
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 18 

 

 

 
 

© 2012 Kurbatov et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Injection and Optical Spectroscopy  

of Localized States in II-VI Semiconductor Films 

Denys Kurbatov, Anatoliy Opanasyuk and Halyna Khlyap 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48290 

1. Introduction 

Novel achievements of nano- and microelectronics are closely connected with working-out 

of new semiconductor materials. Among them the compounds II-VI (where A = Cd, Zn, Hg 

and B = О, S, Se, Te) are of special interest. Due to unique physical properties these materials 

are applicable for design of optical, acoustical, electronic, optoelectronic and nuclear and 

other devices [1-3]. First of all the chalcogenide compounds are direct gap semiconductors 

where the gap value belongs to interval from 0.01 eV (mercury chalcogenides) up to 3.72 eV 

(ZnS with zinc blende crystalline structure) As potential active elements of optoelectronics 

they allow overlapping the spectral range from 0.3 m to tens m if using them as 

photodetectors and sources of coherent and incoherent light. The crystalline structure of II-

VI compounds is cubic and hexagonal without the center of symmetry is a good condition 

for appearing strong piezoeffect. Crystals with the hexagonal structure have also 

pyroelectric properties. This feature may be used for designing acoustoelectronic devices, 

amplifiers, active delay lines, detectors, tensile sensors, etc. [1-2]. Large density of some 

semiconductors (CdTe, ZnTe, CdSe) makes them suitable for detectors of hard radiation and 

–particles flow [4-5]. The mutual solubility is also important property of these materials. 

Their solid solutions give possibility to design new structures with in-advance defined gap 

value and parameters of the crystalline lattice, transmission region, etc. [6]. 

Poly- and monocrystalline films of II-VI semiconductors are belonging to leaders in field of 

scientific interest during the last decades because of possibility of constructing numerous 

devices of opto-, photo-, acoustoelectronics and solar cells and modules [2-5]. However, 

there are also challenges the scientists are faced due to structural peculiarities of thin 

chalcogenide layers which are determining their electro-physical and optical characteristics. 

The basic requirements for structure of thin films suitable for manufacturing various 

microelectronic devices are as follows: preparing stoichiometric single phase 
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monocrystalline layers or columnar strongly textured polycrystalline layers with low 

concentration of stacking faults (SF), dislocations, twins with governed ensemble of point 

defects (PD) [7-8]. However, an enormous number of publications points out the following 

features of these films: tend to departure of stioichiometric composition, co-existing two 

polymorph modifications (sphalerite and wurtzite), lamination morphology of crystalline 

grains (alternation of cubic and hexagonal phases), high concentration of twins and SF, high 

level of micro- and macrostresses, tend to formation of anomalous axial structures, etc. [2-3, 

9]. Presence of different defects which are recombination centers and deep traps does not 

improve electro-physical and optical characteristics of chalcogenide layers. It restricts the 

application of the binary films as detector material, basic layers of solar energy 

photoconvertors, etc.  

Thus, the problem of manufacturing chalcogenide films with controllable properties for 

device construction is basically closed to the governing of their defect structure investigated 

in detail. We will limit our work to the description of results from the examination of 

parameters of localized states (LS) in polycrystalline films CdTe, ZnS, ZnTe by the methods 

of injection and optical spectroscopy.  

1.1. Defect classification in layers of II-VI compounds 

Defects’ presence (in the most cases the defects of the structure are charged) is an 

important factor affecting structure-depended properties of II-VI compounds [3, 5, 10]. 

Defects of the crystalline structure are commonly PD, 1-, 2-, and 3-dimensional ones [11-

12]. Vacancies (VA, VB), interstitial atoms (Ai, Bi), antistructural defects (AB, BA), impurity 

atoms located in the lattice sites (CA, CB) and in the intersites (Ci) of the lattice are defects of 

the first type. However, the antistructural defects are not typical for wide gap materials 

(except CdTe) and they appear mostly after ionizing irradiation [13-14]. The PD in 

chalcogenides can be one- or two-charged. Each charged native defect forms LS in the gap 

of the semiconductor, the energy of the LS is ∆Еi either near the conduction band (the 

defect is a donor) or near the valence band (then the defect is an acceptor) as well as LS 

formed in energy depth are appearing as traps for charge carriers or recombination centers 

[15-16]. Corresponding levels in the gap are called shallow or deep LS. If the extensive 

defects are minimized the structure-depending properties of chalcogenides are principally 

defined by their PD. The effect of traps and recombination centers on electrical 

characteristics of the semiconductor materials is considered in [16]. We have to note that 

despite a numerous amount of publications about PD in Zn-Cd chalcogenides there is no 

unified theory concerning the nature of electrically active defects for the range of 

chalcogenide vapor high pressures as well as for the interval of high vapor pressure of 

chalcogen [13-14, 17-18].  

Screw and edge dislocations are defects of second type they can be localized in the bulk of 

the crystalites or they form low-angled boundaries of regions of coherent scattering (RCS). 

Grain boundaries, twins and surfaces of crystals and films are defects of the third type. 

Pores and precipitates are of the 4th type of defects. All defects listed above are sufficiently 
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influencing on physical characteristics of the real crystals and films of II-VI compounds due 

to formation of LS (along with the PD) in the gap of different energy levels [17-20].  

2. Using injection spectroscopy for determining parameters of localized 

states in II-VI compounds 

2.1. Theoretical background of the injection spectroscopy method  

The LS in the gap of the semiconductor make important contribution to the function of the 

device manufactured from the material solar cells, phodetectors, -ray detectors and 

others), for example, carriers’ lifetime, length of the free path, etc., thus making their 

examination one of them most important problems of the semiconductor material science 

[3-5, 8, 13, 14, 18]. 

There are various methods for investigation of the energy position (Et), concentration (Nt) 

and the energy distribution of the LS [21-23]. However, their applicability is restricted by the 

resistance of the semiconductors, and almost all techniques are suitable for low-resistant 

semiconductors. At the investigation of the wide gap materials II-VI the analysis of current-

voltage characteristics (СVC) at the mode of the space-charge limited current (SCLC) had 

appeared as a reliable tool [24-25]. The comparison of experimental and theoretical CVCs is 

carried out for different trap distribution: discrete, uniform, exponential, double-

exponential, Gaussian and others [26-36]. This method is a so-called direct task of the 

experiment and gives undesirable errors due to in-advance defined type of the LS 

distribution model used in further working-out of the experimental data. The information 

obtained is sometimes unreliable and incorrect. 

Authors [37-40] have proposed novel method allowing reconstructing the LS energy 

distribution immediately from the SCLC CVC without the pre-defined model (the reverse 

task), for example, for organic materials with energetically wide LS distributions [41-42]. 

However, the expressions presented in [37-40], as shown by our studies [43-45], are not 

suitable for analysis of experimental data for mono- and polycrystalline samples with 

energetically narrow trap distributions. So, we use the principle 37-40 and obtain reliable 

and practically applicable expressions for working-out of the real experiments performed 

for traditional II-VI compounds. 

Solving the Poisson equation and the continuity equation produces SCLC CVC for 

rectangular semiconductor samples with traps and deposited metallic contacts, where the 

source contact (cathode) provides charge carriers’ injection in the material [24-25]: 

 ( ) ( ),
f

j e E x n x  (1) 

 
       
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where j current density passes through the sample; 

е electron charge; 

 drift carrier mobility; 

0 dielectric constant; 

 permittivity of the material 

E(x) is an external electric field changing by the depth of the sample; this field injects free 

carriers from the source contact (cathode) (x=0) to the anode collecting the carriers (x=d); 

nf(x) is the free carriers’ concentration at the injection;  

nf0 is the equilibrium free carriers concentration;  

( )
jt

n x  is the concentration of carriers confined by the traps of the j-group with the energy 

level 
jt

E ;  

ntj0 is the equilibrium carriers concentration trapped by the centers of the j-group; 

ns(x) is a total concentration of the injected carriers.  

The set of equations (1), (2) is commonly being solved with a boundary condition E(0)=0. 

The set is soluble if the function from nf and nt is known. We assume that all LS in the 

material are at thermodynamic equilibrium with corresponding free bands, then their 

filling-in by the free carriers is defined by the position of the Fermi quasi-level EF. Using the 

Boltzmann statistics for free carriers and the Fermi – Dirac statistics for the localized carriers 

we can write [39-40]: 

 
 ( )

( )

( )
( ) exp ,C V F

f C V

E x E x
n x N

kT

 
   

 
 (3) 

    ,
, ,

( ) ( )
1 exp

t

t F

h E x
n E x

E x E x
g

kT





 (4) 

where Nc(v) are states density in conduction band (valence band); 

Еc(v) is energy of conduction band bottom (valence band top); 

k is Boltzmann constant; 

T is the temperature of measurements; 

EF(x) is the Fermi quasi-level at injection; 

g is a factor of the spin degeneration of the LS which depends on its charge state having the 

following values: –1/2, 1 or 2 (typically g = 1) [15, 39-40]. 

The zero reference of the trap energy level in the gap of the material will be defined 

relatively to the conduction band or valence band depending on the type (n or p) of the 

examined material: EC(V)=0.  
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The set of equations (1)–(2) can also be reduced to integral relations. Detailed determination 

of these ratios presented in [37]. 

 
0 0

0

2

1 1
,

[( ) ( )]

f a

fс
j j

n

f

n
f f f t t

j

dn
y

j e d e n n n n n




  
    (5) 

 
0 0

0

2 2 3
,

( ) [( ) ( )]

fd

fс
j j

n

f

n
f f f t t

j

dnU
z

j e e n n n n n




  
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where j, U are current density and voltage applied to the sample; 

d is the sample thickness; 

fc
n , 

fa
n  are free carriers’ concentration in cathode and anode, respectively.  

Equations (5) and (6) determine SCLC CVCs in parametric form for an arbitrary distribution 

of LS in the gap of the material.  

At thermodynamic equilibrium the total concentration (
0s

n ), the carriers concentration 

for those localized on the traps (
0t

n ), and the free carriers’ concentration in the 

semiconductor (
0f

n ) are in the function written as follows: 
0 0 0s t f

n n n  ,  

де 0

0

( )

( )
exp

C V F

f C V

E E
n N

kT

 
   

 
 in case when Eс – EF0  3kТ (3kТ= 0,078 eV at the room 

temperature; EF0 is the equilibrium Fermi level. It must be emphasized that this  

charge limits the current flow through the sample and determines the form of the SCLC 

CVC. 

The carriers’ injection from the source contact leads to appearance of the space charge  in 

the sample, formed by the free carriers and charge carriers localized in the traps, 

0 0 0
( ) [( ) ( )]

i s s t f t f
en e n n e n n n n        , where ni is the concentration of injected carriers.  

Under SCLC mode the concentration of injected carriers is considerably larger than their 

equilibrium concentration in the material and, at the same time, it is sufficiently lower than 

the total concentration of the trap centers (
0f i t

n n N  ) [24-25]. Thus, in further 

description we will neglect the second term in the expression written above (except some 

special cases). Then we have    ~
js t

j

en x e n x   .  

Using (5) and (6) we find the first and second derivatives of z from y: 

 
 
 

2

,
1

fa

d U jdz d
z

dy e nd j 
     (7) 
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 

 
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2 22

2

0

.
1 1

a
d U j dd z d

z
dy d j d j




      (8) 

As the SCLC CVC are commonly represented in double-log scale [24-25], equations (7), (8) 

are rewritten with using derivatives: 
2 3

2 3

(ln ) (ln ) (ln )
, , .

(ln ) (ln ) (ln )

d j d j d j

d U d U d U
       

Then we have  
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e U e U
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 
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 (9) 
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0 0
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2 1 1
1 ,

2 1 1
a

U U

e ed ed
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  
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 (10) 

where 
2 1



 ,     1 1
1 1 .

2 1 1
B

  
   

  
    

   
 

Further we will neglect the index а. 

As a result, the Poisson equation and the continuity equation give fundamental expressions 

for a dependence of the free carrier concentration in the sample nf (the Fermi quasi-level 

energy) and space charge density at the anode  on the voltage U and the density of the 

current j flowing through the structure metal-semiconductor-metal (MSM). 

Now let us consider the practical application of expressions (7) and (8) or (9) and (10) for 

reconstructing the trap distribution in the gap of the investigated material. We would 

restrict with the electron injection into n-semiconductor.  

If the external voltage changes the carries are injected from the contact into 

semiconductor; at the same time, the Fermi quasi-level begins to move between the LS 

distributed in the gap from the start energy EF0 up to conduction band. This displacement 

EF leads to filling-in of the traps with the charge carriers and, consequently, to the 

change of the conductivity of the structure. Correspondingly, under intercepting the 

Fermi quasi-level and the monoenergetical LS the CVC demonstrates a peculiarity of the 

current [24-25]. As the voltage and current density are in the function of the LS 

concentration with in-advanced energy position and the Fermi quasi-level value we 

obtain a possibility to scan the energy distributions. This relationship is a physical base of 

the injection spectroscopy method (ІS). 

Increase of the charge carriers dns in the material at a low change of the Fermi level position 

is to be found from the expression: 

 
1

.i s t

F F F F

dn dn dnd

e dE dE dE dE


     (11) 
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The carrier concentration on deep states can be found from the Fermi-Dirac statistics  

 
2 2

1 1

( ) ( ) ( ) ,
E E

s s F f

E E

n n E dE h E f E E dE n       (12) 

where dns(E)/dE is a function describing the energy distribution of trapped carriers;  

h(E)=dNt/dE is a function standing for the energy trap distribution;  

E1, E2 are energies of start and end points for the LS distribution in the gap of the material.  

It is assumed that the space trap distribution in the semiconductor is homogeneous by the 

sample thickness then ( , ) ( )h E x h E . 

After substitution of (12) in (11) we obtain a working expression for the functions d/dEF and 

h(E) 

 
( ( ))1

( ) ( )
( )

fs F

s

E EF F F

ndn d f E Ed d
n E dE h E

e dE dE dE d E E kT

 
   

   (13) 

Thus, at arbitrary temperatures of the experiment the task of reconstructing LS distributions 

reduces to finding function h(E) from the convolution (12) or (13) using known functions 

ns(EF) or d/dEF. The expression (12) is the most preferable [39-40]. In general case the 

solution is complex and it means determining the function h(E) from the convolution (12) or 

(13) if one of the functions ns or dns/dEF is known [43-45]. We have solved this task according 

the Tikhonov regularization method [46]. If the experiment is carried at low temperatures 

(liquid nitrogen) the problem is simplified while the Fermi-Dirac function in (13) may be 

replaced with the Heavyside function and, neglecting nf , we obtain  

 
1

( ).t

F F

dNd
h E

e dE dE


    (14) 

This equation shows that the function 1/e d/dEF - EF at low-temperature approximation 

immediately produces the trap distribution in the gap of the semiconductor. Using (7) and (8), 

we transform the expression (14) for practical working-out of the experimental SCLC CVC. As 

the free carrier concentration and the space charge density are to be written as follows:  

 ,
2f

jd
n

e U U j



  (15) 

 
2 0

2
( 2 2 ) ,U j U j U

e ed

      (16) 

the expression (14) will be  

  
3

2 2

(2 )1 1
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( 2 2 )
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U j U U jd
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 
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 (17) 



 
Advanced Aspects of Spectroscopy 506 

Using derivatives, ', " this expression is easily rewritten:  

 
 

   
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0

2 2 2

3 3 31 1 2 1
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2 1 1 2F

Ud
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  (18) 

The expression (18) is also can be written with the first derivative () only. Denote  
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1

.
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d
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 
 

 

We obtained an expression used by authors [39-40] for analysis of energetically wide LS 

distributions in organic semiconductors.  

 0 0
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 (19) 

To make these expressions suitable for the working-out of SCLC CVC for the 

semiconductors with energetically narrow trap distributions we write them with reverse 

derivatives 
2 3

2 3

(ln ) (ln ) (ln )
, , .

(ln ) (ln ) (ln )

d U d U d U

d j d j d j
       

As a result: 
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1 1 (2 3)
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 (20) 

Solving the set of equations (3) and (7) gives energetical scale under re-building deep trap 

distributions. Using various derivatives we obtain  

( ) 2
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 ( ) 1
ln ln ln .

2

C V
e N j

kT kT kT
d U



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

  (21) 

Using sets of equations (17) - (18) or (20) - (21) allows to find a function describing the LS 

distribution in the gap immediately from the SCLC CVC. To re-build the narrow or 

monoenergetical trap distributions (typical for common semiconductors) the most suitable 

expressions are written with derivatives. The first derivative  defines the slope of the CVC 

section in double-log scale relative to the current axis, the  defines the slope of the CVC 

section in double-log scale relative to the voltage axis. For narrow energy distributions this 
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angle  is too large, and under complete filling-in of the traps it closes to [24-25]. However, 

it means the slope to the current axis is very small allowing finding the first and higher 

order derivatives with proper accuracy [44, 45, 48]. It is important that the narrowest trap 

distributions give the higher accuracy under determination of the derivatives , ,     ! 

If the distributions in the semiconductor are energetically broadened all expressions (17), 

(18), and (20) can be used as analytically identical formulas.  

As is seen from the expressions written above, in order to receive information about LS 

distribution three derivatives are to be found at each point of the current-voltage function in 

various coordinates. Due to experimental peculiarities we had to build the optimization 

curve as an approximation of the experimental data with it’s further differentiation at the 

sites. The task was solved by constructing smoothing cubic spline 47. However, the 

numerical differentiation has low mathematical validity (the error increases under 

calculation of higher order derivatives). To achieve maximum accuracy we have used the 

numerical modeling with solving of direct and reverse tasks.  

Under solving the direct task we have calculated the functions  - EF and 1/e d/dEF - EF on 

base of known trap distribution in the gap of the material (the input distribution) using the 

expressions (12) and (13). Then we have built the theoretical SCLS CVCs ((5), (6)). The 

mathematical operations are mathematically valid. To solve the reverse problem of the 

experiment CVCs were worked out using the differential technique based on expressions 

(17), (21), (18), (20). As a result we have again obtained the deep centers’ distribution in the 

gap of the material (output distribution). Coincidence of the input and output trap 

distributions was a criterion of the solution validity under solving the reverse task. Further 

the program set was used for numerical working-out of the experimental CVCs [43-45, 48].  

2.2. Determination of deep trap parameters from the functions 1/ed/dEF - EF 

under various energy distributions  

Now we determine how the energy position and the trap concentration under presence of 

the LS in the gap may be found for limit cases by the known dependence 1/ed/dEF - EF. In 

the case of mono-level the LS distribution can be written as ( ) ( )
t F

h E N E E  , where  is a 

delta-function. 

After substituting this relationship in (12), (13) we obtain  
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The value of the last function at the maximum (EF=Et) is 
 2
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 (24) 

Thus, building the function 1/ed/dEF - EF and finding the maximums by using (24) gives the 

concentration of discrete monoenergetical levels. The energy position of the maximum 

immediately produces energy positions of these levels.  

If the LS monotonically distributed by energy h(E)=ANt= const are in the gap of the material 

it is easy to obtain  

 
1

( ) .
t

F

d
N h E

e dE


    (25) 

In other words the trap concentration in the sample under such distributions is immediately 

found from the function 1/ed/dEF - EF. 

In general case when LS distribution in the gap of the material is described by the arbitrary 

function their concentration is defined by the area under the curve 1/ed/dEF - EF and at low 

temperatures can be found from the relationship
2

1

( )
E

t

E

N h E dE  . Under reconstruction of 

such distributions from the SCLC CVC these distributions are energetically broadening 

depending on the temperature of experiment [43-45]. LS energy positions are again 

determined by the maximums of the curve.  

The correct determination of the trap concentration from the dependence 1/ed/dEF - EF may 

be checked out by using the function  - EF. In case of the mono-level where the Fermi quasi-

level coincides with the LS energy position, it is easy to obtain from (22) - [ ]
1Fm

t

t E

N
n

g



, 

then (1 )[ ]
Fmt t E

N g n  . If g=1 then [ ] 2
Fmt E t

n N , [2 ]
Fmt t E

N n . 

If the LS distribution is a Gaussian function (
 

2

1 2
( ) exp

22

t t

tt

N E E
h E

 
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  
 
 

) the relationship 

for determination of Nt is analogous to that described above. 

Earlier [43-45] we have described the effect of experimental factors on accuracy of 

determining parameters of the deep centers by IC method. In Ref. [44, 45, 48] it was shown 
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that the neglecting third order derivative or even the second order derivative does not lead 

to considerable decrease of the accuracy in determination of the LS parameters. It was 

demonstrated that under neglecting the 3rd order derivative '' in (20) the error in definition 

of the function h(E) at the point EF=Et is no more than 0.4%. At the same time this error is 

somewhat larger in the interval EF-Et~kT but is not larger than (4–7)%. Such a low error of 

the calculation of the LS parameters is caused by the interception of zero point and the 

derivative '' near the point EF=Et (commonly in the range of 0,2
F t

E E kT  ). As a result 

(regarding the absence of accurate experimental measurement of the 3rd derivative) it does 

not affect the differential working-out of CVCs in the most important section where the 

Fermi quasi-level coincides with the LS energy position.  

If the second order derivative in the working expressions is neglected the error of the 

defining the function h(E) in the most principal (EFEt) is about (30-40)%. In both cases the 

simplification of the expression (21) does not contribute errors to the definition of energy 

position of the traps’ level. Remember that the traditional method of SCLC CVC gives 60-

100% error of the traps’ concentration [24-25]. 

3. Methods of preparation and investigation of II-VI films   

Thin films CdTe, ZnS, ZnTe were prepared on glass substrates in vacuum by close-spaced 

vacuum sublimation (CSVS) [49-50]. For further electrical investigations we have deposited 

hard-melted metal conductive layers on the main substrate by electron beam evaporation 

(Mo – for CdTe, ZnS; Cr, Ti – for ZnTe). The up-source contact (In(Ag) or Cr in dependence 

on the conductivity type of the semiconductor) was deposited by the vacuum thermal 

evaporation. Under condensation of the films of binary compounds the chalcogenide 

stoichiometric powders were used.  

The common temperature of the evaporator was Тe = 973 К for zinc telluride, Тe = (1200÷1450) 

K for zinc sulfide and Тe = (933÷1023) K for cadmium telluride. The substrate temperature 

was changed in a wide range Тs = (323÷973) К. Time of deposition was varied: t = (10÷30) min.  

Morphology of the samples’ surfaces was investigated by optical and electron microscopy. 

Jeffries’ method was used to determine the arbitrary grain size (D) in the condensates. The 

films’ thickness (d) was measured by fractography and interferential methods. The element 

composition of the layers was studied by X-ray spectroscopy (XRS) analysis using the 

energy-dispersed X-ray analysis (EDAX) unit or by Rutherford back scattering (RBS) 

technique (if it was possible). Structural examinations of the films were carried out by the 

XRD-unit in Ni-filtered Kα radiation of Cu-anode. The XRD patterns were registered in the 

range of Bragg angles from 200 to 800. Phase analysis was provided by comparison of inter-

plane distances and arbitrary intensities from the samples and the etalon according to the 

ASTM data [51]. Structural properties of II-VI films are investigated in [20, 49-50, 54-56]. 

Dark CVC at different temperatures and  – Т dependencies of the sandwich-structures 

(MSM were examined in vacuum by standard techniques (Fig. 1) [21-22].  
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The power of electronic scheme was estimated by source of stable voltage AIP 120/0.75 that 

provided a possibility of precise voltage regulation in electric circle in the ranfe of U =0.1 ÷ 

120 V. 

A current that passed throught samples in the range of I = (10-9÷10-5) A measured by digital 

nanoampermeter. Voltage drop on sample was fixed by digital multimeters APPA-108N 

and UT70B. Sample temperature at inveatigation of electro-physical properties controlled by 

authomatic feedback temperature controller “OVEN TRM10”, input signal from it fed from 

chromel-alumel thermocouple. 

 

Figure 1. Typical electrical-type scheme for CVC and σ-T characteristic investigations of II-VI 

semiconductors films: 1 – heater holder; 2 – heater; 3 – glass substrate; 4 – lower conductive layer  

(Мо, Cr, Ti); 5 – collectors; 6 – thermocouple; 7 – II-VI film 

The current mechanisms were identified by the differential method developed in [52-53]. 

This technique completely analyses j–U, γ–U and d(log)/d(logU)-U functions, where 

=d(logj)/d(logU) and differentiates satellite and concurrent current mechanisms in the 

structures and defines the high-field mechanisms among all of them. When the CVCs of 

multilayered structures were determined by unipolar injection from the source contact the 

experimental curves were numerically studied by using low-temperature and high-

temperature approximations of the IS method [43-45, 48].  

PL spectra of CdTe, CdSe and ZnTe films were studied using the spectrometer SDL-1 undеr 

excitation of the samples by Ar-laser (λ=514 nm for CdTe and λ=488,8 nm for ZnTe). PL 

spectra from ZnS films are registered by MPF-4 Hitachi and xenon bulb (λ=325 nm). The 

temperature in all experiments was stable in the range 4.7÷77 К by using the system 

“UTREX” [49]. The films CdTe, ZnTe were investigated in the range of edge luminescence, 

the films ZnS were studied in the impurity energy range.  



 
Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films 511 

At interpretation of the PL data it was suggested that the radiation had appeared as a result 

of electrons’ transfer from the conduction (valence) band or shallow donor (acceptor) levels 

to the deep LS in the gap of the material. Then the activation energy of the processes are 

defined from the expression: 

 ( ),
g i g a d

E h E E E E E         (26) 

where Ea, Ed are energy levels of the donors and acceptors in the gap of the material.  

The set of methods for defining parameters of LS in the gap allowed to enhance the accuracy 

of data obtained and to examine traps and recombination centers with wide energy range. 

4. Determination of LS parameters of polycrystalline chalcogenide films 

by injection spectroscopy method and analysis of  – T functions  

4.1. General description of CVC and  – T functions 

Dark CVC of sandwich structures current-conductive substrate-film-upper drain contact 

were measured at different temperatures for examining electrical properties of Zn and Cd 

chalcogenide films and determination of parameters for LS in the gap of material. Besides 

that, the function conductivity-temperature was studied in ohmic sections of the CVC and in 

some cases in the square section of the CVC. Energy positions of donor (acceptor) centers in 

the films were found from dependencies log =ƒ(103/T) taking into account their Arrhenius-

like character [21-22]. 

As was shown by the study, the CVC of multilayered structures MSM is defined by the 

condensation conditions of chalcogenide films, their crystal structure, and material of 

bottom and upper metallic contacts. CVC of multilayered structures based on low-

temperature condensates of II-VI compounds were linear or sublinear. For ZnTe-based 

MSM structures the CVC were defined by the Pool-Frenkel mechanism, and the data were 

linearized in the coordinates   1 2log I U U  [52]. 

Fig. 2 plots typical double-log CVC measured at different temperatures. This figure also 

shows the function  – T measured at the ohmic section of the CVC.  

It is found out that the  – T function of low-temperature condensates are linear with the 

slope to the T axis decreasing at lowering the measurement temperature. These features are 

typical for the material with various types of donor (acceptor) impurities with different 

activation energy. The CVC of high-temperature condensates were somewhat others (Fig. 2). 

The linear sections are reveled, their slope to the T axis increases as the measurement 

temperature decreases. It is typical for compensated materials [21-22]. The compensation 

effect appears more visible under sufficiently low experimental temperatures when the 

electron concentration becomes close to that of acceptor centers. The slope of the straight 

lines to the T-axis increases from the value Ea/2k up to the value Ea/k, making it possible to 

define activation energy for donor and acceptor centers [21-22]. 
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Figure 2. CVC of the structure Cr/ZnTe/Ag at various temperatures: ● – Т = 298 К; ▲ – Т = 303 К; ▼ – Т 

= 308 К; ► – Т = 313 К;  – Т = 318 К; * – Т = 323 К, and the dependence log – 1/T obtained from the 

ohmic section of the CVC. The film is prepared at Тe = 973 К and Тs = 823 К 

CVC of multilayered structures where chalcogenide films are prepared at Ts > (500÷600) K 

were superlinear. As is analytically shown, they are determined by the unipolar injection 

from the drain contact. Typical SCLC CVCs of the examined films are plotted in Figs. 2-3. 

CVCs of high-temperature condensates in the range of high field strength a set of linear 

sections with various slopes to the U-axis was observed. As a rule, the sections with 

functions: I – U, I – U 2, I – U 3-5, I – U 8-10 were the most pronounced. In some cases after 

superlinear sections we have observed a square dependence I on U, which had further 

changed again to the supelinear one with a very large slope  (  13–25). The current 

jump was revealed and the samples were turn on the low-ohmic state as an irreversible 

process.  

 

Figure 3. Double-log SCLC CVC of multilayered structures Mo/CdTe/Ag and results of their 

differentiation. CdTe films are prepared at Te = 893 К and various Ts: 723 К (а); 823 К (b)  
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The features of the CVCs are clearly shown in functions  – logU giving a possibility to 

reveal a fine structure of the CVCs (Fig.3). Each point of this graph defines the slope of the 

CVC in double-log scale to the voltage axis. Dependencies  – logU were obtained by 

differentiating the CVC in every experimental point. As it was mentioned above, the 

problem mathematically reduces to the building smoothing cubic spline which 

approximates experimental data and its differentiation at the sites.  

The curves  – logU resulting from the working-out of the SCLC CVC showed 1-4 

maximums in correspondence to the sections of sharp current increase in the I – U 

dependencies. The most often values of ext were 8–10. Sometimes the functions  – lоgU 

were practically revealed.  

Horizontal sections with the almost constant slope  > 2 were also observed. It may be 

explained by the presence in the samples of sets of monoenergetical or quasi-

monoenergetical levels traps of various energy position and concentration or by availability 

of the exponential (or other form) LS energy distribution. The specific points of CVCs were 

used for calculating trap parameters in the material, the ohmic sections helped to find 

specific conductivity of the layers  = (104÷105) m. As a result we obtained the 

concentrational distributions of the traps in the gap of material h(E)-E, their energy position 

(Еt) and concentration (Nt). 

At the high voltage the CVCs are typical for the unipolar injection, but, according to [52-53] 

there some other current mechanisms leading to qualitatively similar current-voltage 

functions. Thus, we had to identify them additionally according to the procedure described 

in [52] by analyzing functions logI – logU,  – logU and log – logU. It allowed identifying 

high-voltage current mechanisms in the samples and defining (in some cases) their type.  

For further definition of the dominant current mechanism in the base chalcogenide layer we 

calculated the discrimination coefficient Qext in the extremum points of the function  – logU 

and compared it with coefficients typical for other mecahisms [52]. We have found 

Qext > 106÷107 almost in all cases, what is significantly larger than the values of Qext typical for 

the field trap ionization and the barrier –involved current mechanism in the material. This, 

in turn, points out [52-53] that the extremums in functions  – logU are caused by filling-in 

of the traps in the material with charge carriers injected from the metallic contact. Using 

various analytical methods allows to conclude with a good reliability that the CVC’s 

features for multilayered structures with high-temperature chalcogenide layers (Ts > 500 К), 

were caused namely by the SCLC mechanism. Further we have worked out the CVCs due to 

injection currents only.  

Fig. 4. illustrates a typical example of the CVC working-out. It is easy to see that the LS 

distributions are obtained under analysis of two different CVCs and they are in a good 

correlation. 

To make the distribution more precise we have plotted in the same picture the Gaussian 

curve. It is seen that for examined polycrystalline CdTe films there are trap distributions in 

the gap with a form closed to that of the Gaussian one with a small half width t. 



 
Advanced Aspects of Spectroscopy 514 

Broadening energy levels in CdTe layers prepared by the vacuum condensation may be due 

to statististical dispersion of polar charge carriers’ energy caused by fluctuative irregularities 

of the film crystalline lattice. This effect is enhanced near the substrate where the most 

defective layer of the film is grown. This region was an object for determining LS 

parameters by the method of SCLC CVC.  

 

Figure 4. SCLC CVC and its derivative (U) for CdTe-based sandwich structures (а), and trap 

distribution in the gap of cadmium telluride (b):  – j(U); ▲ – (U) (а); the energy trap distribution is 

resulted from the high-temperature IS method (b) ( – first measurement;  - repeating measurement at 

somewhat other temperature); the Gaussian distributions (solid line) are presented for comparison.  

4.2. LS parameters from CVC and  – T functions 

SCLC CVC was used for determination of trap parameters in the films. The low level of 

scanning LS spectrum was defined by the position of the equilibrium Fermi level EF0, i.e. its 

position without charge carrier injection in the sample (ohmic section of the CVC), the upper 

limit was defined by the position of the Fermi quasi-level at the turn-on of the multilayered 

structures into low-ohmic state. The start position of the Fermi level was pre-defined by the 

equilibrium carrier concentration in the material, respectively, by the conductivity of the 

films. The calculations showed the position of the equilibrium Fermi level EF0 was coincide 

or was close to the energy of the deepest LS in the corresponding samples. The Fermi level is 

fixed by the traps because the concentration of free carriers in the films is close to the full 

concentration of LS located at grain boundaries and in bulk crystallites of condensates. As a 

result, the deepest trap levels located lower than the energy of the equilibrium Fermi level 

were not revealed in chalcogenide films by the SCLC CVC method.  

The possibility of revealing shallow traps in the samples (Et  0.21 eV, for ZnTe films) is 

restricted by their turn-on into the low-ohmic state stimulated namely by the LS. Thus, the 

SCLC CVC method had revealed the traps with energy higher positions. However, the traps 

with different energies also may exist in the samples as shown by the data from the slope of 
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conductivity-temperature functions in ohmic and square sections of the CVCs and 

luminescence spectra.  

4.2.1. CdTe films 

Table 1 presents some results of IS calculations for deep centers in polycrystalline and 

monocrystalline CdTe films. In the gap of the polycrystalline material are LS with E1 = 

(0.68÷0.70) eV; E2 = (0.60÷0.63) eV; E3 = (0.56÷0.57) eV; E4 = (0.51÷0.53) eV; E5 = (0.45÷0.46) eV; 

E6 = (0.39÷0.41) eV and concentration N = (1018÷1020) m-3. The concentration of these LS is in 

the range Nt = (1018 ÷1021) m-3 and mostly increases with closing their energy positions to the 

bottom of the conduction band. The traps by the profile  2 2( ) 2 exp 2
t t

h E N E    are 

similar to the mono-energetical ones with a half width 
t

  (0.011÷0.015) eV. The dominant 

LS affecting SCLC CVC are the LS with energies Еt = (0.60÷0.63) eV; Еt = (0.56÷0.57) eV; Еt = 

(0.45÷0.46) eV. Only the traps (if revealed) with Еt = 0.40 eV had the larger concentration.  

The LS were registered not only in polycrystalline films but also in monocrystalline layers. 

We have resolved the traps with Еt = (0.56÷0.57) eV; Еt = (0.52÷0.53) eV; Еt = (0.45÷0.46) eV 

and Еt = (0.40÷0.41) eV in the gap of the material. The monocrystalline condensates had 

lower resistance that the polycrystalline layers (10÷100 times), the equilibrium Fermi level in 

these films was placed more closely to the conduction (valence) band than that in 

polycrystalline films. Thus, the deepest traps were not revealed by SCLC CVC method in 

monocrystalline layers. So, the traps Et  0.70 eV and Et  0.62 eV found in polycrystalline 

films may be presented in lower-resistive monocrystalline films.  

Ionization energies of the defects in the gap of CdTe were determined from the slope of 

functions conductivity-temperature in coordinate's log-1/T [21-22]. Table 2 lists the results 

for polycrystalline and monocrystalline CdTe films. In high-temperature polycrystalline 

condensates the following activation energies were observed for conductivity: Et=0.15; 0.33; 

0.40÷0.41; 0.46; 0.60÷0.61, 0.80 eV. In the monocrystalline films the LS had smaller activation 

energy: Et=0.06÷0.07; 0.13÷0.14; 0.22÷0.23; 0.29; 0.40; 0.46 eV. Activation energy Et = 

(1.50÷1.52) eV is typical for high temperatures of the experiment and corresponds to the gap 

of the material. The comparison of the LS energy levels from the SCLC CVC and  – Т 

functions is carried out in Table 2. The values Et from the  –Т functions correlate with those 

observed in CdTe films by SCLC CVC method.  

The wide range of the traps revealed in CdTe condensates is obviously caused by 

investigation of disordered transition layer of the films formed under the film 

condensation near the substrate. In this layer may be presented foreign impurities 

adsorbed from the substrate and residual atmosphere under film condensation. Besides 

that for CdTe the concentration of uncontrolled residual impurities in the charge mixture 

can be Nt =(1020-1021) m-3 which is behind the sensitivity of the IS method. These impurities 

can form a chain of complexes impurity-native defect producing deep levels in the gap of 

the semiconductor.  
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Sample number d, m Тs, К Тe, К Et, eV Nt, m-3 t, eV 

1 8 743 1023 0.63 4.41019 0.030 

2 

(1st measurement)

19 748 948 0.61

0.45

1.71019 

7.31019 

0.031 

0.028 

2 

(2nd measurement)

19 748 948 0.62

0.45

1.51019 

8.11019 

0.035 

0.032 

3 12 748 968 0.68

0.62 

0.53

7.81018 

1.51019 

6.11019 

0.023 

0.023 

0.027 

4 9 723 893 0.62

0.56

6.61018 

4.41019 

0.021 

0.016 

5 12 823 893 0.62

0.57

2.01018 

1.71019 

0.023 

0.015 

6 

(monocrystalline) 

11 753 933 0.62

0.52 

0.41

4.61018 

1.31019 

1.11020 

0.019 

0.009 

0.016 

7 15 753 953 0.60

0.52 

0.46 

0.41

2.31018 

3.61018 

8.61018 

1.41019 

0.019 

0.020 

0.020 

0.015 

8 26 758 978 0.61

0.56 

0.52

3.61018 

3.01019 

7.41019 

0.023 

0.015 

0.015 

Table 1. Parameters of LS revealed in CdTe films by high-temperature IS 

Et, eV

Interpretation 
From SCLC CVC From -T dependencies

Polycrystalline 

films 

Polycrystalline 

films

Monocrystalline 

films

0.68-0.70 0.80 - 
2

Te
V   (0.71 eV [57-61] 

0.60-0.63 0.60 - 
2
Cd

Te   (0.59 eV) [57-61] 

0.56-0.57 0.57 - 
2c

iCd   (0.56 eV) [57-61] 

0.51-0.53 - - 
2

Te
V   (0.50 eV) [57-61] 

0.45-0.46 0.46 0.46 
c

i
Cd   (0.46 eV) [57-61] 

0.39-0.40 0.40÷0.41 0.40 
2
Cd

Te  . 
Te

V   (0.40 eV) 

[57-61] 

- - 0.29  

- - 0.22÷0.23 
2
iCd  (0.20 eV) [57-61] 

- 0.15 0.13÷0.14  

- - 0.06÷0.07  

Table 2. Energetical positions of LS levels for defects in the gap of CdTe 
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As the chalcogenide films were not doped in-advance all LS found here are corresponding 

to native defects and their complexes with uncontrolled impurities. The interpretation is a 

challenge while the energy spectrum of PD in the gap of tellurium is studied not enough 

and identification in the most cases is not satisfactory (Table 3). For example, in [62] the 

levels Еt of LS are studied by photoinduced currents (PICTS) and authors give more than 

150 values of deep levels, where the sufficient part of them is caused by the native defects. 

More reliables are some theoretical works where energies Еt are calculated («ab anitio») [57-

61]. We have used namely the data Wei [57-58] obtained from the first principles. Table 3 

summarizes our results. 

According to calculations the deep centers with energy position 0.71 eV are belonging to 
2

Te
V  . We have experimentally observed the level Et = (0.68÷0.70) eV which may be caused by 

this defect. Analogically, the LS with energies (0.60÷0.63) eV may be ascribed to the 

antistructural defect 2

Cd
Te   (0.59 eV), and (0.56÷0.57) eV and (0.45÷0.46) eV to the interstitial 

cadmium in different charge states: 2c

i
Cd  (0.56 eV), c

i
Cd   (0.46 eV). The level 0.29 eV is also 

formed by the native defect bound with cadmium 2a

i
Cd   (0.33 eV). Different ionization 

energies of interstitial cadmium are due to its place in octo- or tetrahedral position in the 

crystal lattice of the material.  

4.2.2. ZnTe films 

Table 4.3 summarizes the results of calculations for ZnTe condensates in dependence on 

physical technical growth conditions. SCLC CVC method reveals set of trap groups with the 

most probable energy position Еt1 = 0.21 eV; Еt2 = (0.32÷0.34) eV, Еt3 = 0.57 eV; Еt4 = (0.41÷0.42) 

eV; Еt5 = 0.89 eV. The concentration of the revealed LS is in interval Nt = (1020 ÷1021) m-3. The 

LS with energy Еt = (0.32÷0.33) eV are dominant in the most samples and they determine the 

CVCs of the films.  

The trap spectrum in ZnTe films can be partially checked by investigation of temperature –

conductivity functions for the condensates. As shown by analysis of  – Т functions in the 

Ohmic section of the CVC for high-temperature ZnTe condensates the following 

conductivity activation energies are typical: 0.05 eV; (0.14÷0.15) eV; (0.20÷0.21) eV; 

(0.33÷0.34) eV; (0.42÷0.43) eV; (0.51÷0.52) eV; (0.57÷0.58) eV; (0.69÷0.70) eV and 0.89  

eV (Table 4). Set of Et values from the  – Т functions is in a good correlation with those in 

ZnTe films defined by SCLC CVC method (Table. 3) and low-temperature luminescence 

(Table. 2). 

As the films ZnTe as CdTe layers were not doped in-advance all the calculated LS are due to 

native PD, their complexes, uncontrolled impurities and their complexes with native defects. 

The LS in monocrystals and films ZnTe were studied by SCLC CVC in [24, 63, 64]. Authors 

[24] have found the trap parameters in monocrystalline samples by the voltage of complete 

trap filling-in: Et = 0.17 eV and Nt = 1022 m-3. On the other hand, measurements of  – Т 

dependencies in the square section of the CVC gave Et = 0.14 eV and Nt = 1023  m-3 taking in 

mind the presence of traps in the material authors [64] calculated the LS density in ZnTe 
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films prepared by laser evaporation technique: Nt = (4.2÷8.4)1022 m-3. The trap energy is not 

defined in this work. In ZnTe films obtained by the electro-deposition the trap concentration 

is Nt = 3.61021 m-3 [63]. 

 

Parameters 

of film condensation 

From SCLC CVC From -Т dependencies 

Et, eV Nt, m-3 Et, eV Nt, m-3 

Тs = 623 К, 

Te = 973 К 

- - 0.21 2.11020 

0.34 8.61020 0.34 7.31020 

Тs = 673 К, 

Te = 973 К 
0.33 5.31020 - - 

Тs = 723 К, 

Te = 973 К 

0.34 2.91020 0.33 4.11020 

- - 0.57 5.51020 

- - 0.89 8.41020 

Тs = 773 К, 

Te = 973 К 
0.32 5.31020 - - 

Тs = 823 К, 

Te = 973 К 
0.42 2.11020 - - 

Тs = 873 К 

Te = 973 К 
0.32 1.51021 - - 

Тs = 623 К 

Te = 973 К 

0.35 

0.37 

8.81020 

 
- - 

Table 3. LS parameters in ZnTe films from SCLC CVC and -Т functions 

As is seen from the Table 3, the trap concentration in ZnTe films is significantly lesser than 

that in condensates prepared by laser evaporation, electro-deposition methods and even in 

the monocrystalline material [23, 63- 64]. It shows a high structural perfectness and 

stoichiometry of the layers.  

Nevertheless, the most levels found in ZnTe films may be identified with some probability. 

The level Е1 = 0.05 eV is commonly bound with single-charged dislocation 
Zn

V  , and the level 

Е2 = 0.15 eV is bound with a double-charged 2

Zn
V   Zn vacancy [65, 66]. In later works the 

second level is ascribed to Cu as to a traditional residual impurity in ZnTe, and the double-

charged Zn vacancy is supposed to have a more deeper energy level 0.21 eV [66]. It is 

thought that the energy activation (0.36÷0.40) eV [67, 68] is for the common substitution 

impurity in ZnTe, namely OTe. The most deepest level 0.58 eV authors [67] ascribe to the Te 

vacancy 2

Te
V   (interstitial zinc 2

i
Zn  ). The possible interpretation of LS in ZnTe films is listed 

in table 5.7. Other energy levels on our opinion are belonging to the uncontrolled impurities 

and complexes native defect-impurity.  

We have revealed trap levels with energy position Еt = (0.22 – 0.25) eV and concentration 

Nt = (5.01020 ÷ 1.51021) m-3 by the analysis of SCLC CVC in ZnS films. These LS may be 

localized in the gap due to presence of the interstitial Zn atom 2

i
Zn  . LS with energy position 

Еt = (0.24÷0.25) eV were observed in [70] the thermo stimulated current technique.  
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Ts, К 623 673 723 773 823 873

Interpretation Section 
Ohm. Sq. Ohm. Ohm. Sq. Ohm. Ohm Ohm.

Et, eV 

E9  0.89 – 

E8 0.70 0.69 – 

E7   0.58 0.58 0.57  0.58  
2

Te
V ( 2

i
Zn ) [67] 

E6 0.51   0.52  0.51 0.52  
2

Zn
V (0.50) [69] 

E5 0.43  0.42    0.42  
Te
O  (0.41) [67] 

E4 0.33 0.34 0.33  0.33  0.34 0.33 
Te
O  (0.36) [68] 

E3  0.21  0.20  0.20   
2

Zn
V  (0.21) [67] 

E2      0.14  0.15 ,
2
Zn
V


Zn

Cu  (0.15) [69] 

E1  0.05       

Zn
V  (0.05) [65] 

Table 4. Energy positions of LS for defects in ZnTe gap determined from the slope of –1/Т functions  

According to the Arrhenius equation  - Т functions allowed calculating conductivity 

activation energies in linear sections: Е1=0.03 eV; Е2 = (0.07÷0.08) eV, Е3 = 0.15 eV; 

Е4 = (0.23÷0.24) eV; Е5 = 0.33 eV; Е6 = 0.46 eV; Е7 = 0.87 eV.  

4.2.3. ZnS films 

Table 5 summarizes LS parameters calculated by SCLC CVC method and from the  - Т 

functions in ZnS condensates prepared under various physical technical conditions. 

Reference data are presented for comparison. The table shows a correlation between our 

results and data obtained by other authors [71-74]. Besides that, there is a coincidence of 

defect energy positions defined from the SCLC CVC and  - Т functions.  

Тs, К 

(Те = 1173 К) 

From CVC SCLC From -T dependencies

Et, eV Nt, m-3 
Et, eV

Reference data

523 К 0.22 5,11020 
0.03 0.029 [71]

0.07 0.06 [72]

590 К 0.25 1.51021 

0.07 0.06 [72]

0.24 0.24; 0.25 [70, 72]

0.33 0.31-0.33 [70]

0.87 0.81-1.29 [74]

673 К 0.23 8,21020 

0.03 0.029 [71]

0.23 0.24; 0.25 [70, 72]

0.15 0.14 [72, 73]

0.46 -

Table 5. LS parameters defined by analysis of SCLC CVC and  - Т functions at ohmic section of the 

CVC for ZnS films prepared under various physical technical condensation modes  
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All the LS found here were not identified because of absence of corresponding reference 

data. Only the levels with activation energy Е1 = 0.15 eV and Е2 = (0.22÷0.25) eV may be 

bound with single- 
i

Zn  and double charged 2

i
Zn   interstitial Zn atom. 

5. Determination of LS parameters of polycrystalline chalcogenide films 

by optical spectroscopy (low-temperature photoluminescence) 

Low-temperature photoluminescence (PL) is one of the most reliable tools applied for 

investigation of longitudinal, native, impurity and point defect ensembles in 

semiconductors. High resolution of the method makes it possible to examine not only bulk 

materials (bulk chalcogenide semiconductor are now good studied [75-87, 90-93, 96, 99-100, 

102-104]), but also thin films, in particular, chalcogenide semiconductor thin layers. In this 

part we present data obtained by studying low-temperature PL spectra of ZnTe, CdTe and 

ZnS films. These results allowed monitoring and adding new results to those given by the IS 

method.  

5.1. СdTe films  

Fig. 5 (a, b) illustrates the typical spectra of these films. As shown, the spectra for both types 

of the films are significantly similar. A modest energetical displacement of lines in spectra 

from epitaxial films comparing to those from the polycrystalline layers films deposited on 

glass may be caused by presence of sufficient macrodeformations in the layers CdTe/BaF2. 

PL spectra from CdTe layers have lines originated from optical transfers with participation 

of free and bound excitons, transfers valence band – acceptor (е-А), donor-acceptor transfers 

(DAP), the radiation caused by presence of dislocations or DP (donor pairs, DP) (Y - stripes); 

the spectra also have a set of lines corresponding to optical transitions where phonons take 

place (LO - phonon replica) [87-99]. 

 

Figure 5. PL spectra registered at T=4,5 К for polycrystalline films CdTe/glass (а), prepared at Te = 893 К 

and various Ts, К: 473 К (1); 523 К (2); 623 К (3); 823 К (4) and for the epiraxial layer CdTe/BaF2 (b): 

Te = 893 К, Ts = 798 К  
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Activation energies relative to the valence band (while the most samples were of  

p-type conductivity) were calculated using expression (26) (in analogy with description  

above). 

The gap of CdTe at Т=4.5 К was supposed to be Еg =1.606 eV. The data are presented in 

Table 6.  

Еi, eV Reference data, eV i, eV 
Recombination 

type 
Interpretation 

1.583 1.589-1.588 0.023 Exciton 
A0X, A -Li, Na [90, 92, 95, 99, 

100] 

1.567 1.568 0.039 Exciton (A0X)-LO [90, 100] 

1.545 1.546 

0.061 

(0.050) [13]

(0.058-Li. 

Na) 

е-A 

- 

- 

DAP 

A-
Cd

V   [13, 94, 95] 

A – Li, Na [90, 92, 99] 

(VCd - OTe)-[97, 102] 

Cd
D V   [13, 103] 

1.538 1.538 
0.068 

(0.067-VCd)

DAP 

- 

D - A [93] 

D - A (Na) [13, 92] 

1.525  0.081 (е-A) LO [97] 

1.497 

1.496 

1.499 

1.495 

0.109 

(0.107 [13])

(0.111 [13])

е-A 

- 

- 

O [99] 

AgCd [13] 
2

Cd
V  [13] 

1.476 
1.474 

1.477 
0.130 е-A 

Y [96-99, 101] 

Y (-dislocations [93] 

1.457 1.459 

0.149 

 

(0.146 [13, 

92]) 

е-A 

- 

- 

DAP 

(А-X)-LO [101] 

Y [91] 

CuCd [13] 

 2

Cd
In V

  [13, 92, 100] 

1.438 1.436 0.168 
е-A 

DAP 

(А-X)-2LO [101] 

 2

Cd
In V LO

   [13, 92, 100] 

1.419 1.415 0.187 
е-A 

DAP 

(А-X)-3LO [101] 

 2 2
Cd

In V LO
   [13, 92, 100] 

Table 6. Principal lines of PL spectra of CdTe films and their interpretation  

The lines due to exciton recombination in CdTe single crystals are well-known. Authors [13] 

show energy level diagram for the exciton localized on neutral donors or acceptors and 

possible transfers between these levels. Commonly the elements of 3rd Group (Ga, In, Al) 

and 7th Group (Cl, Br, I) are shallow donors in CdTe and ZnTe, and acceptors are the 

elements of 1st Group and 5th Group (Li, Na, Cu, Ag, Au, N, P, As). These elements are 

typical excessive impurities in compounds II-VI. Authors [13] also give the ionization 

energies of principal dopant impurities in CdTe: for the donors (13.67÷14.48) meV, for 
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acceptors 56 (N) - 263 (Au) meV. We have used these values for further interpretation of the 

experimental results.  

Unlike ZnTe condensates the peak bound with a free exciton recombination at energies Ei = 

1.596 eV [12] had not been observed for CdTe films. However, the spectra showed a line 

caused by the recombination of exciton localized on neutral acceptor A0X - Ei = (1.583÷1.588) 

eV (1.589 eV [90, 92, 95, 99, 100]). This line indirectly demonstrated that the investigated 

films were of p-type conductivity and correspondingly low concentration of dopant 

impurities. Maybe there is a reason for absence of the peak bound with the exciton localized 

on the neutral donor D0X – 1.593 eV [13, 90, 100] in the registered spectra. The excessive 

impurity (Li, Na) commonly is an acceptor in II-VI compounds which produces shallow LS 

near the valence band.  

In some PL spectra of CdTe films we have observed the peak due to the phonon repetition 

of the line from the bound exciton (A0X)-LO at Ei = 1.567 eV. The similar peak with Ei=1.568 

eV and Ei=1.570 eV was also observed in [90, 100]. It should be noted that the excitation 

energy of the longitudinal phonon in CdTe is LO(Г) – 21.2 meV [13, 90, 92]. This value is 

almost coinciding with that observed experimentally (21 meV) showing our correct 

interpretation of the experimental data.  

The most intensive peak of 1.545 eV was observed in PL spectra from polycrystalline films. 

The similar peak with energies Ei=1.55 eV and Ei=1.545 eV was registered by authors [92, 94, 

97, 99, 103]. The common interpretation says that this peak is caused by the electron 

transition between the conduction band and acceptor (е-A) (a single-charged vacancy 
Cd

V   

[94] or other shallow acceptor [92, 99]). Nevertheless, authors [13, 95, 103] point out this 

radiation as a consequence of p resenting donor-acceptor pairs (DAP) where the acceptor is 

a native defect (
Cd

V  ) [13, 103] or another uncontrolled shallow impurity [95]. Authors [97] 

have found the activation energy of corresponding donors and acceptors: 8 meV and 

47meV.  

Results of investigated polycrystalline CdTe films in hetero structures CdTe/ZnS under air 

and vacuum annealing have given [97] another interpretation. It is supposed that the 

luminescence with 1.55 eV is due to oxygen presence in the material. In which form it exists 

in the material (substitutional impurity or oxide phase) is not established. However, authors 

[102] have studied the LS in CdTe single crystals by thermo electronic spectroscopy and 

demonstrated the energy level 0.06 eV bound with a complex (
Cd Te

V O )-. 

Analyzing our results allows us to conclude that the peak Ei=1.545 eV is rather due to the 

electron transitions between the conduction band and acceptor (a single-charged vacancy or 

DAP). Really if this peak was caused by oxygen we could it observed in PL spectra from 

both polycrystalline and epitaxial films but there are no such a peak in PL spectra from the 

films CdTe/BaF2. Besides that no structural method had revealed the oxygen in these 

compounds The films under investigation have shown no registered donor impurities of 

considerable concentration, so the interpretation of this peak as a consequence of the DAP 

presence is lesser probable than that a consequence of e-A transition.  
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In some cases the PL spectra from the polycrystalline films showed an asymmetric peak 

1.545 eV indicating that in reality it may be a superposition of two nearest lines. 

Mathematical analysis showed that the most probable position of the additional peak is Ei = 

1.538 eV. The similar peak was observed in spectra from the epitaxial films CdTe/BaF2. The 

line with the same energy was revealed by authors [93] in PL spectra from deformed CdTe 

single crystals and is supposed to be caused by defects generated in the material due to slip 

of principal Cd(g)-dislocations. Authors [13, 92] explain the peak Ei= 1.538 eV as one of 

unknown nature. Similar interpretation is also in [89] where the line Ei= 1.539 eV is caused 

by DAP (here the acceptor is sodium, 
Cd

Na ). The next peak Ei = 1.525 eV is likely is the 

phonon repetition of the previous one (е-A)-LO [96].  

The PL line Ei = 1.497 eV was observed in [99] on monocrystalline CdTe samples under 

doping by ion implantation. As this line has appeared in the samples doped with oxygen 

only the authors suggest it is caused by the presence of this impurity. Other authors 

suppose this line is due to electron transitions between the conduction band and the level 

of the substitutional impurity acceptor AgCd (EV+0.107 eV) [13] or by native defect 2

Cd
V   

(Ev+0.111 eV) [13].  

The wide radiation stripe in polycrystalline films at the energy 1,45 eV is separated in single 

peaks based on results from the PL of epitaxial films. They are shown in Fig. 5.  

The peak 1.476 eV in [96-98] is due to longitudinal defects (dislocations and DP, a so-called 

Y-stripe). Authors [90, 98] assume the Y-stripe at (1.46-1.48) eV is caused by longitudinal 

defects (dislocations). Authors [99] make it more precicely: this peak is caused by the 

recombination of exciton localized on slipped Cd-dislocations. Authors [93] have 

investigated The photoluminescence of deformed CdTe single crystals and showed that the 

peak Еi=1.476 eV is not caused by the Cd-dislocations but is due to the electron states of 600 

Те(g)-dislocations (-dislocations). So that, the number of authors have the same opinion 

that this line in PL spectra is caused by the longitudinal defects. We also agree with this 

interpretation.  

The lines 1.453 eV, 1.433 eV and 1.413 eV which are good resolved in spectra from the 

epitaxial films CdTe/BaF2 are very similar to 1LO, 2LO, 3LO repetitions of the peak Ei = 

(1.473÷1.476) eV. However, the energy difference of these lines (Е=0.0200 eV) does not 

coincide with the energy of longitudinal optical phonons in CdTe 0.0212 eV making it 

difficult to interpret the corresponding peaks unambiguously. At the same time, the 

analogous set of lines with the LO structure and the energy difference 0.0200 eV in the range 

E = (1.39÷1.45) eV was observed by authors [101]. They have studied polycrystalline CdTe 

films deposited by vacuum evaporation at Ts = (723÷823) К on glass and aluminum substrates.  

Authors [100] have examined undoped and doped with donor impurities (Al, In) CdTe 

single crystals and also have observed the PL stripe in the energy range E = (1.380÷1.455) 

eV containing four lines with LO structure. The authors interpreted them as electron 

transition between DAP and their phonon repetitions. Authors [81, 91] suppose the wide 

peak 1.46 eV is due to the excitons localized in longitudinal defects, probably dislocations 
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(Y-stripe). The lines 1.455 eV, 1.435 eV and 1.415 eV were observed in [94] from the 

polycrystalline CdTe films prepared by the gas-transport method.  

As we see the most authors have an unique opinion: the set of lines in the range 

Е=(1.413÷1.476) eV is due to longitudinal defects (rather dislocations), and their intensity 

[93] can be a measurement unit of these defects in the material.  

For polycrystalline films (Fig. 5, а) the LO structure of the stripe caused by the longitudinal 

defects at energies ~1.45 eV has practically not been observed, maybe because of 

superposition with additional lines of another origin.  

The defect complexes in the material (A-centers) are also resolved by the PL in the same 

energy range (it can be considered as a partial case of DAP). According to [13, 97] А- centers 

 2

Cd
V D

   where Cl is a donor produce the line and its LO-phonon repetitions with 

energies 1.454, 1.433, 1.412, 1.391, 1.370, 1.349 and 1.328 eV. However, as is seen in Fig. 5, 

this stripe is displaced relatively to that observed experimentally, so the experimental PL 

spectra of CdTe films can be completely explained by these complexes only. The narrower 

stripe with peaks 1.458, 1.437, 1.417 and 1.401 eV produces the А-center where indium is a 

donor. This stripe has the better coincidence with experimental one but is also displaced. 

Besides that, it is difficult to explain why the А-complex is observed in the polycrystalline 

films and is not observed in the epitaxial layers while the charge mixture for both types of 

the films is the same. Thus we suppose the interpretation of the wide stripe in the energy 

range Е = (1.413÷1.4760) eV due to longitudinal defects is more reliable.  

Under change of condensation conditions of polycrystalline samples we have observed the 

change of intensity for a stripe due to prolonged defects (~1.45 eV). As shows Fig. 5, as the 

substrate temperature increases from 473 К to 623 К the intensity of this stripe is decreasing 

and then it increases as the Ts increases. These results have a good correlation with data of 

investigation of CdTe film substructure [49], this fact points out an enhance of the structural 

quality (lowering vacancy concentration) of the bulk crystallites in condensates under 

elevating substrate temperature up to Ts=623 К, but this quality becomes lower as the 

substrate temperature increases over 623 K.  

As the substrate temperature elevated (Ts>723 К) the optical properties of CdTe films were 

strongly degraded forming a number of additional peaks in the PL spectra which finally 

become a bell-like curve without possibility to identify the separate lines. Morphological 

studies demonstrated further increase of the crystallite sizes in this temperature range. 

However, the volume of these crystallites becomes a high-defective one.  

Table 6 summarizes results of PL spectra interpretation for CdTe films showing their high 

optical quality.  

5.2. ZnTe films 

Fig. 6 illustrates typical PL spectra of ZnTe films registered at 4.5 K. A number of lines is 

observed, their energies are indicated in the Fig. 6 and are listed in Table 7. Analysis and 

interpretation of the PL peaks are carried out according to reference data [75-89].  
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The low-temperature PL spectra of ZnTe films show a set of peaks originated from: i) optical 

transitions under participation of free (X) and bound on neutral donor (D0X) and acceptor 

(A0X) excitons; ii) transitions valence band – acceptor impurity (е-А), iii) radiation due to 

presence of longitudinal defects (dislocations, Y-stripe); iv) optical transitions where 

phonons of different type are participating (LO (0.0253 eV), TO, LA (0.0145 eV), TA (0.007 

eV) -repetition).  

We calculated activation energies of corresponding processes using the expression (26). The 

gap of ZnTe crystal at 4.5 K was supposed to be Eg = 2.394 eV. As the examined material was 

of p-type conductivity the activation energies were counted down relative to the valence 

band. Table 7 summarizes these data.  

 

Figure 6. Photoluminescence spectra registered at T=4.5 К for ZnTe films prepared at Te = 973 К and 

various Ts, К: 573 К (1); 673 К (2); 773 К (3) 

Optical transitions with energy (2.381÷2.383) eV were observed in [68, 75-82, 84-86] where 

authors had studied monocrystalline or bulk polycrystalline ZnTe of high structural and 

optical quality. These transitions are commonly relating to a free exciton (X). Earlier [82] the 

PL line of Ei = (2.374÷2.375) eV was suggested to be caused by the exciton bound on neutral 

acceptor (zinc vacancy VZn). Further [76-78] it was shown that other acceptor centers take 

part in forming such an excitonic complex, in particular, acceptor centers due to 

uncontrollable impurities (Li, Cu) in ZnTe are of interest. However, in the most recent works 

[68, 81] this line is ascribed to the exciton localized on shallow neutral donor (atoms of 

uncontrollable impurities from 3rd and 7th Groups of the Periodical System (In, Ga, Al, Cl, Br. 

I)). These impurities form in the gap of the material more narrower levels than the acceptor 

ones. The line with Ei=2.371 eV which is energetically closed to that considered above is due 

to radiation of bound excitons [76-78, 81]; nevertheless the impurity (acceptor) in this 

complex has (obviously) somewhat larger energy level causing other energy of the stripe. 

These acceptors are native defects and uncontrollable excessive impurities (Li, Na, Ag, Cu). 
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According to [81] LiZn is the most probable candidate while it forms in the gap of the 

material energy level 60.6 meV. 

Radiation 

line Еi, eV 

Reference 

data, Еi, eV 

Activation energy,

Е, eV 
Recombination type Interpretation 

2.383 2.381÷2.383 0.011 Exciton X, n=1 [68, 76, 82] 

2.375 
2.375 

2.379 
0.019 Exciton 

А0X [76-77] 

А- VZn [82] 

D0X, D- In [68, 86] 

2.371 2.374; 2.375 0.023 Exciton A0X, A-Li,Cu [68] 

2.331 2.334; 2.332 

0.060 

(0.061 – Li [75, 78])

(0.063 – Na [75]) 

е-А А - LiZn, NaZn [75, 76] 

2.301 2.307 0.093 (е-А)-LO А - LiZn [76-77] 

2.270 2.270 0.124 е-А А - AgZn [76] 

2.233 2.230 0.161 е-А А - CuZn [75, 79] 

2.208  0.186   

2.194 2.195; 2.19 0.200 е-А Y1 [75] 

2.159  0.235   

2.151 2.155 0.243 е-А Y2 [75, 76, 78, 84] 

Table 7. Principal lines in PL spectra of ZnTe films and their interpretation  

It should be noted that the presence of excitonic lines in PL spectra from high-temperature 

ZnTe condensates points out their high optical and crystal quality. These lines are of 

sufficient intensity in the spectra from the films deposited at the substrate temperature 

Ts=573 К and the larger intensity for condensates prepared at Ts=673 К. Excitonic lines in the 

spectra from low-temperature condensates and layers manufactured at Ts>773 К were not 

registered. Thus, the results of PL studies indicate that the films deposited at the substrate 

temperatures Ts= (623÷673) К are the most optically perfect layers. These data are coinciding 

with the results of investigations of substructural characteristics of ZnTe films reported 

earlier [54]. According to these data the dependence of the CSD sizes on the substrate 

temperature is a curve with the maximum at Ts = (600÷650) К. The minimal dislocation 

concentration is also observed in the films under these temperatures. 

The line Еi = 2.34 eV belonging [66] to VZn is not observed in spectra of the radiation 

recombination in ZnTe films. This fact is also confirming high stoichiometry of the films 

under study.  

The set of nearest lines in the energy range Е = (2.30÷2.33) eV and Е = (2.17÷2.25) eV 

authors [76-79] ascribe to the electron transitions from the conductance band to the shallow 

acceptor levels formed by Li or Cu atoms and their phonon repetitions (LO – 25.5 meV). 

There are stripes 2SLi, 3SbLi, (e-A) Li, 2P Li, 4SbLi, 4SbLi-LO, 2SCu, 3SbCu, 4SbCu, 2Sb Cu - 

LO, 2Sb Cu - 2LO and others. Experimental and theoretical values of the activation energy 

for ground and excited states for the main excessive impurities in ZnTe (lithium and copper) 
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are reported in [76]. They are in the energy range E = (0.0009÷0.0606) eV for Li and 

E = (0.001÷0.148) eV for Cu. However, in [65] the line Еi = 2.332 eV is supposed to be due to 

other excessive impurity NaZn, and in [82] this line is due to the native defect VZn. Another 

optical transition Еi = 2.27 eV authors [77] ascribe to the Ag impurity 2S Ag.  

What about the peaks in the energy range Е = (2.10÷2.21) eV. These transitions were for the 

first time observed in [75-79] and authors had called them Yi-lines. They are ascribed to the 

distortions of the crystalline lattice of the material near incoherent twin boundaries, 

dislocations and other longitudinal defects where the dangling bonds are formed in the 

semiconductor material. So that, the lines Еi = 2.159 eV and Еi=2.194 eV can be interpreted as 

Y2 (2.155 eV) and Y1 (2.195 eV) [75]. They are due to longitudinal defects and the change of 

their intensity may point out the change of these defects concentration in the material. 

Somewhat other energy position of the line due to oxygen (2.06 eV) is reported in [66]. Thus, 

analysis of the reference data has forced us to conclude that PL lines in the energy interval 

Е = (1.835÷2.055) eV are rather caused by oxygen, its complexes and phonon repetitions. If 

it is true, the analysis of PL spectra from ZnTe films indicates the increase of the oxygen 

content in the samples under increasing the condensation temperature. Actually, if there is 

no oxygen in the samples prepared at 573 К, its concentration in high-temperature films 

(Ts=773 К) is sufficiently larger. Oxygen concentration in the material strongly depends on 

the vacuum conditions under the film preparation and the charge mixture quality. 

5.3. ZnS films  

Low-temperature photoluminescence is the most reliable tool for examining wide gap 

materials providing minimization of overlapping peaks due to various recombination 

processes. The typical PL spectra from ZnS films at 4.7 K are shown in Fig. 7. The detailed 

analysis of the PL spectra (identification of complex broadened lines) was carried out by 

ORIGIN program. Maximums of the peaks revealed by this analysis (Fig.7) are noted by 

vertical lines.  

It should be noted that the PL spectra registered at various temperatures of experiment 

have no sufficient distinctions except those with somewhat larger line intensities in spectra 

obtained at 77 K. Analysis of the spectra shows that for ZnS films deposited at Тs = (393-

613) K the peaks with λi = 396 nm (Ei = 3.13 eV) and λi = 478 nm (Ei=2.59 eV) are 

dominating. Further working-out of the spectra demonstrated that the peak λi= 396 nm is 

asymmetric (Fig. 7) what is may be explained by the superposition of two closely placed 

lines. The spectra also have low intensity peaks with λi =603 nm (Ei=2.06 eV) and λi =640 nm 

(Ei=1.94 eV). 

PL spectra from the films prepared at higher Тs is sufficiently changed. There is a number of 

overlapping peaks where the most intensive ones are in the wavelength range 

λi = (560÷620) nm.  

Under interpretation of PL spectra from ZnS films we have calculated the activation 

energies of processes causing the corresponding lines. We also have suggested the PL 
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radiation took place under transfers of electrons from the conduction band (or shallow 

donors) to the deep LS in the gap of the material. Then the optic depth of the energy level of 

the defect (ΔE) relative to the valence band causing the spectral peak may be found from 

(26) supposing the optical gap of the material at 4.5 K is Eg = 3.68 eV. 

Taking into account that the chalcogenide films were not doped in-advance one can suggest 

that the lines in spectra are due to transfers of carriers between conduction band and LS 

caused by the native point defects, their complexes and uncontrolled impurities. We made 

an attemption to identify these LS according to reference data [104-108] (Table 8). As is 

shown there is a good correlation of our results and those obtained by other authors for ZnS 

single crystals.  

 

Figure 7. Typical PL spectra for ZnS films (a) and the example of the peak differentiation (b) 

The investigations have shown that the Schottky defect 
Zn

V  is a dominant defect type in ZnS 

films prepared at low substrate temperatures Ts = (393-613) K. As Ts increases the number of 

single-charged Zn vacancies in the condensates decreases, and concentration of double-

charged Zn vacancies increases. In the films deposited at higher substrate temperatures 

Ts=(653-893) K single-charged S vacancies 
S

V   and double-charged S vacancies 2

S
V   and 

interstitial Zn atoms 
i

Zn are dominating.  

Such features of the PD ensemble in the samples are obviously caused by processes of 

condensation and re-evaporation of Zn and S atoms from the substrate. Actually, at low 

Ts the defect formation in the films is determined by higher S pressure comparing to Zn 

pressure in the mixture vapor providing Zn vacancy formation in ZnS condensates. As Ts 

increase the PD ensemble in the material is determined by the more rapid re-evaporation 

of the same S atoms from the substrate resulting in production of Zn-beneficiated films. 

Sulfur vacancies and interstitial Zn atoms are being dominant defects in such 

condensates.  
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Ts, K 
Measurement 

range , nm

1, nm

Е1, eV

2, nm

Е2, eV

3, nm

Е3, eV

4, nm

Е4, eV

5, nm

Е5, eV

6, nm

Е6, eV

7, nm 

Е7, eV 

8, nm 

Е8, eV 

393 360÷640 
396 417 478 - - 603 - - 

3.13 2.97 2.59 - - 2.06 - - 

613 450÷720 
- - 478 - - 603 640 - 

- - 2.59 - - 2.06 1.94 - 

653 450÷720 
- - - 530 582 603 640 690 

- - - 2.34 2.13 2.06 1.94 1.79 

893 450÷720 
- - - 530 582 603 640 690 

- - - 2.34 2.13 2.06 1.94 1.79 

Еi, eV 

Exper. 
- 0.55 0.71 1.09 1.34 

1.55

1.40 

1.62

1.40 
1.74 

1.89 

1.74 

Defect - Zn
V   2, )

s Zn i
O V S  2

Zn
V   Cu 

2

S
V   2

S
V   

S
V   

S
V   

Еi, eV 

ref. 
- 0.60 0.70 1.10 - 1.40 1.40 1.90 1.90 

Reference 

data 
- [107] [107, 108] [104] [104] [104] [104] [104] [104] 

Table 8. Results of PL spectra working-out and their comparison with reference data (solid values are 

for peaks of maximum intensity)  

The PL spectra of ZnS films have also revealed low intensity lines from the activator 

impurity (Cu) and, possible, 
i

S  [106] or a complex defect 2( , )
s Zn

O V   [107]. Results of 

studying low-temperature PL allowed constructing energy position model of native point 

defects in zinc sulfide films prepared by quasi-closed space technique (Fig. 8). 

 

Figure 8. The model of the level positions for native point defects in band gap of ZnS films  

To explain the experimental results we have used quasi-chemical formalism for modeling 

the point defects ensemble in the examined chalcogenide films in dependence on physical 
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technical conditions of layer condensation. This method concerns all defects, electrons and 

holes as components of thermodynamic equilibrium in the bulk crystal (complete 

equilibrium of the point defects). Then the modeling procedure reduces to solving set of 

equations which describe penetration of point defects into solid from the gas state along 

with the equation of electroneutrality and intrinsic conductivity equation [109-110]. The 

most complete spectrum of the native defects was taken into account under modeling the 

point defects ensemble. Calculations were carried out for the complete defects’ equilibrium 

as well as for their quenching. Under modeling we have used energies of native defects 

formation obtained «ab initio» in [56-60]. Reference data of ionization energies of acceptor 

and donor centers of point defects in CdTe, ZnS, and ZnTe were used along with results of 

our experiments. Main data of modeling are presented in [111-116]. 

6. Conclusions 

1. Express-method of IS providing maximum information on deep centers in high-

resistive films based on analysis of SCLC CVC is developed and allows without 

additional studies  

- identifying current mechanism in the structure as SCLC; 

- receiving correct information on LS parameters in the gap of material: energy position, 

concentration and energy distribution immediately from the experimental CVCs 

without model framework. 

2. Using IS method the LS spectrum in the gap of polycrystalline (and monocrystalline) 

films of II-VI compounds is examined. These results are checked and made more 

accurately by analysis of  - Т – functions and low-temperature luminescence. 

3. Using the methods mentioned above in the gap of polycrystalline material are revealed 

the LS with following energy positions: Et1 = 0.05, Et2 = (0.14÷0.15), Et3 = (0.20÷0.21), 

Et4 = (0.32÷0.34), Et5 = (0.42÷0.43), Et6 = (0.51÷0.52), Et7 = (0.57÷0.58), Et8 = (0.69÷0.70) eV 

(ZnTe); Et1 = (0.13÷0.15), Et2 = (0.39÷0.40), Et3 = (0.45÷0.46), Et4 = (0.51÷0.53), 

Et5 = (0.56÷0.57), Et6 = (0.60÷0.63), Et7 = (0.68÷0.70) eV (CdTe); Еt1 = 0.03, Еt2 = (0.07÷0.08), 

Еt3 = 0.15, Еt4 = (0.23÷0.24), Еt5 = 0.33, Еt6 = 0.46, Еt7 = 0.87, Еt8 = 1.94, Еt9 = 2.34, Еt10 = 2.59, 

Еt11 = 2.97, Еt12 = 3.13 eV (ZnS) and concentration Nt=(1019–1021) m-3. Comparing reference 

data produced an identification of these levels as ones belonging to native point defects, 

uncontrolled impurities and their complexes. The wide range of LS revealed is due to 

high-sensitive methods used under investigations as well as because of examining traps 

in the intermediate layer of the films forming under condensation near the substrate.  

Author details 

Denys Kurbatov and Anatoliy Opanasyuk 

Sumy State University, Sumy, Ukraine 

Halyna Khlyap 

TU Kaiserslautern, Kaiserslautern, Germany 



 
Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films 531 

Acknowledgement 

This work is supported by the Ukraine State Agency for the Science, Innovation and 

Informatization and by the NRF grant funded by the MEST of Korea within the project 

«Advanced materials for low-cost high-efficiency polycrystalline hetero junction thin films 

solar cells» and by the Ministry of Education and Science, Youth and Sport of Ukraine 

(Grant №. 01110U001151). The authors wish to thank Prof. Yu.P. Gnatenko and P.M. 

Bukivskij from the Institute of physics NAS of Ukraine for the PL measuring of some II-VI 

film samples. 

7. References 

[1] Georgobiani, A. (1974). Wide Band gap II-VI Semiconductors and Perspectives of Their 

Usage (in Russian), Uspekhi Fizicheskikh Nauk, Vol.113, No.1, pp. 129-155, ISSN 0042-

1294.  

[2] Pautrat, J. (1994). II–VI Semiconductor Microstructures: From Physics to 

Optoelectronics, Journal de Physique III, Vol.4, – pp. 2413-2425, ISSN 1155-4320. 

[3] Takahashi, K., Yoshikawa, A. & Sandhu, A. (2007). Wide Bandgap Semiconductors. 

Fundamental Properties and Modern Photonic and Electronic Devices, Springer, ISBN, Berlin, 

Heidelberg, NewYork, Germany, USA.  

[4] Owens, A. (2004). Compound Semiconductor Radiation Detectors, Nuclear Instrumental 

Methods, Vol. 531, pp. 18-37, ISSN 0168-9002. 

[5] Grinev, B., Ryzhikov, V. & Seminozhenko, V. (2007). Scintillation Detectors and Radiation 

Control Systems on Their Base (in Russian), Naukova Dumka, ISBN, Kyiv, Ukraine. 

[6] Berchenko, N., Krevs, V. & Seredin, V. (1982). Reference Tables (in Russian), Voenizdat, 

ISBN, Moskov, USSR. 

[7] Ohring, M. (1992). The Materials Science of Thin Films, Academic Press, ISBN, NewYork, 

USA. 

[8] Poortmans, J. & Arkhipov, V. (2006). Thin Film Solar Cells: Fabrication, Characterization 

and Application, John Wiley & Sons, Ltd. IMEC, ISBN, Leuven, Belgium. 

[9] Panchekha, P. (2000). Structure and Technology Problems of II-VI Semiconductor Films, 

Functional materials, Vol.7, No.2, pp. 1-5, ISSN 1616-3028. 

[10] Holt, D. & Yacobi, B. (2007). Extended defects in semiconductors. Electronic properties, device 

effects and structures, Cambridge University press, ISBN, New York, Melbourne, Madrid, 

Cape Town, USA, Australia, Spain, South Africa.  

[11] Milns, A. (1977). Impurities with Deep Levels in Semiconductors (in Russian), Mir, ISBN, 

Moskow, USSR. 

[12] Shaskolskaya, M. (1984). Crystallography: Studying Reference for Technical Universities (in 

Russian), Vysshaya Shkola, ISBN, Moskow, USSR. 

[13] Korbutyak, D. & Melnychuk, S. (2000). Cadmium Telluride: Impurity-Defect States and 

Detector Properties, Ivan Fedorov, ISBN, Kyiv, Ukraine. 

[14] Fochuk, P. (Experimental identification of the Point Defects/ P. Fochuk, O. Panchuk // 

CdTe and related Compounds: Physics, Defects, Hetero- and Nano-Structure, Crystal 



 
Advanced Aspects of Spectroscopy 532 

growth, Surfaces and Applications. [R. Triboulet, P.Siffert]. Netherlands: Elsevier, 2010. 

– P. 292-362. 

[15] Stokman, F. (1973) On the Classification of Traps and Recombination Centres, Physica 

Status Solidi A, Vol.20. – pp. 217-220, ISSN 1862-6319. 

[16] Serdyuk, V., Chemeresyuk, G. & Terek, M. (1982). Photoelectric Processes in 

Semiconductors, Vyshcha Shkola, Main Edition, ISBN, Odessa, USSR. 

[17] Meyer, B. & Stadler, W. (1996). Native Defect Identification in II-VI Materials, Journal of 

Crystal Growth, Vol.161, pp. 119-127, ISSN 0022-0248. 

[18] Neumark, G. (1997). Defects in Wide Band Gap II-VI Crystals, Material Science and 

Engineering A, Vol.R21, No.1, - pp. 1-46, ISSN 0921-5093. 

[19] Grundmann, M. (2010). The Physics of Semiconductors. An Introduction Including 

Nanophysics and Applications, Springer-Verlag, ISBN, Berlin, Heidelberg, Germany.  

[20] Kosyak, V., Opanasyuk, A. & Panchal, J. (2011). Structural and Substructural Properties 

of the Zinc and Cadmium Chalcogenides (review), Journal of Nano and Еlectronic Physics, 

Vol.3, No.1, – pp. 274-301, ISSN 2077-6772. 

[21] Pavlov, A. (1987). Methods of Measuring the Semiconductor Materials Parameters (in 

Russian), Vysshaya Shkola, ISBN, Moskow, USSR.  

[22] Vorobjev, Ju., Dobropolskiy, V. & Strikha, V. (1988). Methods of Semiconductors 

Investigation, Vyshcha Shkola, ISBN, Kyiv, USSR.  

[23] Gorokhovatskij, Ju. & Bordovskij, G. (1991). Thermoactivation Current Spectroscopy of 

High-ohmic Semiconductors and Dielectrics, Nauka, ISBN, Moskow, USSR. 

[24] Lampert, M. & Mark, P. (1973). Injection Currents in Solid States, Mir, ISBN, Moskow, 

USSR. 

[25] Као, К. (1984). Electrons Transport in Solid States. Vol.1, Mir, ISBN, Moskow, USSR. 

[26] Lalitha, S., Sathyamoorthy, R. & Senthilarasu, S. (2004). Characterization of CdTe Thin 

Film-dependence of Structural and Optical Properties on Temperature and Thickness, 

Solar Energy Materials & Solar Cells, Vol.82, – pp. 187-199, ISSN 0927-0248. 

[27] Ibrahim, A. (2006). DC Electrical Conduction of Zinc Telluride Thin Films, Vacuum, 

Vol.81, pp. 527–530, ISSN. 

[28] Rose, A. (1955). Recombination Processes in Insulators and Semiconductors, Physical 

Review, Vol.97, pp. 322—323, ISSN 1943-2879. 

[29] Rose A. (1955). Space–charge–limited Currents in Solids, Physical Review, Vol.97, pp. 

1538–1544, ISSN 1943-2879 

[30] Nespurek, S. & Sworakowsky, J. (1980). Evolution of Validity of Analytical Equations 

Describing Steady–state Space–charge–limited Current–voltage–characteristics, 

Czechoslovak Journal of Physics, Vol.B30, No.10, pp. 1148–1156, ISSN 0011-4626. 

[31] Mark, P. & Helfrich, W. (1962). Space–charge–limited Currents in Organic Crystals, 

Journal of Applied Physics, Vol.33, pp. 205–215, ISSN 0021-8979.  

[32] Thomas, J., Williams, J. & Turton L. (1968). Lattice Imperfections in Organic Solids. Part 

3, 4, Transactions of the Faraday Society, Vol.64, pp. 2496—2504, ISSN 0014-7672. 

[33] Hwang, W. & Kao, K. (1976). Studies of the Theory of Single and Double Injections in 

Solids with a Gaussian Trap Distribution, Solid State Electronics, Vol.19, pp. 1045–1047, 

ISSN 0038-1101.  



 
Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films 533 

[34] Nespurec, S. & Semejtec, P. (1972). Space Charge Limited Currents in Insulators With 

Gaussian Distribution of Traps, Czechoslovak Journal of Physics, Vol.B22, pp. 160–175, 

ISSN 0011-4626. 

[35] Boncham, J. (1973). SCLC Theory for a Gaussian Trap Distribution, Australian Journal of 

Chemistry, Vol.26, pp. 927–939, ISSN 0004-9425. 

[36] Simmons, J. & Tarn, M. (1973). Theory of Isothermal Currents and the Direct 

Determination of Trap Parameters in Semiconductors and Insulators Containing 

Arbitrary Trap Distributions, Physical Review, Vol.B7, pp. 3706-3713, ISSN 1943-2879. 

[37] Pfister, J. (1974). Note of Interpretation of Space–charge–limited Currents With Traps, 

Physica Status Solidi A, Vol.24, No.1, pp. K15-K17, ISSN 1862-6319. 

[38] Manfredotti, C., de Blasi, C. & Galassini, S. (1976). Analysis of SCLC Curves by a New 

Direct Method , Physica Status Solidi A, Vol.36, No.2, pp. 569-577, ISSN 1862-6319. 

[39] Nespurek, S. & Sworakowski, J. (1978). A Differential Method of Analysis of Steady-

state Space-charge-limited Currents: an Extension, Physica Status Solidi A., Vol.49, pp. 

149-152, ISSN 1862-6319. 

[40] Nespurek, S. & Sworakowski, J. (1980). Use of Space–charge–limited Current 

Measurement to Determine of Properties of Energetic Distributions of Bulk Traps, 

Journal of Applied Physics, Vol.51, No.4, pp. 2098-2102, ISSN 0021-8979. 

[41] Nespurek, S. & Sworakowski, J. (1990). Spectroscopy of Local States in Molecular 

Materials Using Space-charge-limited Currents, Radiation Physics and Chemistry, Vol.36, 

No.1, pp. 3-12, ISSN 0969-806X. 

[42] Nespurec, S., Obrda, J. & Sworakowsky, J. (1978). Study of Traps for Current Carriers in 

Organic Solids ,N N – Diphenyl–p–Phenylenediamine, Physica Status Solidi A, Vol.46, 

No.1, pp. 273–280, ISSN 1862-6319. 

[43] Lyubchak, V., Opanasyuk, A. & Tyrkusova, N. (1999). Injection Spectroscopy Method 

for investigation of Deep Centers in Cadmium Telluride Films (in Ukrainian), 

Ukrayinskyi Fizychnyi Zhurnal, Vol.44, No.6, pp. 741-747, ISSN 0503-1265. 

[44] Opanasyuk, A., Tyrkusova, N. & Protsenko, I. (2000). Some Features of the 

Distributions Deep States Reconstruction by Injection Spectroscopy Method (in 

Ukrainian), Zhurnal Fizychnykh Doslidzhen, Vol.4, No.2, pp. 208-215, ISSN 1027-4642. 

[45] Оpanasyuk, A., Opanasyuk, N. & Tyrkusova, N. (2003), High-temperature Injection 

Spectroscopy of Deep Traps in CdTe Polycrystalline Films, Semiconductor Physics, 

Quantum Electronics & Optoelectronics, Vol.6, No.4, pp. 444-449, ISSN 1560-8034. 

[46] Tikhonov, A. & Jagola, A. (1990). Numerical Nethods of Non-correct Problems Solution, 

Nauka, ISBN, Moskow, USSR.. 

[47] Zavjalov, Ju., Kvasov, B. & Miroshnichenko, V. (1980). Spline-functions Methods, Nauka, 

ISBN, Moskow, USSR.. 

[48] Turkusova, N. (2002). Injection Spectroscopy of Deep Trap Levels in Cadmium Telluride 

Films, PhD Thesis (in Ukrainian), Sumy State University, Sumy, Ukraine. 

[49] Kosyak, V., Opanasyuk, A. & Bukivskij, P. (2010). Study of the Structural and 

Photoluminescence Properties of CdTe Polycrystalline Films Deposited by Closed Space 

Vacuum Sublimation, Journal of Crystal Growth, Vol.312, pp. 1726-1730, ISSN 0022-0248. 



 
Advanced Aspects of Spectroscopy 534 

[50] Kurbatov, D., Khlyap, H. & Opanasyuk, A. (2009). Substrate–temperature Effect on the 

Microstructural and Optical Properties of ZnS Films Obtained by Close–spaced 

Vacuum Sublimation, Physica Status Solidi A, Vol.206, No.7, pp. 1549-1557, ISSN 1862-

6319. 

[51] (1988). Selected Powder Diffraction Data for Education Straining (Search Manual and Data 

Cards), International Centre for Diffraction Data, USA.  

[52] Zjuganov, A. & Svechnikov, S. (1981). Injection-contact Effects in Semiconductors (in 

Russian), Naukova Dumka, ISBN, Kiev, USSR. 

[53] Zjuganov, A., Smertenko, P. & Shulga, E. (1979). Generalized Method of Determination 

the Volume and Contact Semiconductor Parameters by Current-voltage characteristic 

(in Russian), Poluprovodnikovaja Tekhnika i Elektronika, Vol.29, pp.48-54, ISSN.  

[54] Kurbatov, D., Kolesnyk, M. & Opanasyuk, A. (2009). The Substructural and Optical 

Characteristics of ZnTe Thin Films, Semiconductor Physics, Quantum Electronics & 

Optoelectronics, Vol.12, No.1, pp. 35-40, ISSN 1560-8034. 

[55] Kurbatov, D., Denisenko, V. & Opanasyuk, A. (2008). Investigations of Surface 

Morphology and Chemical Composition Ag/ZnS/Glassceramic Thin Films Structure, 

Semiconductor Physics, Quantum Electronics & Optoelectronics, Vol.11, No.4, pp. 252-256, 

ISSN 1560-8034. 

[56] Balogh, A., Duvanov, D. & Kurbatov, D. (2008). Rutherford Backscattering and X–ray 

Diffraction Analysis of Ag/ZnS/Glass Multilayer System, Photoelectronics, Vol.В.17, 

pp.140-143, ISSN 0235-2435. 

[57] Wei, S. & Znang, S. (2002). Chemical Trends of Defect Formation and Doping Limit in 

II–VI Semiconductor: The Case of CdTe, Physical Review B, Vol.66, pp. 1-10, ISSN 0163-

1829. 

[58] Wei, S. & Zhang, S. (2002). First-Principles Study of Doping Limits of CdTe, Physica 

Status Solidi B, Vol.229, No. 1, pp. 305–310, ISSN 0370-1972. 

[59] Soundararajan, R., lynn, K. & Awadallah, S. (2006). Study of Defect Levels in CdTe 

Using Thermoelectric Effect Spectroscopy, Journal of Electronic Materials, Vol.35, No.6, 

pp., ISSN 0361-5235. 

[60] Berding, M. (1999). Native Defects in CdTe, Physical Review B, Vol.60, No.12, pp. 8943-

8950, ISSN 0163-1829. 

[61] Berding M. (1999). Annealing Conditions for Intrinsic CdTe, Applied Physics Letters, 

Vol.74, No.4, pp. 552-554, ISSN 0003-6951. 

[62] X.Mathew. Photo-induced current transient spectroscopic studu of the traps in CdTe// 

Solar Energy Materials & Solar Cells. 76, pp. 225-242 (2003). 

[63] Mahalingam, T., John, V. & Ravi, G. (2002). Microstructural Characterization of 

Electrosynthesized ZnTe Thin films, Crystal Research and Technology, Vol.37, No.4, pp. 

329–339, ISSN 1521-4079. 

[64] Ibrahim, A, El-Sayed, N. & Kaid, M. (2004). Structural and Electrical Properties of 

Evaporated ZnTe Thin Films, Vacuum, Vol.75, pp. 189–194, ISSN 0042-207X. 

[65] Dean, P., Venghaus, H. & Pfister, J. (1978). The Nature of the Predominant Acceptors in 

High Quality Zinc Telluride, Journal of Luminescence, Vol.16, pp. 363-394, ISSN 0022-

2313.  



 
Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films 535 

[66] Bhunia, S., Pal, D. & Bose, N. (1998). Photoluminescence and Photoconductivity in 

Hydrogen–passivated ZnTe, Semiconductor Science and Technology, Vol.13, pp. 1434-1438, 

ISSN 0268-1242. 

[67] Sadofjev, Ju. & Gorshkov, M. (2002). Deep Level Spectra in ZnTe:Cr2+ Layers Obtained 

by Epitaxy from Molecular Beams (in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.36, 

No.5, pp. 525-527, ISSN 0015-3222. 

[68] Korbutyak, D., Vakhnyak, N. & Tsutsura, D. (2007). Investigation of Photoluminescence 

and Electroconductivity of ZnTe Grown in Hydrogen Atmosphere, Ukrainian Journal of 

Physics, Vol.52, No.4, pp. 378-381, ISSN 2071-0186. 

[69] Feng, L., Mao, D. & Tang, J. (1996). The Structural, Optical, and Electrical Properties of 

Vacuum Evaporated Cu-doped ZnTe Polycrystalline Thin Films, Journal of Electronic 

Materials, Vol. 25, pp. 1422–1427, ISSN 0361-5235. 

[70] Atakova, M., Ramazanov, P. &Salman, E. (1973). Local Levels in a Zinc Sulfide Film, 

Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol.10, pp. 95 – 98, ISSN 0021-3411. 

[71] Venkata Subbaiah Y., Prathap, P. & Ramakrishna Reddy, K. (2006). Structural, Electrical 

and Optical Properties of ZnS Films Deposited by Close-spaced Evaporation, Applied 

Surface Science, Vol. 253, pp. 2409 – 2415, ISSN 0169-4332. 

[72] Venkata Subbaiah, Y., Prathap, P. & Ramakrishna Reddy, K. (2008). Thickness Effect on 

the Microstructure, Morphology and Optoelectronic Properties of ZnS Films, Journal of 

Physics: Condensed Materials, Vol.20, pp. 035205 – 035215, ISSN 0953-8984. 

[73] Turan, E., Zor, M. & Aybek, A. (2007). Thermally Stimulated Currents in ZnS Sandwich 

Structure Deposited by Spray Pyrolysis, Physica B: Condensed Materials, Vol.395, No.1, 

pp. 57 – 64, ISSN 0921-4526. 

[74] Abbas, J., Mehta, C. & Saini, G. (2007). Preparation and Characterization of n-ZnS and 

its Self-assembled Thin Film, Digest Journal of Nanomaterials and Biostructures, Vol.2, 

No.3, pp. 271 – 276, ISSN 1842-3582. 

[75] Kvit, A., Medvedev, S. & Klevkov, Ju. (1998). Optical Spectroscopy of Deep States in 

ZnTe (in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.40, No.6, pp. 1010-1017, ISSN 

0015-3222. 

[76] Bagaev, V., Zajtsev, V. & Klevkov, Ju. (2003). Influence of Annealing in Vapors and in 

Liquid Zn on ZnTe High-frequency Polycrustalline Photoluminescence (in Russian), 

Fizika I Tekhnika Poluprovodnikov, Vol.37, No.3, pp. 299-303, ISSN 0015-3222. 

[77] Klevkov, Ju., Martovitskij, V., Bagaev, V. (2006). Morphology, Twins Formation and 

Photoluminescence of ZnTe crystals Grown by Chemical Synthesis of Components 

From Vapor Phase (in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.40, No.2, pp. 153-

159, ISSN 0015-3222. 

[78] Klevkov, Ju., Kolosov, S. & Krivobokov, V. (2008). Electrical Properties, 

Photoconductivity and Photoluminescence of large-crystalline p-CdTe (in Russian), 

Fizika I Tekhnika Poluprovodnikov, Vol.42, No.11, pp. 1291-1296, ISSN 0015-3222. 

[79] Bagaev, V., Klevkov, Ju. & Krivobokov, V. (2008). Photoluminescence Spectrum Change 

Near the Twins Boundaries in ZnTe Crystals Obtained by High-speed Crystallization 

(in Russian), Fizika Tverdogo Tela, V.50, No.5, pp. 774-780, ISSN 0042-1294. 



 
Advanced Aspects of Spectroscopy 536 

[80] Makhniy V. & Gryvun, V. (2006). Diffusion ZnTe:Sn Layers with Electron Conductivity 

(in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.40, No.7, pp. 794-795, ISSN 0015-3222.  

[81] Tsutsura, D., Korbutyak, O. & Pihur, O. (2007). On Interaction of Hydrogen Atoms With 

Complex Defects in CdTe and ZnTe, Ukrainian Journal of Physics, Vol.52, No.12, pp. 

1165-1169, ISSN 2071-0186. 

[82] Taguchi, T, Fujita, S. & Inushi, Y. (1978). Growth of High-purity ZnTe Single Crystals by 

the Sublimation Travelling Heater Method, Journal of Crystal Growth, Vol.45, pp. 204-

213, ISSN 0022-0248. 

[83] Dean, P. (1979). Copper, the Dominant Acceptor in Refined, Undoped Zinc Telluride, 

Luminescence, Vol.21, pp. 75-83, ISSN 1522-7243.  

[84] Garcia, J., Remon, A. & Munoz, V. (2000). Annealing-induced Changes in the Electronic 

and Structural Properties of ZnTe Substrates, Journal of Materials Research, Vol.15, No.7, 

pp. 1612-1616, ISSN 0884-2914. 

[85] Uen, W., Chou, S. & Shin, H. (2004), Characterizations of ZnTe Bulks Grown by 

Temperature Gradient Solution Growth, Materials Science & Engineering A, Vol.B106, pp. 

27-32, ISSN 0921-5093. 

[86] Yoshino, K, Yoneta, V. & Onmori, K. (2004). Annealing Effects of High–quality ZnTe 

Substrate, Journal of Electronic Materials, Vol.33, No.6, pp. 579-582, ISSN 0361-5235. 

[87] Yoshino, K., Kakeno, T. & Yoneta, M. (2005). Annealing Effects of High–quality ZnTe 

Substrate, Journal of Material Science: Materials in Electronics, Vol.16, pp. 445-448, 

ISSN.0957-4522. 

[88] Ichiba, A., Ueno, J. & Ogura, K. (2006). Growth and Optical Property Characterizations 

of ZnTe:(Al, N) layers Using Two Co–doping Techniques, Physica Status Solidi C, Vol.3, 

No.4, pp. 789-792, ISSN 1610-1642. 

[89] Bose, D. & Bhunia, S. (2005). High Resistivity In–doped ZnTe: Electrical and Optical 

Properties, Bulletin of Material Science, Vol.28, No.7, pp. 647-650, ISSN 0250-4707. 

[90] Grill, R., Franc, J, & Turkevych, I. (2002). Defect-induced Optical Transitions in CdTe 

and Cd0,96Zn0,04Te Semiconductor Science and Technology, Vol.17, pp. 1282-1287, ISSN 

0268-1242. 

[91] Ushakov, V. & Klevkov, Ju. (2007). Microphotoluminescence of Undoped Cadmium 

Telluride Obtained by Non-equilibrium Method of Direct Synthesis in Components 

Fluctuation (in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.41, No.2, pp. 140-143, 

ISSN 0015-3222. 

[92] Babentsov, V., Corregidor, V. & Castano, J. (2001). Compensation of CdTe by Doping 

With Gallium, Crystal Research and Technology, Vol.36, No.6, pp. 535-542, ISSN 1521-

4079. 

[93] Tarbayev, G. & Shepelskij. (2006). Two Series of “Dislocation” Photoluminescence Lines 

in Cadmium Telluride Crystals (in Russian), Fizika I Tekhnika Poluprovodnikov, Vol.40, 

No.10, pp. 1175-1180, ISSN 0015-3222. 

[94] Aguilar-Hernandez, J., Contreras-Puente, J. & Vidal-Larramendi J. (2003). Influence of 

the Growth Conditions on the Photoluminescence Spectrum of CdTe Polycrystalline 

Films Deposited by the Close Space Vapor Transport Technique, Thin Solid Films, 

Vol.426, pp. 132-134, ISSN 0040-6090. 



 
Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films 537 

[95] Aguilar-Hernandez, J., Cardenas-Garcia, M. & Contreras-Puente, G. (2003). Analysis of 

the 1,55 eV PL Band of CdTe Polycrystalline Films, Material Science & Engineering A, 

Vol.B102, pp. 203-206, ISSN 0921-5093. 

[96] Armani, N., Ferrari, C. & Salviati, G. (2002). Defect-induced Luminescence in High–

resistivity High–purity Undoped CdTe Crystals, Journal of Physics: Condensed Matterials, 

Vol.14, pp. 13203-13209, ISSN 0953-8984. 

[97] Gheluwe, J., Versluys, J. & Poelman, D. (2005). Photoluminescence Study of 

Polycrystalline CdS/CdTe Thin Film Solar Cells, Thin Solid Films,Vol.480–481, pp. 264-

268, ISSN 0040-6090.  

[98] Okamoto, T., Yamada, A. & Konagai, M. (2001). Optical and Electrical Characterizations 

of Highly Efficient CdTe Thin Film Solar Cells, Thin Solid Films, Vol.387, pp. 6-10, ISSN 

0040-6090.  

[99] Holliday, D., Potter, M. & Boyle, D. (2001). Photoluminescence Characterisation of Ion 

Implanted CdTe, Material Research Society, Symposium Proceedings, Vol.668, pp. H1.8.1-

H1.8.6, ISSN 0272-9172.  

[100] Palosz, W., Grasza, K. & Boyd, P. (2003). Photoluminescence of CdTe Crystals Grown 

Physical Vapor Transport, Journal of Electronic Materials, Vol.32, No.7, pp.747-751, ISSN 

0361-5235. 

[101] Corregidor, V., Saucedo, E. & Fornaro, L. (2002). Defects in CdTe Polycrystalline Films 

Grown by Physical Vapour Deposition, Materials Science and Engineering A, Vol.B 91–92, 

pp. 525-528, ISSN 0921-5093. 

[102] Soundararajan, R., Lynn, K. & Awadallah, S. (2006). Study of Defect Levels in CdTe 

Using Thermoelectric Effect Spectroscopy, Journal of Electronic Materials, Vol.35, No.6, 

pp. 1333-1340, ISSN 0361-5235. 

[103] Babentsov, V. & Tarbaev. (1998). Photoluminescence of Re-crystallized by Nano-

second Laser Irradiation Cadmium Telluride (in Russian), Fizika I Tekhnika 

Poluprovodnikov, Vol.32, No.1, pp. 32-35, ISSN 0015-3222. 

[104] Morozova, N. & Kuznetsov, V. (1987). Zinc Sulfide. Obtaining and Optical Properties (in 

Russian), Nauka, ISBN, Moskow, USSR. 

[105] Sahraei, R., Aval, J. & Goudarzi, A. (2008). Compositional, Structural and Optical 

Study of Nanocrystalline ZnS Thin Films Prepared by a New Chemical Bath Deposition 

Route, Journal of Alloys and Compounds, Vol.466, pp. 488-492, ISSN 0925-8388. 

[106] Prathap, P. Revathi, N. & Venkata Subbaiah, Y. (2008). Thickness Effect on the 

Microstructure, Morphology and Optoelectronic Properties of ZnS Films, Journal of 

Physics: Condensed Materials, Vol.20, pp. 035205-035215, ISSN 0953-8984. 

[107] Prathap, P. & Venkata Subbaiah, Y. (2007). Influence of Growth Rate on 

Microstructure and Optoelectronic Behaviour of ZnS Films, Journal of Physics D: Applied 

Physics, Vol. 40, pp. 5275-5282, ISSN 0022-3727. 

[108] Lee, H. & Lee, S. (2007). Deposition and Optical Properties of Nanocrystalline ZnS 

Thin Films by a Chemical Method , Current Applied Physics, Vol.7, pp. 193-197, ISSN 

1567-1739. 

[109] Kroger, F. (1964). The chemistry of Imperfect Crystals, North-holland publishing 

company, ISBN, Amsterdam, Netherlands.  



 
Advanced Aspects of Spectroscopy 538 

[110] Grill, R. & Zappetini, A. (2004). Point Defects and Diffusion in Cadmium Telluride, 

Progress in Crystal Growth and Characterization of Materials, Vol.48, pp .209-244, ISSN 

0146-3535. 

[111] Kosyak, V. & Opanasyuk, A. (2005). Point Defects Encemble in CdTe Single Crystals in 

the Case of full Equilibrium and Quenching (in Ukrainian), Fizyka I Himiya Tverdych Til, 

Vol.6, No.3, pp. 461-471, ISSN 1729-4428. 

[112] Kosyak, V., Opanasyuk, A. & Protsenko, I. (2005). Ensemble of Point Defects in Single 

Crystals and Films in the Case of Full Equilibrium and Quenching, Functional Materials, 

Vol.12, No.4, pp. 797-806, ISSN 1616-3028.  

[113] Kosyak, V. & Opanasyuk, A. (2007). Calculation of Fermi Level Location and Point 

Defect Ensemble in CdTe Single Crystal and Thin Films, Semiconductor Physics, Quantum 

Electronics & Optoelectronics, Vol.10, No.3, pp. 95-102, ISSN 1560-8034. 

[114] Kolesnik, M., Kosyak, V. & Оpanasyuk, A. (2007). Calculation of Point Defects 

Ensemble in CdTe Films Considering Transport Phenomenon in Gas Phase, Radiation 

Measurements, Vol.42, No.4–5, pp. 855-858, ISSN 1350-4487. 

[115] Kosyak, V., Kolesnik, M. & Opanasyuk, A. (2008). Point Defect Structure in CdTe and 

ZnTe Thin Films, Journal of Material Science: Materials in Electronics, Vol.19, No.1, pp. 

S375-S381, ISSN 0957-4522. 

[116] Kurbatov, D, Kosyak, V., Оpanasyuk, A. (2009). Native Point Defects in ZnS Films, 

Physica. B. Condensed Materials, Vol.404, No.23–24, pp. 5002-5005, ISSN 0921-4526. 


