
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 10 

 

 

 
 

© 2012 Mitrevski and Kotevski, licensee InTech. This is an open access chapter distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Fluid Stochastic Petri Nets:  

From Fluid Atoms in ILP Processor Pipelines  

to Fluid Atoms in P2P Streaming Networks 

Pece Mitrevski and Zoran Kotevski 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50615 

1. Introduction 

Fluid models have been used and investigated in queuing theory [1]. Recently, the concept 

of fluid models was used in the context of Stochastic Petri Nets, referred to as Fluid Stochastic 

Petri Nets (FSPNs) [2-6]. In FSPNs, the fluid variables are represented by fluid places, which 

can hold fluid rather than discrete tokens. Transition firings are determined by both discrete 

and fluid places, and fluid flow is permitted through the enabled timed transitions in the 

Petri Net. By associating exponentially distributed or zero firing time with transitions, the 

differential equations for the underlying stochastic process can be derived. The dynamics of 

an FSPN are described by a system of first-order hyperbolic partial differential equations 

(PDEs) combined with initial and boundary equations. The general system of PDEs may be 

solved by a standard discretization approach. In [6], the problem of immediate transitions 

has also been addressed in relation to the fluid levels, by allowing fluid places to be 

connected to immediate transitions. The transportation of fluid in zero time is described by 

appropriately chosen boundary conditions. 

In a typical multiple-issue processor, instructions flow through pipeline and pass through 

separate pipeline stages connected by buffers. An open multi-chain queuing network can 

present this organization, with each stage being a service center with a limited buffer size. 

Considering a machine that employs multiple execution units capable to execute large 

number of instructions in parallel, the service and storage requirements of each individual 

instruction are small compared to the total volume of the instruction stream. Individual 

instructions may then be regarded as atoms of a fluid flowing through the pipeline. The 

objective of this approach is to approximate large buffer levels by continuous fluid levels 

and decrease state-space complexity. Thus, in the first part of this chapter, we employ an 
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analytical model based on FSPNs, derive the state equations for the underlying stochastic 

process and present performance evaluation results to illustrate its usage in deriving 

measures of interest. The attempt to capture the dynamic behavior of an ILP processor with 

aggressive use of prediction techniques and speculative execution is a rare example that 

demonstrates the usage of this recently introduced formalism in modeling actual systems. 

Moreover, we take into consideration numerical transient analysis and present numerical 

solution of a FSPN with more than three fluid places. Both the application of finite-

difference approximations for the partial derivatives [7,8], as well as the discrete-event 

simulation of the proposed FSPN model [9,10], allow for the evaluation of a number of 

performance measures and lead to numerous conclusions regarding the performance impact 

of predictions and speculative execution with varying parameters of both the 

microarchitecture and the operational environment. The numerical solution makes possible 

the probabilistic analysis of the dynamic behavior, whereas the advantage of the discrete-

event simulation is the much faster generation of performance evaluation results. Since the 

modeling framework is implementation-independent, it can be used to estimate the 

performance potential of branch and value prediction, as well as to assess the operational 

environment influence on the performance of ILP processors with much more aggressive, 

wider instruction issue. 

Another challenging task in the application of FSPNs is the modeling and performance 

analysis of Peer-to-Peer (P2P) live video streaming systems. Web locations offering live video 

content increasingly attract more and more visitors, which, if the system is based on the 

client/server architecture, leads to sustainability issues when clients rise above the upload 

capabilities of the streaming servers. Since IP Multicast failed to satisfy the requirements of 

an affordable, large scale live video streaming, in the last decade the science community 

intensively works in the field of P2P networking technologies for live video broadcast. P2P 

live video streaming is a relatively new paradigm that aims for streaming live video content 

to a large number of clients with low cost. Even though many such applications already 

exist, these systems are still in their early stages and prior to creation of such a system it is 

necessary to analyze performance via representative model that provides significant insight 

into the system’s behavior. Nevertheless, modeling and performance analysis of P2P live 

video streaming systems is a complex combinatorial problem, which requires addressing 

many properties and issues of such systems. Inspired by several research articles concerned 

with modeling of their behavior, in the second part of this chapter, we present how FSPNs 

can be used for modeling and performance analysis of a mesh based P2P live video 

streaming system. We adopt fluid flow to represent bits as atoms of a fluid that travel through 

fluid pipes (network infrastructure). If we represent peers with discrete tokens and video 

bits as fluid, then we have numerous possibilities to evaluate the performance of the system. 

The developed model is simple and quite flexible, providing performance evaluation of a 

system that accounts for a number of system features, such as: network topology, peer 

churn, scalability, peer average group size, peer upload bandwidth heterogeneity, video 

buffering, control traffic overhead and admission control for lesser contributing peers. In 

this particular case, discrete-event simulation (DES) is carried out using SimPy 
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(http://simpy.sourceforge.net) – an object-oriented, process-based discrete-event simulation 

language based on standard Python (http://www.python.org), which provides the modeler 

with components of a simulation model including processes (for active components) and 

resources (for passive components) and provides monitor variables to aid in gathering 

statistics. 

2. Part A: Fluid atoms in ILP processor pipelines 

Most of the recent microprocessor architectures assume sequential programs as input and use 

a parallel execution model. The hardware is expected to extract the parallelism out of the 

instruction stream at run-time. The efficiency is highly dependent on both the hardware 

mechanisms and the program characteristics, i.e. the instruction-level parallelism (ILP) the 

programs exhibit. Many ILP processors speculatively execute control-dependent instructions 

before resolving the branch outcome. They rely upon branch prediction in order to tolerate 

the effect of control dependences. A branch predictor uses the current fetch address to predict 

whether a branch will be fetched in the current cycle, whether that branch will be taken or 

not, and what the target address of the branch is. The predictor uses this information to 

decide where to fetch from in the next cycle. Since the branch execution penalty is only seen 

if the branch was mispredicted, a highly accurate branch predictor is a very important 

mechanism for reducing the branch penalty in a high performance ILP processor.  

A variety of branch prediction schemes have been explored [11] – they range between fixed, 

static displacement-based, static with profiling, and various dynamic schemes, like Branch 

History Table with n-bit counters, Branch Target Address Cache, Branch Target Instruction Cache, 

mixed, two-level adaptive, hybrid, etc. Some research studies have also proposed concepts to 

implement high-bandwidth instruction fetch engines based on multiple branch prediction. 

Such concepts include trace cache [12] or the more conventional multiple-block fetching [13]. 

On the other hand, given that a majority of static instructions exhibit very little variations in 

values that they produce/consume during the course of a program’s execution [14], data 

dependences can be eliminated at run-time by predicting the outcome values of instructions 

(value prediction) and by executing the true data dependent instructions. In general, the 

outcome value of an instruction can be assigned to registers, memory locations, condition 

codes, etc. The execution is speculative, as it is not assured that instructions were fed with 

correct input values. Since the correctness of execution must be maintained, speculatively 

executed instructions retire only if the prediction was proven correct – otherwise, they are 

discarded.  

Several architectures have been proposed for value prediction [15] – last value predictor, stride 

predictor, context predictors and hybrid approaches in order to get good accuracy over a set of 

programs due to the different data value locality characteristics that can be exploited only 

by different schemes. Based on instruction type, value prediction is sometimes identified as 

prediction of the outcome of arithmetic instructions only, and the prediction of the outcome of 

memory access instructions as a different class, referred to as memory prediction. 
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2.1. Model definition 

A model should always have a form that is more concise and closer to a designer’s intuition 

about what a model should look like. In the case of a processor pipeline, the simplest 

description would be that the instructions flow and pass through separate pipeline stages 

connected by buffers. Control dependences stall the inflow of useful instructions (fluid) into 

the pipeline, whereas true data dependences decrease the aperture of the pipeline and the 

outflow rate. The buffer levels always vary and affect both the inflow and outflow rates. 

Branch prediction techniques tend to eliminate stalls in the inflow, while value prediction 

techniques help keeping outflow rate as high as possible. 

Representing the dynamic behavior of systems subject to randomness or variability is the main 

concern of stochastic modeling. It relies on the use of random variables and their distribution 

functions [16]. We assume that the distribution of the time between two consecutive 

occurrences of branch instructions in the fluid stream is exponential with rate λ. The rate 

depends on the instruction fetch bandwidth, as well as the program’s average basic block size. 

Branches vary widely in their dynamic behavior, and predictors that work well on one type of 

branches may not work as well on others. A set of hard-to-predict branches that comprise a 

fundamental limit to traditional branch predictors can always be identified [17]. We assume 

that there are two classes: easy-to-predict and hard-to-predict branches, and the expected branch 

prediction accuracy is higher for the first, and lower for the second. The probabilities to 

classify a branch as either easy- or hard-to-predict depend on the program characteristics. 

When the instruction fetch rate is low, a significant portion of data dependences span across 

instructions that are fetched consecutively [18]. As a result, these instructions (a producer-

consumer pair) will eventually initiate their execution in a sequential manner. In this case, 

the prediction becomes useless due to the availability of the consumer’s input value. Hence, 

in each cycle, an important factor is the number of instructions that consume results of 

simultaneously initiated producer instructions. We assume that the distribution of the time 

between two consecutive occurrences of consuming instructions in the fluid stream is 

exponential with rate μ. The rate depends on the number of instructions that simultaneously 

initiate execution at a functional unit, as well as the program’s average dynamic instruction 

distance. We assume that there are two classes of consuming instructions: (1) instructions 

that consume easy-to-predict values and (2) instructions that consume hard-to-predict values. 

The expected value prediction accuracy is higher for the first and lower for the second. The 

probability to classify a value as either easy- or hard-to-predict depends on the program’s 

characteristics, similarly to the branch classification. 

The set of programs executed on the machine represent the input space. Programs with 

different characteristics are executed randomly and independently according to the 

operational profile. We partition the input space by grouping programs that exhibit as nearly 

as possible homogenous behavior into program classes. Since there are a finite number of 

partitions (classes), the upper limits of λ and μ, as well as the probabilities to classify a 

branch/value as either easy- or hard-to-predict are considered to be discrete random 

variables and have different values for different program classes. 
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2.2. FSPN representation 

We assume that the pipeline is organized in four stages: Fetch, Decode/Issue, Execute and 

Commit. Fluid places PIC, PIB, PRS/LSQ, PROB, PRR, PEX and PREG, depicted by means of two 

concentric circles (Figure 1), represent buffers between pipeline stages: instruction cache, 

instruction buffer, reservation stations and load/store queue, reorder buffer, rename registers, 

instructions that have completed execution and architectural registers. Five of them have limited 

capacities: ZIBmax, ZRS/LSQmax, ZRRmax, ZROBmax and ZEXmax. We prohibit both an overflow and a 

negative level in a fluid place. The fluid place PTIME has the function of an hourglass: it is 

constantly filled at rate 1 up to the level 1 and then flushed out, which corresponds to the 

machine clock cycle. ZTIME(t) denotes the fluid level in PTIME at time t. Fluid arcs are drawn as 

double arrows to suggest a pipe. Flow rates are piecewise constant, i.e. take different values 

at the beginning of each cycle and are limited by the fetch/issue width of the machine (W). 

Rates depend on the vector of fluid levels ( )tZ and change when TCLOCK fires and the fluid in 

PTIME is flushed out. The flush out arc is drawn as thick single arrow.  

Let 
0 0 0 0 0 0/, , , , andIC IB RS LSQ RR ROB EXZ Z Z Z Z Z  be the fluid levels at the beginning of the 

clock cycle, i.e. 
0 0( )IC ICZ Z t , 

0 0( )IB IBZ Z t , 
0/ / 0( )RS LSQ RS LSQZ Z t , 

0 0( )RR RRZ Z t , 

0 0( )ROB ROBZ Z t  and 
0 0( )EX EXZ Z t , where 0t t     and 0( ) 0TIMEZ t  .  

A high-bandwidth instruction fetch mechanism fetches up to W instructions per cycle and 

places them in the instruction buffer. The fetch rate is given by: 

 
max 0 0

min( , , )FETCH IB IB ISSUE ICr Z Z r Z W    (1) 
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Figure 1. A Fluid Stochastic Petri Net model of an ILP processor 
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In the case of a branch misprediction, the fetch unit is effectively stalled and no useful 

instructions are added to the buffer. Instruction cache misses are ignored. 

Instruction issue tries to send W instructions to the appropriate reservation stations or the 

load/store queue on every clock cycle. Rename registers are allocated to hold the results of the 

instructions and reorder buffer entries are allocated to ensure in-order completion. Among the 

instructions that initiate execution in the same cycle, speculatively executed consuming 

instructions are forced to retain their reservation stations. As a result, the issue rate is given by: 

 
max 0 max 0 / max / 0 0min( , , , , )ISSUE RR RR COMMIT ROB ROB COMMIT RS LSQ RS LSQ IBr Z Z r Z Z r Z Z Z W       (2) 

Up to W instructions are in execution at the same time. With the assumptions that functional 

units are always available and out-of-order execution is allowed, the instructions initiate and 

complete execution with rate:  

 
0/min( , )INITIATE COMPLETE RS LSQr r Z W   (3) 

During the execute stage, the instructions first check to see if their source operands are 

available (predicted or computed). For simplicity, we assume that the execution latency of 

each instruction is a single cycle. Instructions execute and forward their own results back to 

subsequent instructions that might be waiting for them (no result forwarding delay). Every 

reference to memory is present in the first-level cache. With the last assumption, we 

eliminate the effect of the memory hierarchy.  

The instructions that have completed execution are ready to move to the last stage. Up to W 

instructions may commit per cycle. The results in the rename registers are written into the 

register file and the rename registers and reorder buffer entries freed. Hence: 

 
0

min( , )COMMIT EXr Z W  (4) 

In order to capture the relative occurrence frequencies of different program classes, we 

introduce a set of weighted immediate transitions in the Petri Net. Each program class is 

assigned an immediate transition 
iCLASST  with weight 

iCLASSw . The operational profile is a 

set of weights. The probability of firing the immediate transition 
iCLASST  represents the 

probability of occurrence of a class i program, given by: 

 

1

CLASSi

CLASSi

CLASSk

T

T n

T
k

w
w

w







 (5) 

A token in PSTART denotes that a new execution is about to begin. The process of firing one of 

the immediate transitions randomly chooses a program from one of the classes. The firing of 

transition 
iCLASST  puts i tokens in place PCLASS, which identify the class. At the same time 

instant, tokens occur in places PFETCH and PINITIATE, while the fluid place PIC is filled with fluid 

with volume Vi equivalent to the total number of useful instructions (program volume).  
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Firing of exponential transition TBRANCH corresponds to a branch instruction occurrence. The 

parameter   changes at the beginning of each clock cycle and formally depends on both the 

number of tokens in PCLASS and the fetch rate: 

 
   f # fFETCH FETCH FETCH

CLASS i

r r r
P i

W W W
     (6) 

where i  is its upper limit for a given program class i at maximum fetch rate (rFETCH=W). The 

branch is classified as easy-to-predict with probability pBEP, or hard-to-predict with 

probability 1-pBEP. In either case, it is correctly predicted with probability pBEPC  (pBHPC), or 

mispredicted with probability 1-pBEPC (1-pBHPC). These probabilities are included in the FSPN 

model as weights assigned to immediate transitions TBEP, TBHP, TBEPC, TBHPC, TBEPMIS and 

TBHPMIS, respectively. This approach is known as synthetic branch prediction. Branch 

mispredictions stall the fluid inflow for as many cycles as necessary to resolve the branch 

(CBR tokens in place PBMIS). Usually, a branch is not resolved until its execution stage (CBR=3). 

With several consecutive firings of TCLOCK, these tokens are consumed one at a time and 

moved to PRESOLVED. As soon as the branch is resolved, transition TCONTINUE fires, a token 

appears in place PFETCH and the inflow resumes.  

Similar to this, firing of exponential transition TCONSUMER corresponds to the occurrence of a 

consuming instruction among the instructions that initiated execution. The parameter   

changes at the beginning of each clock cycle and formally depends on both the number of 

tokens in PCLASS and the initiation rate: 

    g # gINITIATE INITIATE INITIATE
CLASS i

r r r
P i

W W W
     (7) 

where i  is its upper limit for a given program class i when maximum possible number of 

instructions simultaneously initiate execution (rINITIATE=W). The consumed value is classified 

as easy-to-predict with probability pVEP, or hard-to-predict with probability 1-pVEP. In either 

case, it is correctly predicted with probability pVEPC  (pVHPC), or mispredicted with probability 

1-pVEPC (1-pVHPC). These probabilities are included in the FSPN model as weights assigned to 

immediate transitions TVEP, TVHP, TVEPC, TVHPC, TVEPMIS and TVHPMIS, respectively. Whenever a 

misprediction occurs (token in place PVMIS), the consuming instruction has to be rescheduled 

for execution. The firing of immediate transition TREEXECUTE causes transportation of fluid in 

zero time. Fluid jumps have deterministic height of 1 (one instruction) and take place when 

the fluid levels in PRS and PEX satisfy the condition 
max

( ) 1 and ( ) 1RS RS EXZ t Z Z t   . Jumps 

that would go beyond the boundaries cannot be carried out. The arcs connecting fluid places 

and immediate transitions are drawn as thick single arrows. The fluid flow terminates at the 

end of the cycle when all the fluid places except PREG are empty and TEND fires.  

2.3. Derivation of state equations 

When executing a class i program, the nodes mi of the reachability graph (Figure 2) consist 

of all the tangible discrete markings, as well as those in which the enabling of immediate 
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transitions depends on fluid levels and cannot be eliminated, since they are of mixed 

tangible/vanishing type (Table 1). It is important to note that the number of discrete 

markings does not depend on the machine width in any way.  
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Figure 2. Reachability graph of the FSPN model 

 

Number of tokens
#PFETCH #PBMIS #PINITIATE #PVMIS 

Marking (mi) 

1i 1 0 1 0 

2i 0 3 1 0 

3i 0 2 1 0 

4i 0 1 1 0 

5i 1 0 0 1 

6i 0 3 0 1 

7i 0 2 0 1 

8i 0 1 0 1 

9i 0 0 0 0 

Table 1. Discrete markings of the FSPN model (CBR=3) 

A vector of fluid levels supplements discrete markings. It gives rise to a stochastic process in 

continuous time with continuous state space. The total amount of fluid contained in PIC, PIB, 

PRS/LSQ, PEX and PREG is always equal to Vi, and the amount of fluid contained in PRR (as well as 
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PROB) is equal to the total amount of fluid in PRS/LSQ and PEX. Therefore, only the fluid levels 

ZIB(t), ZRS/LSQ(t), ZEX(t) and ZREG(t) are identified as four supplementary variables (components 

of the fluid vector ( )tZ ), which provide a full description of each state.  

The instantaneous rates at which fluid builds in each fluid place are collected in diagonal 

matrices: 

  

 
 

 

, , , , , , , , 0

, ..., , 0

, ..., , 0

IB FETCH ISSUE ISSUE ISSUE ISSUE FETCH ISSUE ISSUE ISSUE ISSUE

RS/ LSQ ISSUE INITIATE ISSUE INITIATE

EX COMPLETE COMMIT COMPLETE COMMIT

REG COMMI

r r r r r r r r r r

r r r r

r r r r

r

        

  

  



R diag

R diag

R diag

R diag  , ..., , 0T COMMITr

 (8) 

The matrix of transition rates of exponential transitions causing the state changes is: 

( ) 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

i i i i

i i

i i

i i

i i

BMIS VMIS BMIS VMIS
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i
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 
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 
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Q
 

where: 

 

    

    

1 1 1

and

1 1 1

i i i

i i i

BMIS BEP BEPC BEP BHPC

VMIS VEP VEPC VEP VHPC

p p p p p

p p p p p

    

    

. (9) 

Let 
im  be an abbreviation for the volume density /( , , , , )

im IB RS LSQ EX REGt z z z z  that is the 

transient probability of being in discrete marking mi at time t, with fluid levels in an 

infinitesimal environment around /[ ]IB RS LSQ EX REGz z z zz . If 1 2 9[ ... ]
i i ii   π , 

according to [4-6] the evolution of the process is described by a coupled system of nine 

partial differential equations in four continuous dimensions plus time: 

 

/

/

( )( ) ( ) ( )i RS LSQi i IB i EX i REG
i i

IB RS LSQ EX REGt z z z z

       
     

    

π Rπ π R π R π R
π Q  (10) 

If 0 0 0 0   0z  is the vector of initial fluid levels, the initial conditions are: 

 1 (0, ) ( )

(0, ) 0 (2 9)
i

im m

 



 
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0z z z

z
 (11) 
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Since fluid jumps shift probability mass along the continuous axes (in addition to discrete 

state change), firing of transition TREEXECUTE at time t can be seen as a jump to another location 

in the four-dimensional hypercube defined by the components of the fluid vector. It can be 

described by the following boundary conditions: 

1 / 1 / 5 /

2 / 2 / 6 /

3

( , , 1, 1, ) ( , , 1, 1, ) ( , , , , )

( , , 1, 1, ) ( , , 1, 1, ) ( , , , , )

( , ,

i i i

i i i

i
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The firing of transitions TCLOCK and TCOUNT at time t0 causes switching from one discrete 

marking to another. Therefore: 
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 (13) 

Similarly, the firing of transition TEND when all the fluid places except PREG are empty, causes 

switching from any discrete marking to 9i: 
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The probability mass conservation law is used as a normalization condition. It corresponds to 

the condition that the sum of all state probabilities must equal one. Since no particle can 

pass beyond barriers, the sum of integrals of the volume densities over the definition range 

evaluates to one: 
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Let ( )iM t  be the state of the discrete marking process at time t. The probabilities of the discrete 

markings are obtained by integrating volume densities: 

   
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/ /
0 0 0 0
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The fluid levels at the beginning of each clock cycle are computed as follows: 
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 (17) 

Finally, the flow rates and the parameters   and   are computed as indicated by Eqs. 1-4, 6 

and 7, respectively. 

2.4. Performance measures 

Let τ be a random variable representing the time to absorb into { ( ,0,0,0, ) 1}
ii m iA m t V  . 

The distribution of the execution time of a program with volume Vi is: 
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with mean execution time: 

  
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Consequently, the sustained number of instructions per cycle (IPC) is given by: 

 ii i EXIPC V t   (20) 

When the input space is partitioned, IPC is the ratio between the average volume and the 

average execution time of all the programs of different classes, as indicated by the 

operational profile: 
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The sum of probabilities of the discrete markings that do not carry a token in place PFETCH 

gives the probability of a stall in the instruction fetch unit at time t: 
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 (22) 

Because of the discrete nature of pipelining, additional attention should be given to the 

probability that no useful instructions will be added to the instruction buffer in the cycle 

beginning at time t0 (complete stall in the instruction fetch unit that can lead to an effectively 

empty instruction buffer) due to branch misprediction. It can be obtained by summing up 

the probabilities of the discrete markings that still carry one or more tokens in place PBMIS 

immediately after firing of TCLOCK: 
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In addition, the execution efficiency is introduced, taken as a ratio between the number of 

useful instructions and the total number of instructions executed during the course of a 

program’s execution: 
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 (24) 

where INITIATEr  is the average initiation rate. 

2.5. Numerical experiments and performance evaluation results 

We have used finite difference approximations to replace the derivatives that appear in the 

PDEs: forward difference approximation for the time derivative and first-order upwind 

differencing for the space derivatives, in order to improve the stability of the method [7,8]: 
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(25) 

The explicit discretization of the right-hand-side coupling term allows the equations for each 

discrete state to be solved separately before going on to the next time step. The 

discretization is carried out on a hypercube of size 
max max max/IB RS LSQ EX iZ Z Z V    with step 
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size z  in direction of zIB, zRS, zEX and zREG, and step size t  in time. The computational 

complexity for the solution is  

max max max/

4
8

IB RS LSQ EX iZ Z Z Vt

t z

   
   
   

 floating-point operations,  

since for each of t t time steps we must increment each solution value in the four-

dimensional grid for eight of the nine discrete markings. The storage requirements of the 

algorithm are at least  

max max max/

4
8 4

IB RS LSQ EXZ Z Z V

z

  
 


 bytes,  

since for eight of nine discrete markings we must store a four-dimensional grid of floating-

point numbers (solutions at successive time steps can be overwritten).  

Unless indicated otherwise, 
maxIBZ W , 

max/RS LSQZ   
maxRRZ   

maxROBZ
max

2EXZ W  and 

( )t z n W    , where n=4 is the number of continuous dimensions. With these capacities of 

fluid places, virtually all name dependences and structural conflicts are eliminated. Step size 

z  is varied between 1 2z   (coarser grid, usually when the prediction accuracy is high) 

and 1 6z   (finer grid, usually when the prediction accuracy is low).  

Considering a low-volume program (Vi=50 instructions) executed on a four-wide machine 

(W=4), we investigate: 

 The influence of branch prediction accuracy on the distribution of the program’s 

execution time, when value prediction is not involved (Figure 3a),  

 The influence of branch prediction accuracy on the probability of a complete stall in the 

instruction fetch unit (Figure 3b), and  

 The influence of value prediction accuracy on the distribution of the program’s 

execution time, when perfect branch prediction is involved (Figure 4). 

It is indisputably clear that both branch and value prediction accuracy improvements reduce 

the mean execution time of a program and increase performance. As an illustration, the size 

of the shaded area in Figure 3a is equal to the mean execution time when perfect branch 

prediction is involved, and IPC is computed as indicated by Eq. (20). In addition, looking at 

Figure 3b one can see that the probability of a complete stall in the instruction fetch unit, 

which can lead to an empty instruction buffer in the subsequent cycle, decreases with branch 

prediction accuracy improvement. As a result, both the utilization of the processor and the 

size of dynamic scheduling window increase as branch prediction accuracy increases. 

The correctness of the discretization method is verified by comparing the numerical 

transient analysis results with the results obtained by discrete-event simulation, which is 

specifically implemented for this model and not for a general FSPN. The types of events that 

need to be scheduled in the event queue are either transition firings or the hitting of a threshold 

dependent on fluid levels. We have used a Unif[0,1] pseudo-random number generator to 
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generate samples from the respective cumulative distribution functions and determine 

transition firing times via inversion of the cdf (“Golden Rule for Sampling”). Discrete-event 

simulation alone has been used to obtain performance evaluation results for wide machines 

with much more aggressive instruction issue (W>>1). 

 

Figure 3. Influence of branch prediction accuracy on (a) the distribution of the program’s execution 

time and (b) the probability of a complete stall in the instruction fetch unit 

 

Figure 4. Influence of value prediction accuracy on the distribution of the program’s execution time 
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It takes quite some effort to tune the numerical algorithm parameters appropriately, so that 

a sufficiently accurate approximation is obtained. Various discretization and convergence 

errors may cancel each other, so that sometimes a solution obtained on a coarse grid may 

agree better with the discrete-event simulation than a solution on a finer grid – which, by 

definition, should be more accurate. In Figures 5a-b, a comparison of discretization results 

and results obtained using discrete-event simulation for a four-wide machine is given. 

Furthermore, Figure 5c shows the performance of several machines with realistic predictors 

executing a program with an average basic block size of eight instructions, given that about 

25% of the instructions that initiate execution in the same clock cycle are consuming 

instructions. 

 

Figure 5. Comparison of numerical transient analysis results (NTA) and results given by discrete-event 

simulation (DES) 
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time steps is more or less dissipated to neighboring grid nodes. The phenomenon is 

emphasized when the number of discrete state changes is increased owing to the larger 

number of mispredictions. 

The results are satisfactorily close to each other, especially when the prediction accuracy is 

high, which is common in recent architectures. Yet, we believe that much work is still 

uncompleted and many questions are still open for further research in the field of 

development of strategies for reducing the amount of memory needed to represent the 

volume densities, as well as efficient discretization schemes for numerical transient analysis 

of general FSPNs. Alternating direction implicit (ADI) methods [19] in order to save memory, 

and parallelization of the numerical algorithms to reduce runtime have been suggested.  

In the remainder of this part, we do not distinguish the numerical transient analysis results 

from the results given by discrete-event simulation of the FSPN model. Initially we analyze the 

efficiency of branch prediction by varying branch prediction accuracy. Value prediction is not 

involved at all. The speedup is computed by dividing the IPC achieved with certain branch 

prediction accuracy over the IPC achieved without branch prediction ( 1 0
iBMISp  ). For the 

moment, the input space is not partitioned and program volume is set to Vi=106 instructions. 

It is observed that, looking at Figures 6a-b, branch prediction curves have an exponential 

shape. Therefore, building branch predictors that improve the accuracy just a little bit may 

be reflected in a significant performance increase. The impact of a given increment in 

accuracy is more noticeable when it experiences a slight improvement beyond the 90%. 

Another conclusion drawn from these figures is that one can benefit most from branch 

prediction in programs with relatively short basic blocks (high /i W ) and which do not 

suffer excessively from true data dependences (low /i W ). When the ratio /i W  is high, 

true data dependences overshadow control dependences. As a result, the amount of ILP that 

is expected without value prediction in a machine with extremely aggressive instruction 

issue is far below the maximum possible value, even with perfect branch prediction. Value 

prediction has to be involved to go beyond the limits imposed by true data dependences. 

Next, we analyze the efficiency of value prediction by varying value prediction accuracy 

(Figures 7a-b). The speedup is computed by dividing the IPC achieved with certain value 

prediction accuracy over the IPC achieved without value prediction ( 1 0
iVMISp  ). With 

perfect branch prediction, it seems clear that the value prediction curves have a linear 

behavior. Therefore, it is worthwhile to build a predictor that significantly improves the 

accuracy. Only a small improvement on the value predictor accuracy has a little impact on 

ILP processor performance, regardless of the accuracy range. Another conclusion drawn 

from these figures is that the effect of value prediction is more noticeable when a significant 

number of instructions consume results of simultaneously initiated producer-instructions 

during execution (high /i W ), i.e. when true data dependences have a much higher 

influence on the program’s total execution time.  

Branch prediction has a very important influence on the benefits of value prediction. One 

can see that the performance increase is less significant when branch prediction is realistic. 
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Because mispredicted branches limit the number of useful instructions that enter the 

instruction window, the processor is able to provide almost the same number of instructions 

to leave the instruction window, even with lower value prediction accuracy. As a result, 

graphs tend to flatten out. Correct value predictions can only be exploited when the fetch 

rate is quite high, i.e. when mispredicted branches are infrequent. Branch misprediction 

becomes a more significant performance limitation with wider processors (Figure 7b). 

 

Figure 6. Speedup achieved by branch prediction with varying accuracy 

 

Figure 7. Speedup achieved by value prediction with varying accuracy 
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threshold the speedup increases with the machine width, whereas above the threshold the 

speedup is close to a limit – machine width is by far larger than the average number of 

instructions provided by the fetch unit. The threshold decreases with increasing the number 

of mispredicted branches.  

 

Figure 8. Speedup achieved by branch prediction with varying machine width 
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the IPC achieved with perfect value prediction over the IPC achieved without value 

prediction (Figures 9a-c). With perfect branch prediction, some true data dependences can 

always be eliminated, regardless of the machine width. Actually, the maximum additional 

speedup is predetermined by the ratio / ( )iW W  . However, with realistic branch 

prediction, the additional speedup diminishes when the machine width is above a threshold 

value. It happens earlier when there are a smaller number of consuming instructions and/or 

a larger number of mispredicted branches. In either case, the number of independent 

instructions examined for simultaneous execution is sufficiently higher than the number of 

fetched instructions that enter the instruction window. Again, branch prediction becomes 

more important with wider processors. 
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Figure 9. Additional speedup achieved by perfect value prediction with varying machine width 

The rate at which consuming instructions occur depends on the initiation rate. Therefore, we 

also investigate the value prediction efficiency with varying instruction window size 

(varying capacity / MAXRS LSQZ  of the fluid place /RS LSQP ) (Figures 10a-b). The speedup is 

computed in the same way as in the previous instance. It increases with the instruction 

window size in [W, 2W], but the increase is more moderate when there are a smaller number 

of consuming instructions (low /i W ) and/or branch prediction is not perfect. As the 

instruction window grows larger, performance without value prediction saturates, as does 

the performance with perfect value prediction. The upper limit value emerges from the fact 

that in each cycle up to W new instructions may enter the fluid place / MAXRS LSQZ  and up to 

W consuming instructions may be forced to retain their reservation stations. One should 

also note that the speedup for W>>1 and realistic branch prediction is almost constant with 

increasing instruction window size. Two scenarios arise in this case: (1) the number of 

consuming instructions is large – the speedup is constant but still noticeable as there are not 

enough independent instructions in the window without value prediction, and (2) the 

number of consuming instructions is small – there is no speedup as there are enough 
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independent instructions in the window even without value prediction, regardless of the 

window size. Again, the main reasons for this behavior are the small number of consuming 

instructions and the large number of mispredicted branches. 

 
Figure 10. Speedup achieved by perfect value prediction with varying instruction window size 

In order to investigate the operational environment influence, we partitioned the input 

space into several program classes, each of them with at least one different aspect: branch 

rate, consuming instruction rate, probability to classify a branch as easy-to-predict or 

probability to classify a value as easy-to-predict. We concluded that the set of programs 

executed on a machine have a considerable influence on the perceived IPC. Since the term 

program may be interchangeably used with the term instruction stream, these observations 

give good reason for the analysis of the time varying behavior of programs in order to find 

simulation points in applications to achieve results representative of the program as a 

whole. From a user perspective, a machine with more sophisticated prediction mechanisms 

will not always lead to a higher perceived performance as compared to a machine with more 

modest prediction mechanisms but more favorable operational profile [20,21].  

3. Part B: fluid atoms in P2P streaming networks 

In P2P live streaming systems every user (peer) maintains connections with other peers and 

forms an application level logical network on top of the physical network. The video stream is 

divided in small pieces called chunks which are streamed from the source to the peers and 

every peer acts as a client as well as a server, forwarding the received video chunks to the 

next peer after some short buffering. The peers are usually organized in one of the two basic 

types of logical topologies: tree or mesh. Hence, the tree topology forms structured network of 

a single tree as in [22], or multiple multicast trees as in [23], while mesh topology is 

unstructured and does not form any firm logical construction, but organizes peers in 

swarming or gossiping-like environments, as in [24]. To make greater use of their 

complementary strengths, some protocols use combination of these two aspects, forming a 

hybrid network topology, such as [25]. Hence, members are free to join or leave the system at 

their own free will (churn), which leads to a certain user driven dynamics resulting in 
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constant disruptions of the streaming data delivery. This peer churn has high influence on the 

quality of offered services, especially for P2P systems that offer live video broadcast. Also, 

P2P network members are heterogeneous in their upload bandwidth capabilities and provide 

quite different contribution to the overall system performance. Efficient construction of P2P 

live video streaming network requires data latency reduction as much as possible, in order to 

disseminate the content in a live manner. This latency is firstly introduced by network 

infrastructure latency presented as a sum of serialization latency, propagation delay, router 

processing delay and router queuing delay. The second type of delay is the initial start-up 

delay required for filling the peer’s buffer prior to the start of the video play. The buffer is 

used for short term storage of video chunks which often arrive out of sequence in manner of 

order and/or time, and resolving this latency issue requires careful buffer modeling and 

management. Thus, buffer size requires precise dimensioning because even though larger 

buffers offer better sequence order or latency compensation, they introduce larger video 

playback delay. Contrary, small buffers offer smaller playback delay, but the system becomes 

more error prone. Also, since the connections between participating peers in these P2P logical 

networks are maintained by the means of control messages exchange, the buffer content 

(buffer map) is incorporated in these control messages and it is used for missing chunks 

acquisition. Chunk requesting and forwarding is controlled by a chunk scheduling algorithm, 

which is responsible for on-time chunk acquisition and delivery among the neighboring 

peers, which is usually based on the available content and bandwidth of the neighboring 

peers. A lot of research activities are strictly focused on designing better chunk scheduling 

algorithms [26,27] that present the great importance of carefully composed scheduling 

algorithm which can significantly compensate for churn or bandwidth/latency disruptions. 

Beside the basic coding schemes, in latest years an increasing number of P2P live streaming 

protocols use Scalable Video Coding (SVC) technologies. SVC is an emerging paradigm where 

the video stream is split in several sub-streams and each sub-stream contributes to one or 

more characteristics of video content in terms of temporal, spatial and SNR/quality 

scalability. Mainly, two different concepts of SVC are in greater use: Layered Video Coding 

(LVC) where the video stream is split in several dependently decodable sub-stream called 

Layers, and Multiple Description Coding (MDC) where the video stream is split in several 

independently decodable sub-stream called Descriptions. A number of P2P video streaming 

models use LVC [27] or MDC [23,28] and report promising results. 

3.1. Model definition 

As a base for our modeling we use the work in [29,30], where several important terms are 

defined. One of them is the maximum achievable rate that can be streamed to any 

individual peer at a given time, which is presented in Eq. (26).  

 1min ,

n

SERVER Pi
i

MAX SERVER

r r

r r
n



 
 

   
 
  


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where: 

rMAX – maximum achievable streaming rate 

rSERVER – upload rate of the server 

rPi – upload rate of the ith peer 

n – number of participating peers. 

Clearly, rMAX is a function of rSERVER, rPi and n, i.e. rMAX = φ(rSERVER, rP, n). This maximum 

achievable rate to a single peer is further referred to as the fluid function, or φ(). The second 

important definition is of the term Universal Streaming. Universal Streaming refers to the 

streaming situations when each participating peer receives the video stream with bitrate no 

less than the video rate, and in [29] it is achievable if and only if: 

 () VIDEOr              (27) 

where rVIDEO is the rate of the streamed video content. 

Hence, the performance measures of the system are easily obtained by calculating the 

Probability for Universal Streaming (PUS). 

Now, we add one more parameter to the previously mentioned to fulfill the requirements of 

our model. We define the stream function ψ() which, instead of the maximum, represents the 

actual streaming rate to any individual peer at any given time, and ψ() satisfies:  

 () () 
 

(28) 

3.2. FSPN representation 

The FSPN representation of the P2P live streaming system model that accounts for: network 

topology, peer churn, scalability, peer average group size, peer upload bandwidth 

heterogeneity, video buffering, control traffic overhead and admission control for lesser 

contributing peers, is given in Figure 11. We assume asymmetric network settings where 

peers have infinite download bandwidths, while stream delay, peer selection strategies and 

chunk size are not taken into account. 

Similar as in [29] we assume two types of peers: high contributing peers (HP) with upload 

bitrate higher than the video rate, and low contributing peers (LP) with upload bitrate lower 

than the video rate. Different from the fluid function φ(), beside the dependency to rSERVER, 

rP, and n, the stream function ψ() depends on the level of fluid in the unique fluid place PB  

as well: 

  () ,# ,# , , ,SERVER HP LP HP LP Bf r P P r r Z    (29) 

where ZB represents the level of fluid in PB. 

The FSPN model in Figure 11 comprises two main parts: the discrete part and the 

continuous (fluid) part of the net. Single line circles represent discrete places that can 

contain discrete tokens. The tokens, which represent peers, move via single line arcs to and  
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Figure 11. FSPN model of a P2P live video streaming system 

out of the discrete places. Fluid arcs, through which fluid is pumped, are drawn as double 

lines to suggest a pipe. The fluid is pumped through fluid arcs and is streamed to and out 

of the unique fluid place PB which represents a single peer buffer. The rectangles 

represent timed transitions with exponentially distributed firing times, and the thin short 

lines are immediate transitions. Peer arrival, in general, is described as a stochastic 

process with exponentially distributed interarrival times, with mean 1/λ, where λ 

represents the arrival rate. We make another assumption that after joining the system 

peers’ sojourn times (T) are also exponentially distributed. Clearly, since each peer is 

immediately served after joining the system, we have a queuing network model with an 

infinite number of servers and exponentially distributed joining and leaving rates. Hence, 

the mean service time T is equal to 1/μ, which transferred to FSPN notation leads to the 

definition of the departure rate as μ multiplied by the number of peers that are 

concurrently being served. Now, λ represents peer arrival in general, but the different 

types of peers do not share the same occurrence probability (pH and pL). This occurrence 

distribution is defined by immediate transitions TAHP and TALP and their weight functions 

pH and pL. Hence, HP arrive with rate λH = pH * λ, and LP arrive with rate λL = pL * λ, where 

pH + pL = 1. In this particular case pH = pL = 0.5, but, if needed, these occurrence probabilities 

can be altered. This way the model with peer churn is represented by two independent 

M/M/∞ Poisson processes, one for each of the different types of peers. The average 

number of peers that are concurrently being served defines the size of the system as a 

whole (SSIZE) and is derived from the queuing theory: 

 ௌܵூ௓ா = ߣ ⁄ߤ  (30) 

TA is a timed transition with exponentially distributed firing times that represents peer 

arrival, and upon firing (with rate λ) puts a token in PCS. PCS (representing the control 
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server) checks the type of the token and immediately forwards it to one of the discrete 

places PHP or QLP (PLP). Places PHP and PLP accommodate the different types of peers in our 

P2P live streaming system model. QLP on the other hand, represents queuing station for the 

LP, which is connected to the place PLP with the immediate transition TI that is guarded by a 

Guard function G.  

The Guard function G is a Boolean function whose values are based on a given condition. 

The expression of a given condition is the argument of the Guard function and serves as 

enabling condition for the transition TI. If the argument of G evaluates to true, TI is enabled. 

Otherwise, if the argument of G evaluates to false, TI is disabled. For the model that does not 

take admission control into account G is always enabled, but when we want to evaluate the 

performance of a system that incorporates admission control we set the argument of the 

guard function as in Eq. (31): 

 
# (# 1)

# #
SERVER HP HP LP LP

VIDEO CONTROL
HP LP

r P r P r
G r r

P P

        
  

  (31) 

Transitions TDHP and TDLP are enabled only when there are tokens in discrete places PHP and 

PLP. These are marking dependent transitions, which, when enabled, have exponentially 

distributed firing times with rate μ·#PHP and μ·#PLP respectively, where #PHP and #PLP 

represent the number of tokens in each discrete place. Upon firing they take one token out of 

the discrete place to which they are connected. 

Concerning the fluid part of the model, we represent bits as atoms of fluid that travel 

through fluid pipes (network infrastructure) with rate dependent on the system’s state 

(marking). Beside the stream function as a derivative of several parameters, we identify 

three separate fluid flows (streams) that travel through the network with different bitrates. 

The main video stream represents the video data that is streamed from the source to the 

peers that we refer to as the video rate (rVIDEO). The second stream is the play stream which is 

the stream at which each peer plays the streamed video data, referred to as the play rate 

(rPLAY), and the third stream is the control traffic overhead, referred to as control rate 

(rCONTROL), which describes the exchange of control messages needed for the logical network 

construction and management. As mentioned earlier, transitions TDHP and TDLP are enabled 

only when there are tokens in discrete places PHP and PLP respectively and beside the fact 

that they consume tokens when firing, when enabled, they constantly pump fluid through 

the fluid arc to the fluid place. Flow rates of ψ() are piecewise constant and depend on the 

number of tokens in the discrete places and their upload capabilities. Continuous place PB 

represents single peer’s buffer, which is constantly filled with rate ψ() and drained with rate 

(rPLAY  + rCONTROL). ZB is the amount of fluid in PB and ZBMAX is the buffer’s maximum capacity. 

Transition TSERVER represents the functioning of the server, which is always enabled (except 

when there are no tokens in any of the discrete places) and constantly pumps fluid toward 

the continuous place PB with maximum upload rate of rSERVER. Transition TPLAY represents the 

video play rate, which is also always enabled and constantly drains fluid from the 



Fluid Stochastic Petri Nets:  
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 249 

continuous place PB, with rate rPLAY. TCONTROL, that represents the exchange of control 

messages among neighboring peers, is the third transition that is always enabled, has the 

priority over TPLAY, and constantly drains fluid from PB with rate rCONTROL. For further analysis 

we derived the rate of rCONTROL from [31] where it is declared that it linearly depends on the 

number of peers in the neighborhood, and for rVIDEO of 128 kbps, the protocol overhead is 2% 

for a group of 64 users, which leads to a bitrate of 2.56 kbps. Thus, for our performance 

analysis we assume that peers are organized in neighborhoods with an average size of 60 

members where rCONTROL is 2.4 kbps. For the sake of convenience and chart plotting we also 

define the average upload rate of the participating peers as rAVERAGE, which is given in Eq. (32): 

 

# * # *

# #
HP HP LP LP

AVERAGE
HP LP

P r P r
r

P P





  (32) 

Since in our model of a P2P live video streaming system we take in consideration rCONTROL as 

well, Universal Streaming is achievable if and only if: 

 
() VIDEO CONTROLr r     (33) 

3.3. Discrete-event simulation 

The FSPN model of a P2P live video streaming system accurately describes the behavior of 

the system, but suffers from state space explosion and therefore analytic/numeric solution is 

infeasible. Hence, we provide a solution to the presented model using process-based discrete-

event simulation (DES) language. The simulations are performed using SimPy which is a DES 

package based on standard Python programming language. It is quite simple, but yet 

extremely powerful DES package that provides the modeler with simulation processes that 

can be used for active model components (such as customers, messages or vehicles), and 

resource facilities (resources, levels and stores) which are used for passive simulation 

components that form limited capacity congestion points like servers, counters, and tunnels. 

SimPy also provides monitor variables that help in gathering statistics, and the random 

variables are provided by the standard Python random module. 

Now, although we deal with vast state space, we provide the solution by identifying four 

distinct cases of state types. These cases of state types are combination of states of the 

discrete part and the continuous part of the FSPN, and are presented in Table 2. Hence, the 

rates at which fluid builds up in the fluid place PB, in each of these four cases, can be 

described with linear differential equations that are given in Eq. (34). 

 

case 1 if ZB = ZBMAX and φ() ≥ rVIDEO+rCONTROL then 
ψ() = rVIDEO+rCONTROL and 

rPLAY = rVIDEO 

case 2 if 0 <ZB ≤ ZBMAX and φ() < rVIDEO+rCONTROL then ψ() = φ() and rPLAY = rVIDEO 

case 3 if 0 ≤ ZBUF<ZBUFMAX and φ() ≥ rVIDEO+rCONTROL then ψ() = φ() and rPLAY = rVIDEO 

case 4 if ZBUF = 0 and φ() < rVIDEO+rCONTROL then ψ() = φ() and rPLAY < rVIDEO 

Table 2. Cases of state types 
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In the next few lines (Table 3a-d) we briefly present the definitions of some of the the FSPN 

model components in SimPy syntax. Algorithm 1 presents the definition of SimPy 

processes for the different types of tokens. All the FSPN places (as well as rPLAY) are defined 

as resource facilities of the type “Level” and are given in Algorithm 2. The formulation of a 

“Level” for representing the rPLAY was enforced by the requirement for monitoring and 

modifying the rPLAY at each instant of time. Algorithm 3 presents TA combined with TAHP 

and TALP where it is defined as two separate SimPy Proceses that independently generate 

two different types of token processes. Algorithm 4 represents the definition of transitions 

TDHP and TDLP. 

 

Definition of HP token

class tokenHP (Process): 

    def join (self): 

        yield put, self, Php, 1 

Definition of LP token with integrated Guard for TI

class tokenLP (Process): 

    def join (self): 

        if (Php.amount + Plp.amount) == 0: 

            yield put, self, Plp, 1 

        else: 

            yield put, self, Qlp, 1 

            def GuardOFF(): 

                return (((Rserver + (Plp.amount + 1)*Rlp + Php.amount*Rhp)/((Plp.amount + 

1) + Php.amount)) >= Rvideo + Rcontrol) 

            while True: 

                yield waituntil, self, GuardOFF 

                yield get, self, Qlp, 1 

                yield put, self, Plp, 1 

                yield passivate, self 

(a) Algorithm 1: Definition of tokens in SimPy 

 

Pcs = Level (name = ‘Control Server’, initialBuffered=0, monitored = True) 

Php = Level (name = ‘Discrete Place Php’, initialBuffered=0, monitored = True) 

Plp = Level (name = ‘Discrete Place Plp’, initialBuffered=0, monitored = True) 
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Qlp = Level (name = ‘Queuing Station’, initialBuffered=0, monitored = True) 

Pb = Level (name = ‘Peer Buffer’, initialBuffered=Zbmax, monitored = True) 

Pplay = Level (name = ‘Play rate’, initialBuffered=Rvideo, monitored = True) 

(b) Algorithm 2: Definition of FSPN places in SimPy 

 

Transition TA combined 

with TAHP 

class HPgenerator (Process): 

    def generate (self, end): 

        while now() < end: 

            yield peerHP = tokenHP () 

            activate (peerHP, peerHP.join()) 

            yield hold, self, expovariate (pH * Lamda) 

Transition TA combined 

with TALP 

class LPgenerator (Process): 

    def generate (self, end): 

        while now() < end: 

            peerLP = tokenLP () 

            activate (peerLP, peerLP.join()) 

            yield hold, self, expovariate (pL * Lamda) 

(c) Algorithm 3: Definition of transition TA combined with TAHP and TALP 

 

Transition 

TDHP 

class HPdeparture (Process): 

    def depart (self, end): 

        def Condition(): 

                return (Php.amount > 0) 

            while True: 

                yield waituntil, self, Condition 

                yield hold, self, expovariate (Mi * Php.amount) 

                yield get, self, Php, 1 

Transition TDLP 

class LPdeparture (Process): 

    def depart (self, end): 

        def Condition(): 

                return (Plp.amount > 0) 

            while True: 

                yield waituntil, self, Condition 

                yield hold, self, expovariate (Mi * Plp.amount) 

                yield get, self, Plp, 1 

(d) Algorithm 4: Definition of transitions TDHP and TDLP 

 

Table 3. Definitions of FSPN model components in SimPy 
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Figure 12. Performance of small and medium systems with and without AC 

 
Figure 13. Performance in respect to system scaling 

 
Figure 14. Buffer analysis of medium system without admission control 
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For simulating the fluid part of the FSPN, time discretization is applied where a SimPy 

“Stream Processs” checks the system state in small time intervals and consequently makes 

changes to the level of fluid in the fluid place PB and rPLAY according to Eq. (34). For 

gathering the results we use the frequency theory of probability where the probability for 

Universal Streaming is computed as the amount of time the system spends in Universal 

Streaming mode against the total simulation time.  

3.4. Performance evaluation results and analysis 

In this section we make a brief evaluation of three system sizes: 

1. Small system with an average of 100 concurrent participating peers 

2. Medium system with an average of 500 concurrent participating peers 

3. Large system with an average of 5000 concurrent participating peers 

The simulation scenario is as follows: rSERVER = (rVIDEO + rCONTROL)*3, upload bandwidth of HP 

is rHP = 700kbps, upload bandwidth of LP is rLP = 100kbps, and sojourn time T = 45 minutes. 

For gathering the performance results we vary the rVIDEO and we plot the PUS against the 

quotient of rVIDEO/rAVERAGE, where rAVERAGE for this case is 400kbps. For calculating the PUS of a 

single scenario we calculate the average of 150 simulations for the small system, and an 

average of 75 simulations for the medium and large system, while each single simulation 

simulates 10 hours of system activity. Initial conditions are: ZB0 = ZBMAX, where ZB0 is the 

amount of fluid in PB in time t0 = 0 and all discrete places are empty. 

Comparison of performance of small and medium systems with and without AC is 

presented in Figure 12, from which an obvious conclusion is inferred that AC almost does 

not have any direct influence on the performance, but considering the incremented initial 

delay, incorporation of AC would only have a negative effect on the quality of offered 

services. Regarding the performance of the system in respect to system scaling, presented in 

Figure 13, it is obvious that scaling causes increase in performance, but only to a certain 

point after which performance steeply decreases. Fortunately, the performance decrease is 

in the region of under capacity which is usually avoided, so it can be concluded that larger 

systems perform better than smaller ones. Finally, Figure 14 shows that optimal buffer size 

is about 30 seconds of stored material, and larger buffers only slightly improve performance, 

but introduce quite large play out delay which leads to diminished quality of user 

experience. 

4. Conclusion 

In the first part of this chapter, we have introduced an implementation-independent 

analytical modeling approach to evaluate the performance impact of branch and value 

prediction in modern ILP processors, by varying several parameters of both the 

microarchitecture and the operational environment, like branch and value prediction accuracy, 

machine width, instruction window size and operational profile. The proposed analytical 

model is based on recently introduced Fluid Stochastic Petri Nets (FSPNs). We have also 
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presented performance evaluation results in order to illustrate its usage in deriving measures of 

interest. Since the equations characterizing the evolution of FSPNs are a coupled system of 

partial differential equations, the numerical transient analysis poses some interesting 

challenges. Because of a mixed, discrete and continuous state space, another important avenue 

for the solution is the discrete-event simulation of the FSPN model. We believe that our 

stochastic modeling framework reveals considerable potential for further research in this area, 

needed to better understand speculation techniques in ILP processors and their performance 

potential under different scenarios. 

In the second part of this chapter, we have shown how the FSPN formalism can be used to 

model P2P live video streaming systems. We have also presented a simulation solution 

method using process-based discrete-event simulation language whenever analytic/numeric 

solution becomes infeasible, that is usually a result of state space explosion. We managed to 

create a model that accounts for numerous features of such complex systems including: 

network topology, peer churn, scalability, average size of peers’ neighborhoods, peer 

upload bandwidth heterogeneity and video buffering, among which control traffic overhead 

and admission control for lesser contributing peers are introduced for the first time. 

Author details 

Pece Mitrevski* and Zoran Kotevski 

Faculty of Technical Sciences, University of St. Clement Ohridski, Bitola, Republic of Macedonia 

5. References 

[1] Rajan R (1995) General Fluid Models for Queuing Networks. PhD Thesis. University of 

Wisconsin - Madison. 

[2] Gribaudo M, Sereno M, Bobbio A (1999) Fluid Stochastic Petri Nets: An extended 

Formalism to Include non-Markovian Models. Proc. 8th Int. Workshop on Petri Nets and 

Performance Models. Zaragoza. 

[3] Gribaudo M, Sereno M, Horvath A, Bobbio A (2001) Fluid Stochastic Petri Nets 

Augmented with Flush-out Arcs: Modeling and Analysis. Kluwer Academic Publishers: 

Discrete Event Dynamic Systems. 11(1/2): 97-117. 

[4] Horton G, Kulkarni V, Nicol D, Trivedi K (1998) Fluid Stochastic Petri Nets: Theory, 

Applications, and Solution. European Journal of Operations Research. 105(1): 184-201. 

[5] Trivedi K, Kulkarni V (1993) FSPNs: Fluid Stochastic Petri Nets. In: M. Ajmone Marsan, 

editor. Lecture Notes in Computer Science: Proc. 14th Int. Conf. on Applications and 

Theory of Petri Nets. 691: 24-31. 

[6] Wolter K, Horton G, German R (1996) Non-Markovian Fluid Stochastic Petri Nets. TU 

Berlin: TR 1996-13. 

[7] Ferziger JH, Perić M (1997) Computational Methods for Fluid Dynamics. Springer-

Verlag. 

                                                                 
* Corresponding Author 



Fluid Stochastic Petri Nets:  
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 255 

[8] Hoffmann KA, Chiang ST (1993) Computational Fluid Dynamics for Engineers: Volume 

I & II. Engineering Education System. 

[9] Ciardo G, Nicol D, Trivedi K (1997) Discrete-Event Simulation of FSPNs. Proc. 7th Int. 

Workshop on Petri Nets and performance Models (PNPM’97). Saint Malo. pp. 217-225.  

[10] Gribaudo M, Sereno M (2000) Simulation of Fluid Stochastic Petri Nets. Proc. 8th Int. 

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication 

Systems. San Francisco. pp. 231-239. 

[11] Chang PY, Hao E, Patt Y (1995) Alternative Implementations of Hybrid Branch Predictors. 

Proc. 28th Annual Int. Symposium on Microarchitecture. Ann Arbor. pp. 252-263. 

[12] Rotenberg E, Bennett S, Smith J (1996) Trace Cache: a Low Latency Approach to High 

Bandwidt Instruction Fetching. Proc. 29th Annual Int. Symposium on Microarchitecture. 

Paris. pp. 24-35. 

[13] Yeh TY, Marr D, Patt Y (1993) Increasing the Instruction Fetch Rate via Multiple Branch 

Prediction and a Branch Address Cache. Proc. Int. Conf. on Supercomputing. Tokyo. 

pp. 67-76. 

[14] Lipasti M, Wilkerson C, Shen JP (1996) Value Locality and Load Value Prediction. Proc. 

7th Int. Conf. on Architectural Support for Programming Languages and Operating 

Systems. Cambridge. pp. 138-147. 

[15] Wang K, Franklin M (1997) Highly Accurate Data Value Prediction using Hybrid 

Predictors. Proc. 30th Annual Int. Symposium on Microarchitecture. Research Triangle 

Pk. pp. 281-290. 

[16] Milton JS, Arnold JC (1990) Introduction to Probability and Statistics: Principles and 

Applications for Engineering and the Computing Sciences (2nd Edition). McGraw-Hill. 

[17] Chang PY, Hao E, Yeh TY, Patt Y (1994) Branch Classificaion: a New Mechanism for 

Improving Branch Predictor Performance. Proc. 27th Annual Int. Symposium on 

Microarchitecture. San Jose. pp. 22-31. 

[18] Gabbay F, Mendelson A (1998) The Effect of Instruction Fetch Bandwidth on Value 

Prediction. Proc. 25th Int. Symposium on Computer Architecture. Barcelona. pp. 272-281. 

[19] Wolter K (1999) Performance and Dependability Modelling with Second Order Fluid 

Stochastic Petri Nets. PhD Thesis. TU Berlin. 

[20] Mitrevski P, Gušev M (2003) On the Performance Potential of Speculative Execution 

Based on Branch and Value Prediction. Int. Scientific Journal Facta Universitatis. Series: 

Electronics and Energetics. 16(1): 83-91. 

[21] Gušev M, Mitrevski P (2003) Modeling and Performance Evaluation of Branch and Value 

Prediction in ILP Processors. International Journal of Computer Mathematics. 80(1): 19-46. 

[22] Tu X, Jin H, Liao X (2008) Nearcast: A Locality-Aware P2P Live Streaming Approach for 

Distance Education. ACM Transactions on Internet Technology. 8(2): Article No. 2. 

[23] Zezza, S., Magli E, Olmo G, Grangetto M (2009) Seacast: A Protocol for Peer to Peer 

Video Streaming Supporting Multiple Description Coding. IEEE Int. Conf. on 

Multimedia and Expo. pp. 1586-1587. 

[24] Covino F, Mecella M (2008) Design and Evaluation of a System for Mesh-based P2P 

Live Video Streaming. ACM Int. Conf. on Advances in Mobile Computing and 

Multimedia. pp. 287-290. 



 
Petri Nets – Manufacturing and Computer Science 256 

[25] Lu Z, Li Y, Wu J, Zhang SY, Zhong YP (2008) MultiPeerCast: A Tree-mesh-hybrid P2P 

Live Streaming Scheme Design and Implementation based on PeerCast. 10th IEEE Int. 

Conf. on High Performance Computing and Communications. pp. 714-719. 

[26] Chen Z, Xue K, Hong P (2008) A Study on Reducing Chunk Scheduling Delay for Mesh-

Based P2P Live Streaming. In: 7th IEEE Int. Conf. on Grid and Cooperative Computing, 

pp. 356-361. 

[27] Xiao X, Shi Y, Gao Y (2008) On Optimal Scheduling for Layered Video Streaming in 

Heterogeneous Peer-to-Peer Networks. ACM Int. Conf. on Multimedia. pp. 785-788.  

[28] Guo H, Lo KT (2008) Cooperative Media Data Streaming with Scalable Video Coding. 

IEEE Transactions on Knowledge and Data Engineering. 20(9): 1273-1281. 

[29] Kumar R, Liu Y, Ross K (2007) Stochastic Fluid Theory for P2P Streaming Systems. IEEE 

INFOCOM. pp. 919–927. 

[30] Kotevski Z, Mitrevski P (2011) A Modeling Framework for Performance Analysis of P2P 

Live Video Streaming Systems. In: Gušev M, Mitrevski P, editors. ICT Innovations 2010. 

Berlin Heidelberg: Springer Verlag. pp. 215-225. 

[31] Chu Y, Rao SG, Seshan S, Zhang H (2000) A Case for End System Multicast. IEEE 

Journal on Selected Areas in Communications. 20(8): 1456–1471. 


