 

Figure 23. Intensity change by consecutive laser shots. The Cu concentration in the sample solutions for 

the membrane filtration is 100 mg/L, 32 mg/L and 10 mg/L. The membrane filter soaked for 24 hours in 

100 mg/L solution (lower right) shows intensity greater 
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3.11. Depth effects on ion-capture membrane 

In Figure 22, when the concentration of Cu solution is higher than 20 mg/L, the LIBS 

intensity of Cu at 324.75 nm seems to lose its proportionality relationship to the 

concentration and remain constantly extended to 35 mg/L. Initially, the retention capability 

of the membrane was suspected but this was shown not to be the case because the filtrate 

(drain) from high concentrations did not contain copper ions. To verify the effects of depth 

profiling on ion-capture membrane, further investigation was done using multiple laser 

shots at the same spot of membrane. Figure 23 shows the LIBS intensity change by 

consecutive laser shots at a single membrane point. The intensity of the first laser shots from 

the filtered samples of 100 mg/L, 32 mg/L and 10 mg/L solutions are unexpectedly similar, 

and then the next laser shots show intensity change relative to the solution concentration. 

The 100 mg/L sample makes strong LIBS intensities until the 10th laser shot (top-left graph in 

Figure 23, after the 6th shot is not shown). On the contrary, the LIBS intensity seems to 

disappear at the 3rd shot from 10 mg/L sample. A LIBS intensity comparison after the 10th 

pulse was not possible because the laser pulse had already penetrated through the 

membrane and a hole was generated. This observation can be explained by the thickness of 

membrane filter as resulted from the effects of depth profiling on the ion-capture 

membrane. The Cu ion in the sample solution is drawn inward on the ion-capture 

membrane during filtration and captured at a certain depth. It is clear that our laser power, 

50 mJ/pulse, can ablate the Cu-membrane layer by layer. A well prepared calibration curve 

from other literature[37], using stronger laser power, also showed that the calibration began 

to taper off at around 10 mg/L (similar to Figure 22). The authors suggested a linearly 

regressed calibration curve, simply, for the entire concentration range. The effects of depth 

profiling on the ion-capture membrane is also proven by the sampling of passive extraction. 

For the passive extraction, the membrane filter was soaked for 24 hours in 100 mg/L solution 

and the LIBS intensity changes of Cu at 324.75 nm by the consecutive laser shots are shown 

in the graph of lower-right in Figure 23. The most intense spectrum was obtained from the 

first laser shot. None of the ions were drawn physically into membrane during the passive 

extraction, so they were mostly captured on the surface and gave the strongest LIBS 

intensity at the first laser shot. It is clear that the membrane captures ions at the deeper layer 

if the solution is drawn in by suction. As a result, the total ions through the entire thickness 

should be counted to get the proportional values to determine concentration. A modified 

calibration curved is made from the integration of 10 laser-shot intensities as in Figure 24 

using a 2nd order equation. 

3.12. Analysis of tap water using ion-capture membrane 

Tap water was analyzed by using the ion-capture membrane concentrator and LIBS. The tap 

water to our lab at Northern Illinois University is supplied throughout the building by 

copper pipe. There were many studies which showed the copper contamination in the water 

supply from the pluming. The local government which supplies the tap water to this lab 

declared that the source of the city water is collected from the active public water supply 

wells. Inorganic contaminants, such as salt and metals, can be naturally occurring or  
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Figure 24. Modified calibration curve made from the integrated intensity of 10 laser shots and Cu 

concentration up to 70 mg/L. The obtained curve is y = -0.079x2 + 17.81x +23.46 

resulted from urban storm water runoff, industrial, or domestic waste water discharges. The 

ions of Ca, Mg, Na, K, in the city water are known to be of reasonable concentrations within 

the EPA regulations. The annual water report from city shows that the concentration of Cu 

is 1.3 mg/L, and this amount is expected to maintain reasonably throughout the day and 

week. To make an illustration on the effects of pluming for copper contamination from the 

copper pipe, we took water samples during a specific time schedule, early Monday morning 

and Tuesday evening. Each sample contains 20 mL of water and filters through an ion-

capture membrane. Figure 25 shows the LIBS spectrum of tab water sample captured by the 

membrane. Copper emissions were identified along with strong peaks of Ca. The 

concentrations are obtained from the integration of the same number of breakdown shots by 

using the calibration curve as in Figure 24. In case the integrated intensity is greater than 800 

counts, which is around the saturation range, we simply dilute the original sample and 

measure again. The Tuesday sample shows Cu concentration in the range of 5- 10 mg/L, 

which is expected due to the large use of water during the active days in the building and 

the species in the water should be similar to the source water. However, the Monday 

morning samples show higher concentrations mostly around 100 mg/L or more. Some water 

samples show up to 270 mg/L of copper, especially for hot water pipe line. We can infer for 

the high concentration of copper on the Monday sample that water remained in the pipes 

during the weekend and did not move. This result shows that the contamination of copper 

from the pluming of building is significant and is shown to depend on the retention time of 

water in the building pipe. 
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Figure 25. LIBS spectrum of ion captured membrane. The sample solutions are 20 mL of tap water 

filtered through membrane filter. 

 

Figure 26. The elemental distribution of patterns for Ba, Pb, Sr, and Fe in a polished granite rock 

section. 
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d. Ceramic and geology sample application 

Laser induced plasma spectroscopy has been applied to the analysis of element distribution 

mapping of polished rock sections[40]. The plasma was generated by focusing a frequency-

doubled second harmonic 532 nm Nd:YAG laser on the target under atmospheric 

conditions. The experimental parameters, such as laser energy, atomic emission line and 

time profile of the plasma spectrum, were characterized to obtain optimum experimental 

conditions and estimate the element composition of the target surface. For the element 

mapping of samples, an X-Y stage was used to move the sample and an element image of 50 

x 50 mm could be made in 30 min. Using this technique, the element concentration 

distribution of Ba, Cu, Fe, Mn, Pb, Si, and Sr in polished rock sections were obtained. 

Quantitative analysis was achieved by analyzing standard rock samples. Calibrated 

concentration versus plasma intensity was used for the color grading for the mapping of 

element concentration distribution. The elemental mapping analysis for a granite sample is 

illustrated in Figure 26. The ore vein within the existing sample was selected to identify the 

different compositions of ore and surface element distribution. The element distribution 

differences were represented by color grading, where the upper first line represents the 

color scale. The region where a lode was crossed during the analysis is rich in Pb and Sr but 

the Ba content is low. Iron does not show differences and is nearly uniformly distributed 

across the sample. 

 

Figure 27. The mapping image of a commercial printed circuit board. Black circle and character on the 

right circuit board is copper layer for soldering electronic component. The measured values from LIBS 

constitute pixels on left map. 

A sensitive optical technique for compositional mapping of solid surface using LIBS was 

described[41]. A pulsed Nd:YAG laser with second harmonic module was focused on the 

solid surface, giving a small ablation area, to produce plasma emission. Copper and 

magnesium emissions from a standard sample were carefully analyzed and assigned in the 

wavelength range 500-520 nm. The assigned spectral information was selected to construct 

an image of 100 x 100 pixels by mapping the measured emission intensity values from the 

analyzed points. The time required for image construction and image sharpness depends on 
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the number of laser shots per point of analysis and the number of analyzed points per 

image. A clear image of a copper conductor pattern from a printed circuit board was 

generated. In addition, some copper contaminations around the conductor area are clearly 

visible in the scanning LIBS map. The contaminated copper salt probably resulted from the 

incomplete washing step during manufacturing that could cause a short circuit in an 

electronic device. A commercial printed circuit board is shown in the right portion of Figure 

27. Circles on the top are patterned copper layer for soldering the electronic components. 

Characters on the bottom are the same copper layer for product identification. The laser-

ablated area (gray shaded square) is 5 x 5 mm2. The left portion of Figure 27 is a mapping 

image of copper corresponding to the gray shaded square. Each 100x100 pixels corresponds 

to a measured emission intensity value of LIBS on the ablated point. 

4. Conclusion 

The goal of LIBS development is to extend the analytical feasibility of LIBS for detecting 

organic, inorganic metals and ceramic material for the various applications. The sample 

types also not limited to the solid and expanded to liquid gas, aerosol, powder, bacteria, and 

industrial products. Several applications of LIBS were illustrated in this chapter. Detections 

for metallic components are usually accomplished easily from the measured spectral ranges 

from ultraviolet (230 nm) to visible (700 nm) of the plasma emission. Only a few seconds of 

measuring time is a great advantage and will be useful for screening and monitoring system 

for industry and security monitoring. Evaluation of analytical feasibility for detecting and 

identifying the sample should be decided by analyzing the LIBS spectra of specific 

components as well as matrix derived from the source of the samples. 
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