
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 10

© 2012 Mitrevski and Kotevski, licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fluid Stochastic Petri Nets:

From Fluid Atoms in ILP Processor Pipelines

to Fluid Atoms in P2P Streaming Networks

Pece Mitrevski and Zoran Kotevski

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50615

1. Introduction

Fluid models have been used and investigated in queuing theory [1]. Recently, the concept

of fluid models was used in the context of Stochastic Petri Nets, referred to as Fluid Stochastic

Petri Nets (FSPNs) [2-6]. In FSPNs, the fluid variables are represented by fluid places, which

can hold fluid rather than discrete tokens. Transition firings are determined by both discrete

and fluid places, and fluid flow is permitted through the enabled timed transitions in the

Petri Net. By associating exponentially distributed or zero firing time with transitions, the

differential equations for the underlying stochastic process can be derived. The dynamics of

an FSPN are described by a system of first-order hyperbolic partial differential equations

(PDEs) combined with initial and boundary equations. The general system of PDEs may be

solved by a standard discretization approach. In [6], the problem of immediate transitions

has also been addressed in relation to the fluid levels, by allowing fluid places to be

connected to immediate transitions. The transportation of fluid in zero time is described by

appropriately chosen boundary conditions.

In a typical multiple-issue processor, instructions flow through pipeline and pass through

separate pipeline stages connected by buffers. An open multi-chain queuing network can

present this organization, with each stage being a service center with a limited buffer size.

Considering a machine that employs multiple execution units capable to execute large

number of instructions in parallel, the service and storage requirements of each individual

instruction are small compared to the total volume of the instruction stream. Individual

instructions may then be regarded as atoms of a fluid flowing through the pipeline. The

objective of this approach is to approximate large buffer levels by continuous fluid levels

and decrease state-space complexity. Thus, in the first part of this chapter, we employ an

Petri Nets – Manufacturing and Computer Science 226

analytical model based on FSPNs, derive the state equations for the underlying stochastic

process and present performance evaluation results to illustrate its usage in deriving

measures of interest. The attempt to capture the dynamic behavior of an ILP processor with

aggressive use of prediction techniques and speculative execution is a rare example that

demonstrates the usage of this recently introduced formalism in modeling actual systems.

Moreover, we take into consideration numerical transient analysis and present numerical

solution of a FSPN with more than three fluid places. Both the application of finite-

difference approximations for the partial derivatives [7,8], as well as the discrete-event

simulation of the proposed FSPN model [9,10], allow for the evaluation of a number of

performance measures and lead to numerous conclusions regarding the performance impact

of predictions and speculative execution with varying parameters of both the

microarchitecture and the operational environment. The numerical solution makes possible

the probabilistic analysis of the dynamic behavior, whereas the advantage of the discrete-

event simulation is the much faster generation of performance evaluation results. Since the

modeling framework is implementation-independent, it can be used to estimate the

performance potential of branch and value prediction, as well as to assess the operational

environment influence on the performance of ILP processors with much more aggressive,

wider instruction issue.

Another challenging task in the application of FSPNs is the modeling and performance

analysis of Peer-to-Peer (P2P) live video streaming systems. Web locations offering live video

content increasingly attract more and more visitors, which, if the system is based on the

client/server architecture, leads to sustainability issues when clients rise above the upload

capabilities of the streaming servers. Since IP Multicast failed to satisfy the requirements of

an affordable, large scale live video streaming, in the last decade the science community

intensively works in the field of P2P networking technologies for live video broadcast. P2P

live video streaming is a relatively new paradigm that aims for streaming live video content

to a large number of clients with low cost. Even though many such applications already

exist, these systems are still in their early stages and prior to creation of such a system it is

necessary to analyze performance via representative model that provides significant insight

into the system’s behavior. Nevertheless, modeling and performance analysis of P2P live

video streaming systems is a complex combinatorial problem, which requires addressing

many properties and issues of such systems. Inspired by several research articles concerned

with modeling of their behavior, in the second part of this chapter, we present how FSPNs

can be used for modeling and performance analysis of a mesh based P2P live video

streaming system. We adopt fluid flow to represent bits as atoms of a fluid that travel through

fluid pipes (network infrastructure). If we represent peers with discrete tokens and video

bits as fluid, then we have numerous possibilities to evaluate the performance of the system.

The developed model is simple and quite flexible, providing performance evaluation of a

system that accounts for a number of system features, such as: network topology, peer

churn, scalability, peer average group size, peer upload bandwidth heterogeneity, video

buffering, control traffic overhead and admission control for lesser contributing peers. In

this particular case, discrete-event simulation (DES) is carried out using SimPy

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 227

(http://simpy.sourceforge.net) – an object-oriented, process-based discrete-event simulation

language based on standard Python (http://www.python.org), which provides the modeler

with components of a simulation model including processes (for active components) and

resources (for passive components) and provides monitor variables to aid in gathering

statistics.

2. Part A: Fluid atoms in ILP processor pipelines

Most of the recent microprocessor architectures assume sequential programs as input and use

a parallel execution model. The hardware is expected to extract the parallelism out of the

instruction stream at run-time. The efficiency is highly dependent on both the hardware

mechanisms and the program characteristics, i.e. the instruction-level parallelism (ILP) the

programs exhibit. Many ILP processors speculatively execute control-dependent instructions

before resolving the branch outcome. They rely upon branch prediction in order to tolerate

the effect of control dependences. A branch predictor uses the current fetch address to predict

whether a branch will be fetched in the current cycle, whether that branch will be taken or

not, and what the target address of the branch is. The predictor uses this information to

decide where to fetch from in the next cycle. Since the branch execution penalty is only seen

if the branch was mispredicted, a highly accurate branch predictor is a very important

mechanism for reducing the branch penalty in a high performance ILP processor.

A variety of branch prediction schemes have been explored [11] – they range between fixed,

static displacement-based, static with profiling, and various dynamic schemes, like Branch

History Table with n-bit counters, Branch Target Address Cache, Branch Target Instruction Cache,

mixed, two-level adaptive, hybrid, etc. Some research studies have also proposed concepts to

implement high-bandwidth instruction fetch engines based on multiple branch prediction.

Such concepts include trace cache [12] or the more conventional multiple-block fetching [13].

On the other hand, given that a majority of static instructions exhibit very little variations in

values that they produce/consume during the course of a program’s execution [14], data

dependences can be eliminated at run-time by predicting the outcome values of instructions

(value prediction) and by executing the true data dependent instructions. In general, the

outcome value of an instruction can be assigned to registers, memory locations, condition

codes, etc. The execution is speculative, as it is not assured that instructions were fed with

correct input values. Since the correctness of execution must be maintained, speculatively

executed instructions retire only if the prediction was proven correct – otherwise, they are

discarded.

Several architectures have been proposed for value prediction [15] – last value predictor, stride

predictor, context predictors and hybrid approaches in order to get good accuracy over a set of

programs due to the different data value locality characteristics that can be exploited only

by different schemes. Based on instruction type, value prediction is sometimes identified as

prediction of the outcome of arithmetic instructions only, and the prediction of the outcome of

memory access instructions as a different class, referred to as memory prediction.

Petri Nets – Manufacturing and Computer Science 228

2.1. Model definition

A model should always have a form that is more concise and closer to a designer’s intuition

about what a model should look like. In the case of a processor pipeline, the simplest

description would be that the instructions flow and pass through separate pipeline stages

connected by buffers. Control dependences stall the inflow of useful instructions (fluid) into

the pipeline, whereas true data dependences decrease the aperture of the pipeline and the

outflow rate. The buffer levels always vary and affect both the inflow and outflow rates.

Branch prediction techniques tend to eliminate stalls in the inflow, while value prediction

techniques help keeping outflow rate as high as possible.

Representing the dynamic behavior of systems subject to randomness or variability is the main

concern of stochastic modeling. It relies on the use of random variables and their distribution

functions [16]. We assume that the distribution of the time between two consecutive

occurrences of branch instructions in the fluid stream is exponential with rate λ. The rate

depends on the instruction fetch bandwidth, as well as the program’s average basic block size.

Branches vary widely in their dynamic behavior, and predictors that work well on one type of

branches may not work as well on others. A set of hard-to-predict branches that comprise a

fundamental limit to traditional branch predictors can always be identified [17]. We assume

that there are two classes: easy-to-predict and hard-to-predict branches, and the expected branch

prediction accuracy is higher for the first, and lower for the second. The probabilities to

classify a branch as either easy- or hard-to-predict depend on the program characteristics.

When the instruction fetch rate is low, a significant portion of data dependences span across

instructions that are fetched consecutively [18]. As a result, these instructions (a producer-

consumer pair) will eventually initiate their execution in a sequential manner. In this case,

the prediction becomes useless due to the availability of the consumer’s input value. Hence,

in each cycle, an important factor is the number of instructions that consume results of

simultaneously initiated producer instructions. We assume that the distribution of the time

between two consecutive occurrences of consuming instructions in the fluid stream is

exponential with rate μ. The rate depends on the number of instructions that simultaneously

initiate execution at a functional unit, as well as the program’s average dynamic instruction

distance. We assume that there are two classes of consuming instructions: (1) instructions

that consume easy-to-predict values and (2) instructions that consume hard-to-predict values.

The expected value prediction accuracy is higher for the first and lower for the second. The

probability to classify a value as either easy- or hard-to-predict depends on the program’s

characteristics, similarly to the branch classification.

The set of programs executed on the machine represent the input space. Programs with

different characteristics are executed randomly and independently according to the

operational profile. We partition the input space by grouping programs that exhibit as nearly

as possible homogenous behavior into program classes. Since there are a finite number of

partitions (classes), the upper limits of λ and μ, as well as the probabilities to classify a

branch/value as either easy- or hard-to-predict are considered to be discrete random

variables and have different values for different program classes.

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 229

2.2. FSPN representation

We assume that the pipeline is organized in four stages: Fetch, Decode/Issue, Execute and

Commit. Fluid places PIC, PIB, PRS/LSQ, PROB, PRR, PEX and PREG, depicted by means of two

concentric circles (Figure 1), represent buffers between pipeline stages: instruction cache,

instruction buffer, reservation stations and load/store queue, reorder buffer, rename registers,

instructions that have completed execution and architectural registers. Five of them have limited

capacities: ZIBmax, ZRS/LSQmax, ZRRmax, ZROBmax and ZEXmax. We prohibit both an overflow and a

negative level in a fluid place. The fluid place PTIME has the function of an hourglass: it is

constantly filled at rate 1 up to the level 1 and then flushed out, which corresponds to the

machine clock cycle. ZTIME(t) denotes the fluid level in PTIME at time t. Fluid arcs are drawn as

double arrows to suggest a pipe. Flow rates are piecewise constant, i.e. take different values

at the beginning of each cycle and are limited by the fetch/issue width of the machine (W).

Rates depend on the vector of fluid levels ()tZ and change when TCLOCK fires and the fluid in

PTIME is flushed out. The flush out arc is drawn as thick single arrow.

Let
0 0 0 0 0 0/, , , , andIC IB RS LSQ RR ROB EXZ Z Z Z Z Z be the fluid levels at the beginning of the

clock cycle, i.e.
0 0()IC ICZ Z t ,

0 0()IB IBZ Z t ,
0/ / 0()RS LSQ RS LSQZ Z t ,

0 0()RR RRZ Z t ,

0 0()ROB ROBZ Z t and
0 0()EX EXZ Z t , where 0t t    and 0() 0TIMEZ t  .

A high-bandwidth instruction fetch mechanism fetches up to W instructions per cycle and

places them in the instruction buffer. The fetch rate is given by:

max 0 0

min(, ,)FETCH IB IB ISSUE ICr Z Z r Z W   (1)

TCLASS1 TCLASS2

PSTART

1 2

PCLASS

λ

pBEP
1-pBEP

pBEPC

1-pBEPC
1-pBHPC

pBHPC

rFETCHrFETCH

1

1

rISSUErISSUE rISSUE

rINITIATE

rCOMPLETE

rCOMMITrCOMMITrCOMMIT

rISSUE

PFETCH

PRS/LSQ

PRR PROB

PEX

PREG

PIC PIB

TREEXECUTE

TEND

TENDTEND

TEND TEND

TEND

PBRANCH

PBEP PVEP

TBEP TBHP

TBHPMIS

TBEPMIS

TCOUNT

TBEPC

TCONTINUE

TBHPC

PBHP PVHP

PBMIS

μ

pVEP

1-pVEPC

1-pVEP

pVHPC

1-pVHPC

PINITIATE

PCONSUMER

TCONSUMER

TVEP TVHP

TVHPMIS

TVHPCpVEPCTVEPC

TVEPMIS

PVMIS

PRESOLVED

TBRANCH

TISSUE

TEXECUTE

TCOMMIT

TCLASSn

n

rCOMMIT

TCLOCK

1 1

PTIMETTIME

if Z =V AND Z =1REG TIME

if Z =1TIME

if Z =1TIME

Figure 1. A Fluid Stochastic Petri Net model of an ILP processor

Petri Nets – Manufacturing and Computer Science 230

In the case of a branch misprediction, the fetch unit is effectively stalled and no useful

instructions are added to the buffer. Instruction cache misses are ignored.

Instruction issue tries to send W instructions to the appropriate reservation stations or the

load/store queue on every clock cycle. Rename registers are allocated to hold the results of the

instructions and reorder buffer entries are allocated to ensure in-order completion. Among the

instructions that initiate execution in the same cycle, speculatively executed consuming

instructions are forced to retain their reservation stations. As a result, the issue rate is given by:

max 0 max 0 / max / 0 0min(, , , ,)ISSUE RR RR COMMIT ROB ROB COMMIT RS LSQ RS LSQ IBr Z Z r Z Z r Z Z Z W      (2)

Up to W instructions are in execution at the same time. With the assumptions that functional

units are always available and out-of-order execution is allowed, the instructions initiate and

complete execution with rate:

0/min(,)INITIATE COMPLETE RS LSQr r Z W  (3)

During the execute stage, the instructions first check to see if their source operands are

available (predicted or computed). For simplicity, we assume that the execution latency of

each instruction is a single cycle. Instructions execute and forward their own results back to

subsequent instructions that might be waiting for them (no result forwarding delay). Every

reference to memory is present in the first-level cache. With the last assumption, we

eliminate the effect of the memory hierarchy.

The instructions that have completed execution are ready to move to the last stage. Up to W

instructions may commit per cycle. The results in the rename registers are written into the

register file and the rename registers and reorder buffer entries freed. Hence:

0

min(,)COMMIT EXr Z W (4)

In order to capture the relative occurrence frequencies of different program classes, we

introduce a set of weighted immediate transitions in the Petri Net. Each program class is

assigned an immediate transition
iCLASST with weight

iCLASSw . The operational profile is a

set of weights. The probability of firing the immediate transition
iCLASST represents the

probability of occurrence of a class i program, given by:

1

CLASSi

CLASSi

CLASSk

T

T n

T
k

w
w

w







 (5)

A token in PSTART denotes that a new execution is about to begin. The process of firing one of

the immediate transitions randomly chooses a program from one of the classes. The firing of

transition
iCLASST puts i tokens in place PCLASS, which identify the class. At the same time

instant, tokens occur in places PFETCH and PINITIATE, while the fluid place PIC is filled with fluid

with volume Vi equivalent to the total number of useful instructions (program volume).

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 231

Firing of exponential transition TBRANCH corresponds to a branch instruction occurrence. The

parameter  changes at the beginning of each clock cycle and formally depends on both the

number of tokens in PCLASS and the fetch rate:

   f # fFETCH FETCH FETCH

CLASS i

r r r
P i

W W W
    (6)

where i is its upper limit for a given program class i at maximum fetch rate (rFETCH=W). The

branch is classified as easy-to-predict with probability pBEP, or hard-to-predict with

probability 1-pBEP. In either case, it is correctly predicted with probability pBEPC (pBHPC), or

mispredicted with probability 1-pBEPC (1-pBHPC). These probabilities are included in the FSPN

model as weights assigned to immediate transitions TBEP, TBHP, TBEPC, TBHPC, TBEPMIS and

TBHPMIS, respectively. This approach is known as synthetic branch prediction. Branch

mispredictions stall the fluid inflow for as many cycles as necessary to resolve the branch

(CBR tokens in place PBMIS). Usually, a branch is not resolved until its execution stage (CBR=3).

With several consecutive firings of TCLOCK, these tokens are consumed one at a time and

moved to PRESOLVED. As soon as the branch is resolved, transition TCONTINUE fires, a token

appears in place PFETCH and the inflow resumes.

Similar to this, firing of exponential transition TCONSUMER corresponds to the occurrence of a

consuming instruction among the instructions that initiated execution. The parameter 

changes at the beginning of each clock cycle and formally depends on both the number of

tokens in PCLASS and the initiation rate:

    g # gINITIATE INITIATE INITIATE
CLASS i

r r r
P i

W W W
    (7)

where i is its upper limit for a given program class i when maximum possible number of

instructions simultaneously initiate execution (rINITIATE=W). The consumed value is classified

as easy-to-predict with probability pVEP, or hard-to-predict with probability 1-pVEP. In either

case, it is correctly predicted with probability pVEPC (pVHPC), or mispredicted with probability

1-pVEPC (1-pVHPC). These probabilities are included in the FSPN model as weights assigned to

immediate transitions TVEP, TVHP, TVEPC, TVHPC, TVEPMIS and TVHPMIS, respectively. Whenever a

misprediction occurs (token in place PVMIS), the consuming instruction has to be rescheduled

for execution. The firing of immediate transition TREEXECUTE causes transportation of fluid in

zero time. Fluid jumps have deterministic height of 1 (one instruction) and take place when

the fluid levels in PRS and PEX satisfy the condition
max

() 1 and () 1RS RS EXZ t Z Z t   . Jumps

that would go beyond the boundaries cannot be carried out. The arcs connecting fluid places

and immediate transitions are drawn as thick single arrows. The fluid flow terminates at the

end of the cycle when all the fluid places except PREG are empty and TEND fires.

2.3. Derivation of state equations

When executing a class i program, the nodes mi of the reachability graph (Figure 2) consist

of all the tangible discrete markings, as well as those in which the enabling of immediate

Petri Nets – Manufacturing and Computer Science 232

transitions depends on fluid levels and cannot be eliminated, since they are of mixed

tangible/vanishing type (Table 1). It is important to note that the number of discrete

markings does not depend on the machine width in any way.

1i 2i 3i 4i

5i 6i 7i 8i

9i

λpBMISi

μp
V

M
IS

i

μp
V

M
IS

i

μp
V

M
IS

i

μp
V

M
IS

i

λpBMISi

T
R

E
E

X
E

C
U

T
E

T C
O

U
N

T

TCOUNT

TEND

TEND

TEND

TEND

TEND

TEND

TEND

TEND

TCOUNT

TCOUNT

TCOUNT

T
C

L
O

C
K

T C
O

U
N

T

T
R

E
E

X
E

C
U

T
E

T
R

E
E

X
E

C
U

T
E

T
R

E
E

X
E

C
U

T
E

Figure 2. Reachability graph of the FSPN model

Number of tokens
#PFETCH #PBMIS #PINITIATE #PVMIS

Marking (mi)

1i 1 0 1 0

2i 0 3 1 0

3i 0 2 1 0

4i 0 1 1 0

5i 1 0 0 1

6i 0 3 0 1

7i 0 2 0 1

8i 0 1 0 1

9i 0 0 0 0

Table 1. Discrete markings of the FSPN model (CBR=3)

A vector of fluid levels supplements discrete markings. It gives rise to a stochastic process in

continuous time with continuous state space. The total amount of fluid contained in PIC, PIB,

PRS/LSQ, PEX and PREG is always equal to Vi, and the amount of fluid contained in PRR (as well as

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 233

PROB) is equal to the total amount of fluid in PRS/LSQ and PEX. Therefore, only the fluid levels

ZIB(t), ZRS/LSQ(t), ZEX(t) and ZREG(t) are identified as four supplementary variables (components

of the fluid vector ()tZ), which provide a full description of each state.

The instantaneous rates at which fluid builds in each fluid place are collected in diagonal

matrices:

 
 

 

, , , , , , , , 0

, ..., , 0

, ..., , 0

IB FETCH ISSUE ISSUE ISSUE ISSUE FETCH ISSUE ISSUE ISSUE ISSUE

RS/ LSQ ISSUE INITIATE ISSUE INITIATE

EX COMPLETE COMMIT COMPLETE COMMIT

REG COMMI

r r r r r r r r r r

r r r r

r r r r

r

        

  

  



R diag

R diag

R diag

R diag  , ..., , 0T COMMITr

 (8)

The matrix of transition rates of exponential transitions causing the state changes is:

() 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

i i i i

i i

i i

i i

i i

BMIS VMIS BMIS VMIS

VMIS VMIS

VMIS VMIS

VMIS VMIS

i
BMIS BMIS

p p p p

p p

p p

p p

p p

   

 

 

 

 

  
 

 
 

 
  
   
 
 
 
 
 
  

Q

where:

    

    

1 1 1

and

1 1 1

i i i

i i i

BMIS BEP BEPC BEP BHPC

VMIS VEP VEPC VEP VHPC

p p p p p

p p p p p

    

    

. (9)

Let
im be an abbreviation for the volume density /(, , , ,)

im IB RS LSQ EX REGt z z z z that is the

transient probability of being in discrete marking mi at time t, with fluid levels in an

infinitesimal environment around /[]IB RS LSQ EX REGz z z zz . If 1 2 9[...]
i i ii   π ,

according to [4-6] the evolution of the process is described by a coupled system of nine

partial differential equations in four continuous dimensions plus time:

/

/

()() () ()i RS LSQi i IB i EX i REG
i i

IB RS LSQ EX REGt z z z z

       
     

    

π Rπ π R π R π R
π Q (10)

If 0 0 0 0   0z is the vector of initial fluid levels, the initial conditions are:

 1 (0,) ()

(0,) 0 (2 9)
i

im m

 



 

  
0z z z

z
 (11)

Petri Nets – Manufacturing and Computer Science 234

Since fluid jumps shift probability mass along the continuous axes (in addition to discrete

state change), firing of transition TREEXECUTE at time t can be seen as a jump to another location

in the four-dimensional hypercube defined by the components of the fluid vector. It can be

described by the following boundary conditions:

1 / 1 / 5 /

2 / 2 / 6 /

3

(, , 1, 1,) (, , 1, 1,) (, , , ,)

(, , 1, 1,) (, , 1, 1,) (, , , ,)

(, ,

i i i

i i i

i

IB RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

IB RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

IB

t z z z z t z z z z t z z z z

t z z z z t z z z z t z z z z

t z z

  

  



  

  



     

     

/ 3 / 7 /

4 / 4 / 8 /

/

1, 1,) (, , 1, 1,) (, , , ,)

(, , 1, 1,) (, , 1, 1,) (, , , ,)

(, , , ,

i i

i i i

i

RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

IB RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

m IB RS LSQ EX

z z t z z z z t z z z z

t z z z z t z z z z t z z z z

t z z z z

 

  



 

  



     

     

max/ /) 0 (if 1, 1, 5 8)REG RS LSQ RS LSQ EXz Z z m     

 (12)

The firing of transitions TCLOCK and TCOUNT at time t0 causes switching from one discrete

marking to another. Therefore:

1 0 / 1 0 / 4 0 /

5 0 / 8 0 /

4 0 / 3 0 /

(, , , ,) (, , , ,) (, , , ,)

(, , , ,) (, , , ,)

(, , , ,) (, , ,

i i i

i i

i i

IB RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

IB RS LSQ EX REG IB RS LSQ EX REG

IB RS LSQ EX REG IB RS LSQ

t z z z z t z z z z t z z z z

t z z z z t z z z z

t z z z z t z z

  

 

 

  

 

 

  

 



 

7 0 /

3 0 / 2 0 / 6 0 /

0 /

,) (, , , ,)

(, , , ,) (, , , ,) (, , , ,)

(, , , ,) 0 (2,5,6,7,8)

i

i i i

i

EX REG IB RS LSQ EX REG

IB RS LSQ EX REG IB RS LSQ EX REG IB RS LSQ EX REG

m IB RS LSQ EX REG

z z t z z z z

t z z z z t z z z z t z z z z

t z z z z m



  





  





 

 

 (13)

Similarly, the firing of transition TEND when all the fluid places except PREG are empty, causes

switching from any discrete marking to 9i:

9

9 0 0 0
1

(,0,0,0,) (,0,0,0,) (,0,0,0,) 0 (8)
i i ii m i m i

m

t V t V t V m    



   (14)

The probability mass conservation law is used as a normalization condition. It corresponds to

the condition that the sum of all state probabilities must equal one. Since no particle can

pass beyond barriers, the sum of integrals of the volume densities over the definition range

evaluates to one:

  
/max max max9

/ /
1 0 0 0 0

, , , , 1
IB RS LSQ EX i

i

Z Z Z V

m IB RS LSQ EX REG IB RS LSQ EX REG
m

t z z z z dz dz dz dz


     (15)

Let ()iM t be the state of the discrete marking process at time t. The probabilities of the discrete

markings are obtained by integrating volume densities:

   
/

/ /
0 0 0 0

Pr () , , , , (9)

IB RS LSQ EXMAX MAX MAX i

i

Z Z Z V

i i m IB RS LSQ EX REG IB RS LSQ EX REGM t m t z z z z dz dz dz dz m      (16)

The fluid levels at the beginning of each clock cycle are computed as follows:

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 235

 

 

/max max max

0

0

9

0 0 / /
10 0 0 0

/ / 0

() (, , , ,)

marginal density for Z
IB

()

IB RS LSQ EX i

i

Z Z Z V

IB IB IB m IB RS LSQ EX REG RS LSQ EX REG IB
m

RS LSQ RS LSQ

Z E Z t z t z z z z dz dz dz dz

Z E Z t




           

 

   


 

/ max max max

0

9

/ 0 / /
10 0 0 0

0 0

(, , , ,)

marginal density for Z
RS/LSQ

() (, ,

RS LSQ IB EX i

i

i

Z Z Z V

RS LSQ m IB RS LSQ EX REG IB EX REG RS LSQ
m

EX EX EX m IB RS

z t z z z z dz dz dz dz

Z E Z t z t z z







         

 

   


 

/max max max

0

9

/ /
10 0 0 0

9

0 0 /
1

, ,)

marginal density for Z
EX

() (, , , ,)

EX IB RS LSQ i

i

Z Z Z V

LSQ EX REG IB RS LSQ REG EX
m

REG REG REG m IB RS LSQ EX REG
m

z z dz dz dz dz

Z E Z t z t z z z z





         


 

   





/max max max

0 0 0 0 0 0 0 0 0

/
0 0 0 0

/ /

marginal density for Z
REG

() and .

IB RS LSQ EXi
Z Z ZV

IB RS LSQ EX REG

IC i IB RS LSQ EX REG RR ROB RS LSQ EX

dz dz dz dz

Z V Z Z Z Z Z Z Z Z

        

       

   


 (17)

Finally, the flow rates and the parameters  and  are computed as indicated by Eqs. 1-4, 6

and 7, respectively.

2.4. Performance measures

Let τ be a random variable representing the time to absorb into { (,0,0,0,) 1}
ii m iA m t V  .

The distribution of the execution time of a program with volume Vi is:

   

 
/

9 / / 9
0 0 0 0

() Pr () Pr () 9

, , , , (,0,0,0,)

EXi

IB RS LSQ EXMAX MAX MAX i

i i

t i i i

Z Z Z V

IB RS LSQ EX REG IB RS LSQ EX REG i

F t t M t A M t

t z z z z dz dz dz dz t V



 

      

    
 (18)

with mean execution time:

  
0

1 ()
i EXi

EX tt F t dt


  (19)

Consequently, the sustained number of instructions per cycle (IPC) is given by:

 ii i EXIPC V t (20)

When the input space is partitioned, IPC is the ratio between the average volume and the

average execution time of all the programs of different classes, as indicated by the

operational profile:

1 1

CLASS k CLASSk k

n n

k T EX T
k k

IPC V w t w
 

  
 (21)

Petri Nets – Manufacturing and Computer Science 236

The sum of probabilities of the discrete markings that do not carry a token in place PFETCH

gives the probability of a stall in the instruction fetch unit at time t:

 

 
/

/ /
1 0 0 0 0
5

() Pr () 1 () 5

, , , ,

i

IB RS LSQ EXMAX MAX MAX i

i

STALL i i i i

Z Z Z V

m IB RS LSQ EX REG IB RS LSQ EX REG
m
m

P t M t M t

t z z z z dz dz dz dz



    

     
 (22)

Because of the discrete nature of pipelining, additional attention should be given to the

probability that no useful instructions will be added to the instruction buffer in the cycle

beginning at time t0 (complete stall in the instruction fetch unit that can lead to an effectively

empty instruction buffer) due to branch misprediction. It can be obtained by summing up

the probabilities of the discrete markings that still carry one or more tokens in place PBMIS

immediately after firing of TCLOCK:

 

 
/

_ 0 0 0

4

0 / /
3 0 0 0 0

() Pr () 3 () 4

, , , ,

i

IB RS LSQ EXMAX MAX MAX i

i

NO FETCH i i i i

Z Z Z V

m IB RS LSQ EX REG IB RS LSQ EX REG
m

P t M t M t

t z z z z dz dz dz dz


    

     
 (23)

In addition, the execution efficiency is introduced, taken as a ratio between the number of

useful instructions and the total number of instructions executed during the course of a

program’s execution:

1

instructions reexecuted
1

due to value misprediction

i

i ii i

i i
EX

i INITIATE VMISi VMIS EX
i

i

V V

r pV p t
V

W IPC




  
    

  
 

 (24)

where INITIATEr is the average initiation rate.

2.5. Numerical experiments and performance evaluation results

We have used finite difference approximations to replace the derivatives that appear in the

PDEs: forward difference approximation for the time derivative and first-order upwind

differencing for the space derivatives, in order to improve the stability of the method [7,8]:

1 1 1

1 1 1

(, ,....,) (, ,....,) (, ,....,)

(, ,..., ,...,) (, ,..., ,...,) (, ,..., sgn() ,...,)
sgn()

i i i

i i i

m n m n m n

m k n m k n m k k n

k k

t z z t t z z t z z

t t
t z z z t z z z t z z r z z

r r r
z z

  

  

   


 
   

  
 

(25)

The explicit discretization of the right-hand-side coupling term allows the equations for each

discrete state to be solved separately before going on to the next time step. The

discretization is carried out on a hypercube of size
max max max/IB RS LSQ EX iZ Z Z V   with step

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 237

size z in direction of zIB, zRS, zEX and zREG, and step size t in time. The computational

complexity for the solution is

max max max/

4
8

IB RS LSQ EX iZ Z Z Vt

t z

   
   
   

 floating-point operations,

since for each of t t time steps we must increment each solution value in the four-

dimensional grid for eight of the nine discrete markings. The storage requirements of the

algorithm are at least

max max max/

4
8 4

IB RS LSQ EXZ Z Z V

z

  
 


 bytes,

since for eight of nine discrete markings we must store a four-dimensional grid of floating-

point numbers (solutions at successive time steps can be overwritten).

Unless indicated otherwise,
maxIBZ W ,

max/RS LSQZ 
maxRRZ 

maxROBZ
max

2EXZ W  and

()t z n W    , where n=4 is the number of continuous dimensions. With these capacities of

fluid places, virtually all name dependences and structural conflicts are eliminated. Step size

z is varied between 1 2z  (coarser grid, usually when the prediction accuracy is high)

and 1 6z  (finer grid, usually when the prediction accuracy is low).

Considering a low-volume program (Vi=50 instructions) executed on a four-wide machine

(W=4), we investigate:

 The influence of branch prediction accuracy on the distribution of the program’s

execution time, when value prediction is not involved (Figure 3a),

 The influence of branch prediction accuracy on the probability of a complete stall in the

instruction fetch unit (Figure 3b), and

 The influence of value prediction accuracy on the distribution of the program’s

execution time, when perfect branch prediction is involved (Figure 4).

It is indisputably clear that both branch and value prediction accuracy improvements reduce

the mean execution time of a program and increase performance. As an illustration, the size

of the shaded area in Figure 3a is equal to the mean execution time when perfect branch

prediction is involved, and IPC is computed as indicated by Eq. (20). In addition, looking at

Figure 3b one can see that the probability of a complete stall in the instruction fetch unit,

which can lead to an empty instruction buffer in the subsequent cycle, decreases with branch

prediction accuracy improvement. As a result, both the utilization of the processor and the

size of dynamic scheduling window increase as branch prediction accuracy increases.

The correctness of the discretization method is verified by comparing the numerical

transient analysis results with the results obtained by discrete-event simulation, which is

specifically implemented for this model and not for a general FSPN. The types of events that

need to be scheduled in the event queue are either transition firings or the hitting of a threshold

dependent on fluid levels. We have used a Unif[0,1] pseudo-random number generator to

Petri Nets – Manufacturing and Computer Science 238

generate samples from the respective cumulative distribution functions and determine

transition firing times via inversion of the cdf (“Golden Rule for Sampling”). Discrete-event

simulation alone has been used to obtain performance evaluation results for wide machines

with much more aggressive instruction issue (W>>1).

Figure 3. Influence of branch prediction accuracy on (a) the distribution of the program’s execution

time and (b) the probability of a complete stall in the instruction fetch unit

Figure 4. Influence of value prediction accuracy on the distribution of the program’s execution time

W=4, V
i
=50, λ

i
=1, μ

i
=1.5, 1-p

BMISi
=1

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27

t [cycles]

P
9

i(
t)

1-pVMISi=0.0

1-pVMISi=0.5

1-pVMISi=1.0

IPC = 3.21 2.65 2.40

(a)

(b)

W=4, V
i
=50, λ

i
=1, μ

i
=1, 1-p

VMISi
=0

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

t [cycles]

P
9

i(
t)

1-pBMISi=0.0

1-pBMISi=0.2

1-pBMISi=0.4

1-pBMISi=0.6

1-pBMISi=0.8

1-pBMISi=1.0

t ex i

IPC = 2.46 2.01 1.62 1.47 1.37 1.29

W=4, V i=50, λ i=1, μi=1, 1-pVMISi=0

0.00

0.33

0.67

1.00

0 10 20 30 40

t [cycles]

P
N

O
_

F
E

TC
H

i(
t)

1-pBMISi=0.0

1-pBMISi=0.2

1-pBMISi=0.4

1-pBMISi=0.6

1-pBMISi=0.8

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 239

It takes quite some effort to tune the numerical algorithm parameters appropriately, so that

a sufficiently accurate approximation is obtained. Various discretization and convergence

errors may cancel each other, so that sometimes a solution obtained on a coarse grid may

agree better with the discrete-event simulation than a solution on a finer grid – which, by

definition, should be more accurate. In Figures 5a-b, a comparison of discretization results

and results obtained using discrete-event simulation for a four-wide machine is given.

Furthermore, Figure 5c shows the performance of several machines with realistic predictors

executing a program with an average basic block size of eight instructions, given that about

25% of the instructions that initiate execution in the same clock cycle are consuming

instructions.

Figure 5. Comparison of numerical transient analysis results (NTA) and results given by discrete-event

simulation (DES)

Since the conservation of probability mass is enforced, the differences between the

numerical transient analysis and the discrete-event simulation results arise only from the

improper distribution of the probability mass over the solution domain. Due to the inherent

dissipation error of the first-order accurate numerical methods, the solution at successive

(a) (b)

(c)

0 0.2
0.4

0.6
0.8

1

0

0.5

1

1.5

2

2.5

IPC

1-pBMISi

W=4, Vi=50, λi=1, μi=1, 1-pVMISi=0

DES

NTA

0 0.2
0.4

0.6
0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

IPC

1-pVMISi

W=4, Vi=50, λi=1, μi=1.5, 1-pBMISi=1

DES

NTA

4
8

12

0

2

4

6

8

10

IPC

W

1-pBMISi=0.95, 1- pVMISi=0.65, λi=W/8, μi=W/4

NTA

DES

Petri Nets – Manufacturing and Computer Science 240

time steps is more or less dissipated to neighboring grid nodes. The phenomenon is

emphasized when the number of discrete state changes is increased owing to the larger

number of mispredictions.

The results are satisfactorily close to each other, especially when the prediction accuracy is

high, which is common in recent architectures. Yet, we believe that much work is still

uncompleted and many questions are still open for further research in the field of

development of strategies for reducing the amount of memory needed to represent the

volume densities, as well as efficient discretization schemes for numerical transient analysis

of general FSPNs. Alternating direction implicit (ADI) methods [19] in order to save memory,

and parallelization of the numerical algorithms to reduce runtime have been suggested.

In the remainder of this part, we do not distinguish the numerical transient analysis results

from the results given by discrete-event simulation of the FSPN model. Initially we analyze the

efficiency of branch prediction by varying branch prediction accuracy. Value prediction is not

involved at all. The speedup is computed by dividing the IPC achieved with certain branch

prediction accuracy over the IPC achieved without branch prediction (1 0
iBMISp ). For the

moment, the input space is not partitioned and program volume is set to Vi=106 instructions.

It is observed that, looking at Figures 6a-b, branch prediction curves have an exponential

shape. Therefore, building branch predictors that improve the accuracy just a little bit may

be reflected in a significant performance increase. The impact of a given increment in

accuracy is more noticeable when it experiences a slight improvement beyond the 90%.

Another conclusion drawn from these figures is that one can benefit most from branch

prediction in programs with relatively short basic blocks (high /i W) and which do not

suffer excessively from true data dependences (low /i W). When the ratio /i W is high,

true data dependences overshadow control dependences. As a result, the amount of ILP that

is expected without value prediction in a machine with extremely aggressive instruction

issue is far below the maximum possible value, even with perfect branch prediction. Value

prediction has to be involved to go beyond the limits imposed by true data dependences.

Next, we analyze the efficiency of value prediction by varying value prediction accuracy

(Figures 7a-b). The speedup is computed by dividing the IPC achieved with certain value

prediction accuracy over the IPC achieved without value prediction (1 0
iVMISp ). With

perfect branch prediction, it seems clear that the value prediction curves have a linear

behavior. Therefore, it is worthwhile to build a predictor that significantly improves the

accuracy. Only a small improvement on the value predictor accuracy has a little impact on

ILP processor performance, regardless of the accuracy range. Another conclusion drawn

from these figures is that the effect of value prediction is more noticeable when a significant

number of instructions consume results of simultaneously initiated producer-instructions

during execution (high /i W), i.e. when true data dependences have a much higher

influence on the program’s total execution time.

Branch prediction has a very important influence on the benefits of value prediction. One

can see that the performance increase is less significant when branch prediction is realistic.

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 241

Because mispredicted branches limit the number of useful instructions that enter the

instruction window, the processor is able to provide almost the same number of instructions

to leave the instruction window, even with lower value prediction accuracy. As a result,

graphs tend to flatten out. Correct value predictions can only be exploited when the fetch

rate is quite high, i.e. when mispredicted branches are infrequent. Branch misprediction

becomes a more significant performance limitation with wider processors (Figure 7b).

Figure 6. Speedup achieved by branch prediction with varying accuracy

Figure 7. Speedup achieved by value prediction with varying accuracy

In addition, we investigate branch and value prediction efficiency with varying machine

width (Figures 8a-c). The speedup in this case is computed by dividing the IPC achieved in a

machine over the IPC achieved in a scalar counterpart (W=1, μi=0). The speedup due to

branch prediction is obviously higher in wider machines. With perfect branch prediction,

the speedup unconditionally increases with the machine width. For a given width, the

speedup is higher when there are a smaller number of consuming instructions (low /i W).

With realistic branch prediction, there is a threshold effect on the machine width: below the

(a) (b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

1-pBMISi

W=4

λi=1, μi=3

λi=0.75, μi=1

λi=1, μi=1.5

λi=1, μi=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

S
p

e
e

d
u

p

1-pBMISi

W=16

λi=4, μi=15

λi=2, μi=4

λi=4, μi=8

λi=4, μi=4

(a) (b)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

1-pVMISi

W=4

λi=1, μi=1, 1-pBMISi=1

λi=1, μi=3, 1-pBMISi=0.9

λi=1, μi=3, 1-pBMISi=1

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

S
p

e
e

d
u

p

1-pVMISi

W=16

λ i=4, μi=4, 1-pBMISi=1

λ i=4, μi=12, 1-

pBMISi=0.95

λ i=4, μi=12, 1-pBMISi=1

Petri Nets – Manufacturing and Computer Science 242

threshold the speedup increases with the machine width, whereas above the threshold the

speedup is close to a limit – machine width is by far larger than the average number of

instructions provided by the fetch unit. The threshold decreases with increasing the number

of mispredicted branches.

Figure 8. Speedup achieved by branch prediction with varying machine width

The maximum additional speedup that value prediction can provide is computed by dividing

the IPC achieved with perfect value prediction over the IPC achieved without value

prediction (Figures 9a-c). With perfect branch prediction, some true data dependences can

always be eliminated, regardless of the machine width. Actually, the maximum additional

speedup is predetermined by the ratio / ()iW W  . However, with realistic branch

prediction, the additional speedup diminishes when the machine width is above a threshold

value. It happens earlier when there are a smaller number of consuming instructions and/or

a larger number of mispredicted branches. In either case, the number of independent

instructions examined for simultaneous execution is sufficiently higher than the number of

fetched instructions that enter the instruction window. Again, branch prediction becomes

more important with wider processors.

(a) (b)

(c)

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

20

40

60

80

100

120

140

160

S
p

e
e

d
u

p

W

λi=W/4, μi=W/2, 1-pVMISi=0

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

254 510 1012 2004

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

20

40

60

80

100

120

140

160

S
p

e
e

d
u

p

W

λi=W/8, μi=W/2, 1-pVMISi=0

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

254 510 1012 2004

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

20

40

60

80

100

120

140

160

S
p

e
e

d
u

p

W

λi=W/8, μi=7W/8, 1-pVMISi=0

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

253 500

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 243

Figure 9. Additional speedup achieved by perfect value prediction with varying machine width

The rate at which consuming instructions occur depends on the initiation rate. Therefore, we

also investigate the value prediction efficiency with varying instruction window size

(varying capacity / MAXRS LSQZ of the fluid place /RS LSQP) (Figures 10a-b). The speedup is

computed in the same way as in the previous instance. It increases with the instruction

window size in [W, 2W], but the increase is more moderate when there are a smaller number

of consuming instructions (low /i W) and/or branch prediction is not perfect. As the

instruction window grows larger, performance without value prediction saturates, as does

the performance with perfect value prediction. The upper limit value emerges from the fact

that in each cycle up to W new instructions may enter the fluid place / MAXRS LSQZ and up to

W consuming instructions may be forced to retain their reservation stations. One should

also note that the speedup for W>>1 and realistic branch prediction is almost constant with

increasing instruction window size. Two scenarios arise in this case: (1) the number of

consuming instructions is large – the speedup is constant but still noticeable as there are not

enough independent instructions in the window without value prediction, and (2) the

number of consuming instructions is small – there is no speedup as there are enough

(a) (b)

(c)

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

0.5

1

1.5

2

A
d

d
it

io
n

a
l
s

p
e

e
d

u
p

W

λi=W/4, μi=W/2, 1-pVMISi=1

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

0.5

1

1.5

2

A
d

d
it

io
n

a
l
s

p
e

e
d

u
p

W

λi=W/8, μi=W/2, 1-pVMISi=1

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

4

1
6

6
4

2
5

6

1
0

2
4

4
0

9
6

0

1

2

3

4

5

6

7

8

A
d

d
it

io
n

a
l
s

p
e

e
d

u
p

W

λi=W/8, μi=7W/8, 1-pVMISi=1

1-pBMISi=0.90

1-pBMISi=0.94

1-pBMISi=0.98

1-pBMISi=1

Petri Nets – Manufacturing and Computer Science 244

independent instructions in the window even without value prediction, regardless of the

window size. Again, the main reasons for this behavior are the small number of consuming

instructions and the large number of mispredicted branches.

Figure 10. Speedup achieved by perfect value prediction with varying instruction window size

In order to investigate the operational environment influence, we partitioned the input

space into several program classes, each of them with at least one different aspect: branch

rate, consuming instruction rate, probability to classify a branch as easy-to-predict or

probability to classify a value as easy-to-predict. We concluded that the set of programs

executed on a machine have a considerable influence on the perceived IPC. Since the term

program may be interchangeably used with the term instruction stream, these observations

give good reason for the analysis of the time varying behavior of programs in order to find

simulation points in applications to achieve results representative of the program as a

whole. From a user perspective, a machine with more sophisticated prediction mechanisms

will not always lead to a higher perceived performance as compared to a machine with more

modest prediction mechanisms but more favorable operational profile [20,21].

3. Part B: fluid atoms in P2P streaming networks

In P2P live streaming systems every user (peer) maintains connections with other peers and

forms an application level logical network on top of the physical network. The video stream is

divided in small pieces called chunks which are streamed from the source to the peers and

every peer acts as a client as well as a server, forwarding the received video chunks to the

next peer after some short buffering. The peers are usually organized in one of the two basic

types of logical topologies: tree or mesh. Hence, the tree topology forms structured network of

a single tree as in [22], or multiple multicast trees as in [23], while mesh topology is

unstructured and does not form any firm logical construction, but organizes peers in

swarming or gossiping-like environments, as in [24]. To make greater use of their

complementary strengths, some protocols use combination of these two aspects, forming a

hybrid network topology, such as [25]. Hence, members are free to join or leave the system at

their own free will (churn), which leads to a certain user driven dynamics resulting in

(a) (b)

4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

S
p

e
e

d
u

p

Instruction window size

W=4

λi=1, μi=2, 1-

pBMISi=0.95

λi=1, μi=2, 1-pBMISi=1

λi=1, μi=3, 1-

pBMISi=0.95

λi=1, μi=3, 1-pBMISi=1
16 20 24 28 32 36 40

0

1

2

3

4

5

6

S
p

e
e

d
u

p

Instruction window size

W=16

λi=4, μi=8, 1-

pBMISi=0.95

λi=4, μi=8, 1-pBMISi=1

λi=4, μi=14, 1-

pBMISi=0.95

λi=4, μi=14, 1-pBMISi=1

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 245

constant disruptions of the streaming data delivery. This peer churn has high influence on the

quality of offered services, especially for P2P systems that offer live video broadcast. Also,

P2P network members are heterogeneous in their upload bandwidth capabilities and provide

quite different contribution to the overall system performance. Efficient construction of P2P

live video streaming network requires data latency reduction as much as possible, in order to

disseminate the content in a live manner. This latency is firstly introduced by network

infrastructure latency presented as a sum of serialization latency, propagation delay, router

processing delay and router queuing delay. The second type of delay is the initial start-up

delay required for filling the peer’s buffer prior to the start of the video play. The buffer is

used for short term storage of video chunks which often arrive out of sequence in manner of

order and/or time, and resolving this latency issue requires careful buffer modeling and

management. Thus, buffer size requires precise dimensioning because even though larger

buffers offer better sequence order or latency compensation, they introduce larger video

playback delay. Contrary, small buffers offer smaller playback delay, but the system becomes

more error prone. Also, since the connections between participating peers in these P2P logical

networks are maintained by the means of control messages exchange, the buffer content

(buffer map) is incorporated in these control messages and it is used for missing chunks

acquisition. Chunk requesting and forwarding is controlled by a chunk scheduling algorithm,

which is responsible for on-time chunk acquisition and delivery among the neighboring

peers, which is usually based on the available content and bandwidth of the neighboring

peers. A lot of research activities are strictly focused on designing better chunk scheduling

algorithms [26,27] that present the great importance of carefully composed scheduling

algorithm which can significantly compensate for churn or bandwidth/latency disruptions.

Beside the basic coding schemes, in latest years an increasing number of P2P live streaming

protocols use Scalable Video Coding (SVC) technologies. SVC is an emerging paradigm where

the video stream is split in several sub-streams and each sub-stream contributes to one or

more characteristics of video content in terms of temporal, spatial and SNR/quality

scalability. Mainly, two different concepts of SVC are in greater use: Layered Video Coding

(LVC) where the video stream is split in several dependently decodable sub-stream called

Layers, and Multiple Description Coding (MDC) where the video stream is split in several

independently decodable sub-stream called Descriptions. A number of P2P video streaming

models use LVC [27] or MDC [23,28] and report promising results.

3.1. Model definition

As a base for our modeling we use the work in [29,30], where several important terms are

defined. One of them is the maximum achievable rate that can be streamed to any

individual peer at a given time, which is presented in Eq. (26).

 1min ,

n

SERVER Pi
i

MAX SERVER

r r

r r
n



 
 

   
 
  


 (26)

Petri Nets – Manufacturing and Computer Science 246

where:

rMAX – maximum achievable streaming rate

rSERVER – upload rate of the server

rPi – upload rate of the ith peer

n – number of participating peers.

Clearly, rMAX is a function of rSERVER, rPi and n, i.e. rMAX = φ(rSERVER, rP, n). This maximum

achievable rate to a single peer is further referred to as the fluid function, or φ(). The second

important definition is of the term Universal Streaming. Universal Streaming refers to the

streaming situations when each participating peer receives the video stream with bitrate no

less than the video rate, and in [29] it is achievable if and only if:

 () VIDEOr  (27)

where rVIDEO is the rate of the streamed video content.

Hence, the performance measures of the system are easily obtained by calculating the

Probability for Universal Streaming (PUS).

Now, we add one more parameter to the previously mentioned to fulfill the requirements of

our model. We define the stream function ψ() which, instead of the maximum, represents the

actual streaming rate to any individual peer at any given time, and ψ() satisfies:

 () () 

(28)

3.2. FSPN representation

The FSPN representation of the P2P live streaming system model that accounts for: network

topology, peer churn, scalability, peer average group size, peer upload bandwidth

heterogeneity, video buffering, control traffic overhead and admission control for lesser

contributing peers, is given in Figure 11. We assume asymmetric network settings where

peers have infinite download bandwidths, while stream delay, peer selection strategies and

chunk size are not taken into account.

Similar as in [29] we assume two types of peers: high contributing peers (HP) with upload

bitrate higher than the video rate, and low contributing peers (LP) with upload bitrate lower

than the video rate. Different from the fluid function φ(), beside the dependency to rSERVER,

rP, and n, the stream function ψ() depends on the level of fluid in the unique fluid place PB

as well:

  () ,# ,# , , ,SERVER HP LP HP LP Bf r P P r r Z  (29)

where ZB represents the level of fluid in PB.

The FSPN model in Figure 11 comprises two main parts: the discrete part and the

continuous (fluid) part of the net. Single line circles represent discrete places that can

contain discrete tokens. The tokens, which represent peers, move via single line arcs to and

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 247

Figure 11. FSPN model of a P2P live video streaming system

out of the discrete places. Fluid arcs, through which fluid is pumped, are drawn as double

lines to suggest a pipe. The fluid is pumped through fluid arcs and is streamed to and out

of the unique fluid place PB which represents a single peer buffer. The rectangles

represent timed transitions with exponentially distributed firing times, and the thin short

lines are immediate transitions. Peer arrival, in general, is described as a stochastic

process with exponentially distributed interarrival times, with mean 1/λ, where λ

represents the arrival rate. We make another assumption that after joining the system

peers’ sojourn times (T) are also exponentially distributed. Clearly, since each peer is

immediately served after joining the system, we have a queuing network model with an

infinite number of servers and exponentially distributed joining and leaving rates. Hence,

the mean service time T is equal to 1/μ, which transferred to FSPN notation leads to the

definition of the departure rate as μ multiplied by the number of peers that are

concurrently being served. Now, λ represents peer arrival in general, but the different

types of peers do not share the same occurrence probability (pH and pL). This occurrence

distribution is defined by immediate transitions TAHP and TALP and their weight functions

pH and pL. Hence, HP arrive with rate λH = pH * λ, and LP arrive with rate λL = pL * λ, where

pH + pL = 1. In this particular case pH = pL = 0.5, but, if needed, these occurrence probabilities

can be altered. This way the model with peer churn is represented by two independent

M/M/∞ Poisson processes, one for each of the different types of peers. The average

number of peers that are concurrently being served defines the size of the system as a

whole (SSIZE) and is derived from the queuing theory:

 ௌܵூ௓ா = ߣ ⁄ߤ (30)

TA is a timed transition with exponentially distributed firing times that represents peer

arrival, and upon firing (with rate λ) puts a token in PCS. PCS (representing the control

Petri Nets – Manufacturing and Computer Science 248

server) checks the type of the token and immediately forwards it to one of the discrete

places PHP or QLP (PLP). Places PHP and PLP accommodate the different types of peers in our

P2P live streaming system model. QLP on the other hand, represents queuing station for the

LP, which is connected to the place PLP with the immediate transition TI that is guarded by a

Guard function G.

The Guard function G is a Boolean function whose values are based on a given condition.

The expression of a given condition is the argument of the Guard function and serves as

enabling condition for the transition TI. If the argument of G evaluates to true, TI is enabled.

Otherwise, if the argument of G evaluates to false, TI is disabled. For the model that does not

take admission control into account G is always enabled, but when we want to evaluate the

performance of a system that incorporates admission control we set the argument of the

guard function as in Eq. (31):

(# 1)

#
SERVER HP HP LP LP

VIDEO CONTROL
HP LP

r P r P r
G r r

P P

        
  

 (31)

Transitions TDHP and TDLP are enabled only when there are tokens in discrete places PHP and

PLP. These are marking dependent transitions, which, when enabled, have exponentially

distributed firing times with rate μ·#PHP and μ·#PLP respectively, where #PHP and #PLP

represent the number of tokens in each discrete place. Upon firing they take one token out of

the discrete place to which they are connected.

Concerning the fluid part of the model, we represent bits as atoms of fluid that travel

through fluid pipes (network infrastructure) with rate dependent on the system’s state

(marking). Beside the stream function as a derivative of several parameters, we identify

three separate fluid flows (streams) that travel through the network with different bitrates.

The main video stream represents the video data that is streamed from the source to the

peers that we refer to as the video rate (rVIDEO). The second stream is the play stream which is

the stream at which each peer plays the streamed video data, referred to as the play rate

(rPLAY), and the third stream is the control traffic overhead, referred to as control rate

(rCONTROL), which describes the exchange of control messages needed for the logical network

construction and management. As mentioned earlier, transitions TDHP and TDLP are enabled

only when there are tokens in discrete places PHP and PLP respectively and beside the fact

that they consume tokens when firing, when enabled, they constantly pump fluid through

the fluid arc to the fluid place. Flow rates of ψ() are piecewise constant and depend on the

number of tokens in the discrete places and their upload capabilities. Continuous place PB

represents single peer’s buffer, which is constantly filled with rate ψ() and drained with rate

(rPLAY + rCONTROL). ZB is the amount of fluid in PB and ZBMAX is the buffer’s maximum capacity.

Transition TSERVER represents the functioning of the server, which is always enabled (except

when there are no tokens in any of the discrete places) and constantly pumps fluid toward

the continuous place PB with maximum upload rate of rSERVER. Transition TPLAY represents the

video play rate, which is also always enabled and constantly drains fluid from the

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 249

continuous place PB, with rate rPLAY. TCONTROL, that represents the exchange of control

messages among neighboring peers, is the third transition that is always enabled, has the

priority over TPLAY, and constantly drains fluid from PB with rate rCONTROL. For further analysis

we derived the rate of rCONTROL from [31] where it is declared that it linearly depends on the

number of peers in the neighborhood, and for rVIDEO of 128 kbps, the protocol overhead is 2%

for a group of 64 users, which leads to a bitrate of 2.56 kbps. Thus, for our performance

analysis we assume that peers are organized in neighborhoods with an average size of 60

members where rCONTROL is 2.4 kbps. For the sake of convenience and chart plotting we also

define the average upload rate of the participating peers as rAVERAGE, which is given in Eq. (32):

* # *

#
HP HP LP LP

AVERAGE
HP LP

P r P r
r

P P





 (32)

Since in our model of a P2P live video streaming system we take in consideration rCONTROL as

well, Universal Streaming is achievable if and only if:

() VIDEO CONTROLr r   (33)

3.3. Discrete-event simulation

The FSPN model of a P2P live video streaming system accurately describes the behavior of

the system, but suffers from state space explosion and therefore analytic/numeric solution is

infeasible. Hence, we provide a solution to the presented model using process-based discrete-

event simulation (DES) language. The simulations are performed using SimPy which is a DES

package based on standard Python programming language. It is quite simple, but yet

extremely powerful DES package that provides the modeler with simulation processes that

can be used for active model components (such as customers, messages or vehicles), and

resource facilities (resources, levels and stores) which are used for passive simulation

components that form limited capacity congestion points like servers, counters, and tunnels.

SimPy also provides monitor variables that help in gathering statistics, and the random

variables are provided by the standard Python random module.

Now, although we deal with vast state space, we provide the solution by identifying four

distinct cases of state types. These cases of state types are combination of states of the

discrete part and the continuous part of the FSPN, and are presented in Table 2. Hence, the

rates at which fluid builds up in the fluid place PB, in each of these four cases, can be

described with linear differential equations that are given in Eq. (34).

case 1 if ZB = ZBMAX and φ() ≥ rVIDEO+rCONTROL then
ψ() = rVIDEO+rCONTROL and

rPLAY = rVIDEO

case 2 if 0 <ZB ≤ ZBMAX and φ() < rVIDEO+rCONTROL then ψ() = φ() and rPLAY = rVIDEO

case 3 if 0 ≤ ZBUF<ZBUFMAX and φ() ≥ rVIDEO+rCONTROL then ψ() = φ() and rPLAY = rVIDEO

case 4 if ZBUF = 0 and φ() < rVIDEO+rCONTROL then ψ() = φ() and rPLAY < rVIDEO

Table 2. Cases of state types

Petri Nets – Manufacturing and Computer Science 250

 

0 1,

() 2,

() 3,

0 4.

B R R

R R

case

dZ t V C case

V C casedt

case





     


 (34)

In the next few lines (Table 3a-d) we briefly present the definitions of some of the the FSPN

model components in SimPy syntax. Algorithm 1 presents the definition of SimPy

processes for the different types of tokens. All the FSPN places (as well as rPLAY) are defined

as resource facilities of the type “Level” and are given in Algorithm 2. The formulation of a

“Level” for representing the rPLAY was enforced by the requirement for monitoring and

modifying the rPLAY at each instant of time. Algorithm 3 presents TA combined with TAHP

and TALP where it is defined as two separate SimPy Proceses that independently generate

two different types of token processes. Algorithm 4 represents the definition of transitions

TDHP and TDLP.

Definition of HP token

class tokenHP (Process):

 def join (self):

 yield put, self, Php, 1

Definition of LP token with integrated Guard for TI

class tokenLP (Process):

 def join (self):

 if (Php.amount + Plp.amount) == 0:

 yield put, self, Plp, 1

 else:

 yield put, self, Qlp, 1

 def GuardOFF():

 return (((Rserver + (Plp.amount + 1)*Rlp + Php.amount*Rhp)/((Plp.amount +

1) + Php.amount)) >= Rvideo + Rcontrol)

 while True:

 yield waituntil, self, GuardOFF

 yield get, self, Qlp, 1

 yield put, self, Plp, 1

 yield passivate, self

(a) Algorithm 1: Definition of tokens in SimPy

Pcs = Level (name = ‘Control Server’, initialBuffered=0, monitored = True)

Php = Level (name = ‘Discrete Place Php’, initialBuffered=0, monitored = True)

Plp = Level (name = ‘Discrete Place Plp’, initialBuffered=0, monitored = True)

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 251

Qlp = Level (name = ‘Queuing Station’, initialBuffered=0, monitored = True)

Pb = Level (name = ‘Peer Buffer’, initialBuffered=Zbmax, monitored = True)

Pplay = Level (name = ‘Play rate’, initialBuffered=Rvideo, monitored = True)

(b) Algorithm 2: Definition of FSPN places in SimPy

Transition TA combined

with TAHP

class HPgenerator (Process):

 def generate (self, end):

 while now() < end:

 yield peerHP = tokenHP ()

 activate (peerHP, peerHP.join())

 yield hold, self, expovariate (pH * Lamda)

Transition TA combined

with TALP

class LPgenerator (Process):

 def generate (self, end):

 while now() < end:

 peerLP = tokenLP ()

 activate (peerLP, peerLP.join())

 yield hold, self, expovariate (pL * Lamda)

(c) Algorithm 3: Definition of transition TA combined with TAHP and TALP

Transition

TDHP

class HPdeparture (Process):

 def depart (self, end):

 def Condition():

 return (Php.amount > 0)

 while True:

 yield waituntil, self, Condition

 yield hold, self, expovariate (Mi * Php.amount)

 yield get, self, Php, 1

Transition TDLP

class LPdeparture (Process):

 def depart (self, end):

 def Condition():

 return (Plp.amount > 0)

 while True:

 yield waituntil, self, Condition

 yield hold, self, expovariate (Mi * Plp.amount)

 yield get, self, Plp, 1

(d) Algorithm 4: Definition of transitions TDHP and TDLP

Table 3. Definitions of FSPN model components in SimPy

Petri Nets – Manufacturing and Computer Science 252

Figure 12. Performance of small and medium systems with and without AC

Figure 13. Performance in respect to system scaling

Figure 14. Buffer analysis of medium system without admission control

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25

U
n

iv
e

rs
a

l
S

tr
e

a
m

in
g

 p
ro

b
a

b
il

it
y

Small system without AC

Small system with AC

Medium system without AC

Medium system with AC

r
VIDEO

/r
AVERAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.875 0.925 0.975 1.025 1.075 1.125 1.175 1.225

U
n

iv
e

rs
a

l
S

tr
e

a
m

in
g

 p
ro

b
a

b
il

it
y

Small system

Medium system

Large system

r
VIDEO

/r
AVERAGE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9 0.925 0.95 0.975 1 1.025 1.05 1.075 1.1 1.125

U
n

iv
e

rs
a

l
S

tr
e

a
m

in
g

 p
ro

b
a

b
il

it
y

Buffer size = 0 sec

Buffer size = 30 sec

Buffer size = 60 sec

Buffer size = 90 sec

Buffer size = 120 sec

r
VIDEO

/r
AVERAGE

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 253

For simulating the fluid part of the FSPN, time discretization is applied where a SimPy

“Stream Processs” checks the system state in small time intervals and consequently makes

changes to the level of fluid in the fluid place PB and rPLAY according to Eq. (34). For

gathering the results we use the frequency theory of probability where the probability for

Universal Streaming is computed as the amount of time the system spends in Universal

Streaming mode against the total simulation time.

3.4. Performance evaluation results and analysis

In this section we make a brief evaluation of three system sizes:

1. Small system with an average of 100 concurrent participating peers

2. Medium system with an average of 500 concurrent participating peers

3. Large system with an average of 5000 concurrent participating peers

The simulation scenario is as follows: rSERVER = (rVIDEO + rCONTROL)*3, upload bandwidth of HP

is rHP = 700kbps, upload bandwidth of LP is rLP = 100kbps, and sojourn time T = 45 minutes.

For gathering the performance results we vary the rVIDEO and we plot the PUS against the

quotient of rVIDEO/rAVERAGE, where rAVERAGE for this case is 400kbps. For calculating the PUS of a

single scenario we calculate the average of 150 simulations for the small system, and an

average of 75 simulations for the medium and large system, while each single simulation

simulates 10 hours of system activity. Initial conditions are: ZB0 = ZBMAX, where ZB0 is the

amount of fluid in PB in time t0 = 0 and all discrete places are empty.

Comparison of performance of small and medium systems with and without AC is

presented in Figure 12, from which an obvious conclusion is inferred that AC almost does

not have any direct influence on the performance, but considering the incremented initial

delay, incorporation of AC would only have a negative effect on the quality of offered

services. Regarding the performance of the system in respect to system scaling, presented in

Figure 13, it is obvious that scaling causes increase in performance, but only to a certain

point after which performance steeply decreases. Fortunately, the performance decrease is

in the region of under capacity which is usually avoided, so it can be concluded that larger

systems perform better than smaller ones. Finally, Figure 14 shows that optimal buffer size

is about 30 seconds of stored material, and larger buffers only slightly improve performance,

but introduce quite large play out delay which leads to diminished quality of user

experience.

4. Conclusion

In the first part of this chapter, we have introduced an implementation-independent

analytical modeling approach to evaluate the performance impact of branch and value

prediction in modern ILP processors, by varying several parameters of both the

microarchitecture and the operational environment, like branch and value prediction accuracy,

machine width, instruction window size and operational profile. The proposed analytical

model is based on recently introduced Fluid Stochastic Petri Nets (FSPNs). We have also

Petri Nets – Manufacturing and Computer Science 254

presented performance evaluation results in order to illustrate its usage in deriving measures of

interest. Since the equations characterizing the evolution of FSPNs are a coupled system of

partial differential equations, the numerical transient analysis poses some interesting

challenges. Because of a mixed, discrete and continuous state space, another important avenue

for the solution is the discrete-event simulation of the FSPN model. We believe that our

stochastic modeling framework reveals considerable potential for further research in this area,

needed to better understand speculation techniques in ILP processors and their performance

potential under different scenarios.

In the second part of this chapter, we have shown how the FSPN formalism can be used to

model P2P live video streaming systems. We have also presented a simulation solution

method using process-based discrete-event simulation language whenever analytic/numeric

solution becomes infeasible, that is usually a result of state space explosion. We managed to

create a model that accounts for numerous features of such complex systems including:

network topology, peer churn, scalability, average size of peers’ neighborhoods, peer

upload bandwidth heterogeneity and video buffering, among which control traffic overhead

and admission control for lesser contributing peers are introduced for the first time.

Author details

Pece Mitrevski* and Zoran Kotevski

Faculty of Technical Sciences, University of St. Clement Ohridski, Bitola, Republic of Macedonia

5. References

[1] Rajan R (1995) General Fluid Models for Queuing Networks. PhD Thesis. University of

Wisconsin - Madison.

[2] Gribaudo M, Sereno M, Bobbio A (1999) Fluid Stochastic Petri Nets: An extended

Formalism to Include non-Markovian Models. Proc. 8th Int. Workshop on Petri Nets and

Performance Models. Zaragoza.

[3] Gribaudo M, Sereno M, Horvath A, Bobbio A (2001) Fluid Stochastic Petri Nets

Augmented with Flush-out Arcs: Modeling and Analysis. Kluwer Academic Publishers:

Discrete Event Dynamic Systems. 11(1/2): 97-117.

[4] Horton G, Kulkarni V, Nicol D, Trivedi K (1998) Fluid Stochastic Petri Nets: Theory,

Applications, and Solution. European Journal of Operations Research. 105(1): 184-201.

[5] Trivedi K, Kulkarni V (1993) FSPNs: Fluid Stochastic Petri Nets. In: M. Ajmone Marsan,

editor. Lecture Notes in Computer Science: Proc. 14th Int. Conf. on Applications and

Theory of Petri Nets. 691: 24-31.

[6] Wolter K, Horton G, German R (1996) Non-Markovian Fluid Stochastic Petri Nets. TU

Berlin: TR 1996-13.

[7] Ferziger JH, Perić M (1997) Computational Methods for Fluid Dynamics. Springer-

Verlag.

* Corresponding Author

Fluid Stochastic Petri Nets:
From Fluid Atoms in ILP Processor Pipelines to Fluid Atoms in P2P Streaming Networks 255

[8] Hoffmann KA, Chiang ST (1993) Computational Fluid Dynamics for Engineers: Volume

I & II. Engineering Education System.

[9] Ciardo G, Nicol D, Trivedi K (1997) Discrete-Event Simulation of FSPNs. Proc. 7th Int.

Workshop on Petri Nets and performance Models (PNPM’97). Saint Malo. pp. 217-225.

[10] Gribaudo M, Sereno M (2000) Simulation of Fluid Stochastic Petri Nets. Proc. 8th Int.

Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems. San Francisco. pp. 231-239.

[11] Chang PY, Hao E, Patt Y (1995) Alternative Implementations of Hybrid Branch Predictors.

Proc. 28th Annual Int. Symposium on Microarchitecture. Ann Arbor. pp. 252-263.

[12] Rotenberg E, Bennett S, Smith J (1996) Trace Cache: a Low Latency Approach to High

Bandwidt Instruction Fetching. Proc. 29th Annual Int. Symposium on Microarchitecture.

Paris. pp. 24-35.

[13] Yeh TY, Marr D, Patt Y (1993) Increasing the Instruction Fetch Rate via Multiple Branch

Prediction and a Branch Address Cache. Proc. Int. Conf. on Supercomputing. Tokyo.

pp. 67-76.

[14] Lipasti M, Wilkerson C, Shen JP (1996) Value Locality and Load Value Prediction. Proc.

7th Int. Conf. on Architectural Support for Programming Languages and Operating

Systems. Cambridge. pp. 138-147.

[15] Wang K, Franklin M (1997) Highly Accurate Data Value Prediction using Hybrid

Predictors. Proc. 30th Annual Int. Symposium on Microarchitecture. Research Triangle

Pk. pp. 281-290.

[16] Milton JS, Arnold JC (1990) Introduction to Probability and Statistics: Principles and

Applications for Engineering and the Computing Sciences (2nd Edition). McGraw-Hill.

[17] Chang PY, Hao E, Yeh TY, Patt Y (1994) Branch Classificaion: a New Mechanism for

Improving Branch Predictor Performance. Proc. 27th Annual Int. Symposium on

Microarchitecture. San Jose. pp. 22-31.

[18] Gabbay F, Mendelson A (1998) The Effect of Instruction Fetch Bandwidth on Value

Prediction. Proc. 25th Int. Symposium on Computer Architecture. Barcelona. pp. 272-281.

[19] Wolter K (1999) Performance and Dependability Modelling with Second Order Fluid

Stochastic Petri Nets. PhD Thesis. TU Berlin.

[20] Mitrevski P, Gušev M (2003) On the Performance Potential of Speculative Execution

Based on Branch and Value Prediction. Int. Scientific Journal Facta Universitatis. Series:

Electronics and Energetics. 16(1): 83-91.

[21] Gušev M, Mitrevski P (2003) Modeling and Performance Evaluation of Branch and Value

Prediction in ILP Processors. International Journal of Computer Mathematics. 80(1): 19-46.

[22] Tu X, Jin H, Liao X (2008) Nearcast: A Locality-Aware P2P Live Streaming Approach for

Distance Education. ACM Transactions on Internet Technology. 8(2): Article No. 2.

[23] Zezza, S., Magli E, Olmo G, Grangetto M (2009) Seacast: A Protocol for Peer to Peer

Video Streaming Supporting Multiple Description Coding. IEEE Int. Conf. on

Multimedia and Expo. pp. 1586-1587.

[24] Covino F, Mecella M (2008) Design and Evaluation of a System for Mesh-based P2P

Live Video Streaming. ACM Int. Conf. on Advances in Mobile Computing and

Multimedia. pp. 287-290.

Petri Nets – Manufacturing and Computer Science 256

[25] Lu Z, Li Y, Wu J, Zhang SY, Zhong YP (2008) MultiPeerCast: A Tree-mesh-hybrid P2P

Live Streaming Scheme Design and Implementation based on PeerCast. 10th IEEE Int.

Conf. on High Performance Computing and Communications. pp. 714-719.

[26] Chen Z, Xue K, Hong P (2008) A Study on Reducing Chunk Scheduling Delay for Mesh-

Based P2P Live Streaming. In: 7th IEEE Int. Conf. on Grid and Cooperative Computing,

pp. 356-361.

[27] Xiao X, Shi Y, Gao Y (2008) On Optimal Scheduling for Layered Video Streaming in

Heterogeneous Peer-to-Peer Networks. ACM Int. Conf. on Multimedia. pp. 785-788.

[28] Guo H, Lo KT (2008) Cooperative Media Data Streaming with Scalable Video Coding.

IEEE Transactions on Knowledge and Data Engineering. 20(9): 1273-1281.

[29] Kumar R, Liu Y, Ross K (2007) Stochastic Fluid Theory for P2P Streaming Systems. IEEE

INFOCOM. pp. 919–927.

[30] Kotevski Z, Mitrevski P (2011) A Modeling Framework for Performance Analysis of P2P

Live Video Streaming Systems. In: Gušev M, Mitrevski P, editors. ICT Innovations 2010.

Berlin Heidelberg: Springer Verlag. pp. 215-225.

[31] Chu Y, Rao SG, Seshan S, Zhang H (2000) A Case for End System Multicast. IEEE

Journal on Selected Areas in Communications. 20(8): 1456–1471.

