
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 0

Grammars Controlled by Petri Nets

J. Dassow, G. Mavlankulov, M. Othman, S. Turaev, M.H. Selamat and R. Stiebe

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/50637

1. Introduction

Formal language theory, introduced by Noam Chomsky in the 1950s as a tool for a description
of natural languages [8–10], has also been widely involved in modeling and investigating
phenomena appearing in computer science, artificial intelligence and other related fields
because the symbolic representation of a modeled system in the form of strings makes
its processes by information processing tools very easy: coding theory, cryptography,
computation theory, computational linguistics, natural computing, and many other fields
directly use sets of strings for the description and analysis of modeled systems. In formal
language theory a model for a phenomenon is usually constructed by representing it as a set
of words, i.e., a language over a certain alphabet, and defining a generative mechanism, i.e., a
grammar which identifies exactly the words of this set. With respect to the forms of their rules,
grammars and their languages are divided into four classes of Chomsky hierarchy: recursively
enumerable, context-sensitive, context-free and regular.

Context-free grammars are the most investigated type of Chomsky hierarchy which, in
addition, have good mathematical properties and are extensively used in many applications
of formal languages. However, they cannot cover all aspects which occur in modeling of
phenomena. On the other hand, context-sensitive grammars, the next level in Chomsky
hierarchy, are too powerful to be used in applications of formal languages, and have bad
features, for instance, for context-sensitive grammars, the emptiness problem is undecidable
and the existing algorithms for the membership problem, thus for the parsing, have
exponential complexities. Moreover, such concepts as a derivation tree, which is an important
tool for the analysis of context-free languages, cannot be transformed to context-sensitive
grammars. Therefore, it is of interest to consider “intermediate” grammars which are
more powerful than context-free grammars and have similar properties. One type of
such grammars, called grammars with regulated rewriting (controlled or regulated grammars
for short), is defined by considering grammars with some additional mechanisms which
extract some subset of the generated language in order to cover some aspects of modeled
phenomena. Due to the variety of investigated practical and theoretical problems, different
additional mechanisms to grammars can be considered. Since Abraham [1] first defined
matrix grammars in 1965, several grammars with restrictions such as programmed, random

©2012 Turaev et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 15

2 Petri Nets

context, valence grammars, and etc., have been introduced (see [16]). However, the rapid
developments in present day technology, industry, medicine and other areas challenge to
deal with more and more new and complex problems, and to look for new suitable tools
for the modeling and investigation of these problems. Petri net controlled grammars, which
introduce concurrently parallel control mechanisms in formal language theory, were proposed
as a theoretical model for some problems appearing in systems biology and automated
manufacturing systems (see [18–23, 56, 59–62]).

Petri nets, which are graphical and mathematical modeling tools applicable to many
concurrent, asynchronous, distributed, parallel, nondeterministic and stochastic systems,
have widely been used in the study of formal languages. One of the fundamental approaches
in this area is to consider Petri nets as language generators. If the transitions in a Petri net are
labeled with a set of (not necessary distinct) symbols, a sequence of transition firing generates
a string of symbols. The set of strings generated by all possible firing sequences defines a
language called a Petri net language, which can be used to model the flow of information and
control of actions in a system. With different kinds of labeling functions and different kinds
of final marking sets, various classes of Petri net languages were introduced and investigated
by Hack [34] and Peterson [46]. The relationship between Petri net languages and formal
languages were thoroughly investigated by Peterson in [47]. It was shown that all regular
languages are Petri net languages and the family of Petri net languages are strictly included in
the family of context-sensitive languages but some Petri net languages are not context-free
and some context-free languages are not Petri net languages. It was also shown that the
complement of a free Petri net language is context-free [12].

Another approach to the investigation of formal languages was considered by Crespi-Reghizzi
and Mandrioli [11]. They noticed the similarity between the firing of a transition and
application of a production rule in a derivation in which places are nonterminals and tokens
are separate instances of the nonterminals. The major difference of this approach is the lack
of ordering information in the Petri net contained in the sentential form of the derivation.
To accommodate it, they defined the commutative grammars, which are isomorphic to Petri
nets. In addition, they considered the relationship of Petri nets to matrix, scattered-context,
nonterminal-bounded, derivation-bounded, equal-matrix and Szilard languages in [13].

The approach proposed by Crespi-Reghizzi and Mandrioli was used in the following works.
By extending the type of Petri nets introduced in [11] with the places for the terminal
symbols and arcs for the control of nonterminal occurrences in sentential forms, Marek
and Češka showed that for every random-context grammar, an isomorphic Petri net can be
constructed, where each derivation of the grammar is simulated by some occurrence sequence
of transitions of the Petri net, and vice versa. In [39] the relationship between vector grammars
and Petri nets was investigated, partially, hybrid Petri nets were introduced and the equality
of the family of hybrid Petri net languages and the family of vector languages was shown.
By reduction to Petri net reachability problems, Hauschildt and Jantzen [35] could solve a
number of open problems in regulated rewriting systems, specifically, every matrix language
without appearance checking over one letter alphabet is regular and the finiteness problem
for the families of matrix and random context languages is decidable; In several papers
[2, 14, 25], Petri nets are used as minimization techniques for context-free (graph) grammars.
For instance, in [2], algorithms to eliminate erasing and unit (chain) rules, algorithms to
remove useless rules using the Petri net concept are introduced.

338 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 3

Control by Petri nets has also been introduced and studied in automata theory [26–28, 38] and
grammar systems theory [6].

In this chapter we summarize the recent obtained results on Petri net controlled grammars
and propose new problems for further research.

In Section 2 we recall some basic concepts and results from the areas formal languages and
Petri nets: strings, grammars, languages, Petri nets, Petri net languages and so on, which will
be used in the next sections.

In Section 3 we define a context-free Petri net (a cf Petri net for short), where places correspond
to nonterminals, transitions are the counterpart of the production rules, the tokens reflect
the occurrences of symbols in the sentential form, and there is a one-to-one correspondence
between the application of (sequence of) rules and the firing of (sequence of) transitions.
Further, we introduce grammars controlled by k-Petri nets, i.e., cf Petri nets with additional k
places, and studies the computational power and closure properties of families of languages
generated by k-Petri net controlled grammars.

In Section 4 we consider a generalization of the k-Petri net controlled grammars: we associate
an arbitrary place/ transition net with a context-free grammar and require that the sequence
of applied rules corresponds to an occurrence sequence of transitions in the Petri net. With
respect to different labeling strategies and different definitions of final marking sets, we define
various classes of Petri net controlled grammars. Here we study the influence of the labeling
functions and the effect of the final markings on the generative power.

It is known that many decision problems in formal language theory are equivalent to the
reachability problem in Petri net theory, which has been shown that it is decidable, however,
it has exponential time complexity. The result of this has been the definition of a number
of structural subclasses of Petri nets with a smaller complexity and still adequate modeling
power. Thus, it is interesting to consider grammars controlled by such kind of subclasses of
Petri nets. In Section 5 we continue our study of arbitrary Petri net controlled grammars by
restricting Petri nets to their structural subclasses, i.e., special Petri nets such as state machines,
marked graphs, and free-choice nets, and so on.

In Section 6 we examine Petri net controlled grammars with respect to dynamical properties
of Petri nets: we use (cf and arbitrary) Petri nets with place capacities. We also investigate
capacity-bounded grammars which are counterparts of grammars controlled by Petri nets
with place capacities.

In Section 7 we draw some general conclusions and present suggestions for further research.

2. Preliminaries

In this section we recall some prerequisites, by giving basic notions and notations of the
theories formal languages, Petri nets and Petri net languages which are used in the next
sections. The reader is referred to [16, 34, 36, 42, 45, 47, 50, 52] for further information.

2.1 General notions and notations

Throughout the chapter we use the following general notations. ∈ denotes the membership
of an element to a set while the negation of set membership is denoted by �∈. The inclusion

339Grammars Controlled by Petri Nets

4 Petri Nets

is denoted by ⊆ and the strict (proper) inclusion is denoted by ⊂. The symbol ∅ denotes
the empty set. The set of positive (non-negative) integers is denoted by N (N0). The set of
integers is denoted by Z. The power set of a set X is denoted by 2X , while the cardinality of a
set X is denoted by |X|.

Let Σ be an alphabet which is a finite nonempty set of symbols. A string (sometimes a word)
over the alphabet Σ is a finite sequence of symbols from Σ. The empty string is denoted by λ.
The length of a word w, denoted by |w|, is the number of occurrences of symbols in w. The
number of occurrences of a symbol a in a string w is denoted by |w|a. The set of all strings
over the alphabet Σ is denoted by Σ∗. The set of nonempty strings over Σ is denoted by Σ+,
i.e., Σ+ = Σ∗ − {λ}. A subset of Σ∗ is called a language. A language L ∈ Σ∗ is λ-free if λ �∈ L.
For two languages L1, L2 ⊆ Σ∗ the operation shuffle is defined by

Shuf(L1, L2) = {u1v1u2v2 · · · unvn | u1u2 · · · un ∈ L1, v1v2 · · · vn ∈ L2,

ui, vi ∈ Σ∗, 1 ≤ i ≤ n}

and for L ⊆ Σ∗, Shuf∗(L) =
⋃

k≥1 Shufk(L) where

Shuf1(L) = L and Shufk(L) = Shuf(Shufk−1(L), L), k ≥ 2.

2.2 Grammars

A phrase structure (Chomsky) grammar is a quadruple G = (V, Σ, S, R) where V and Σ are two
disjoint alphabets of nonterminal and terminal symbols, respectively, S ∈ V is the start symbol
and R ⊆ (V ∪ Σ)∗V(V ∪ Σ)∗ × (V ∪ Σ)∗ is a finite set of (production) rules. Usually, a rule
(u, v) ∈ R is written in the form u → v. A rule of the form u → λ is called an erasing rule.

A phrase structure grammar G = (V, Σ, S, R) is called a GS grammar (a phrase structure
grammar due to Ginsburg and Spanier [31]) if R ⊆ V+ × (V ∪ Σ)∗.

The families of languages generated by GS grammars and by phrase structure grammars are
denoted by GS and RE, respectively. It is well-known that the family GS is equal to the family
RE.

A string x ∈ (V ∪ Σ)∗ directly derives a string y ∈ (V ∪ Σ)∗ in G, written as x ⇒ y if and only if
there is a rule u → v ∈ R such that x = x1ux2 and y = x1vx2 for some x1, x2 ∈ (V ∪ Σ)∗. The
reflexive and transitive closure of the relation ⇒ is denoted by ⇒∗. A derivation using the

sequence of rules π = r1r2 · · · rk, ri ∈ R, 1 ≤ i ≤ k, is denoted by
π
=⇒ or

r1r2···rk====⇒. The language
generated by G, denoted by L(G), is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

A phrase-structure grammar G = (V, Σ, S, R) is called context-sensitive if each rule u → v ∈ R
has u = u1 Au2, v = u1xu2 for u1, u2 ∈ (V ∪Σ)∗, A ∈ V and x ∈ (V ∪Σ)+ (in context sensitive
grammars S → λ is allowed, provided that S does not appear in the right-hand members of
rules in R); context-free if each rule u → v ∈ R has u ∈ V; linear if each rule u → v ∈ R has
u ∈ V and v ∈ Σ∗ ∪ Σ∗VΣ∗; regular if each rule u → v ∈ R has u ∈ V and v ∈ Σ ∪ ΣV.

The families of languages generated by context-sensitive, context-free, linear and regular
grammars are denoted by CS, CF, LIN and REG, respectively. Further we denote the family
of finite languages by FIN. The next strict inclusions, named Chomsky hierarchy, hold (for
details, see [52]):

Theorem 1. FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE.

340 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 5

2.3 Regulated grammars

The idea of regulated rewriting consists of restricting the application of the rules in a
context-free grammar in order to avoid some derivations and hence obtaining a subset of the
context-free language generated in usual way. The computational power of some context-free
grammars with regulated rewriting turns out to be greater than the power of context-free
grammars.

A regularly controlled grammar is a quintuple G = (V, Σ, S, R, K) where V, Σ, S, R are specified
as in a context-free grammar and K is a regular set over R. The language generated by G

consists of all words w ∈ Σ∗ such that there is a derivation S
r1r2···rn====⇒ w where r1r2 · · · rn ∈ K.

A matrix grammar is a quadruple G = (V, Σ, S, M) where V, Σ, S are defined as for a
context-free grammar, M is a finite set of matrices which are finite strings over a set R of
context-free rules (or finite sequences of context-free rules). The language generated by the

grammar G is L(G) = {w ∈ Σ∗ | S
π
=⇒ w and π ∈ M∗}.

A vector grammar is a quadruple G = (V, Σ, S, M) whose components are defined as for a
matrix grammar. The language generated by the grammar G is defined by

L(G) = {w ∈ Σ∗ | S
π
=⇒ w and π ∈ Shuf∗(M)}.

An additive valence grammar is a quintuple G = (V, Σ, S, R, v) where V, Σ, S, R are defined as
for a context-free grammar and v is a mapping from R into Z. The language generated by G

consists of all strings w ∈ Σ∗ such that there is a derivation S
r1r2 ···rn====⇒ w where ∑

n
i=1 v(ri) = 0.

A positive valence grammar is a quintuple G = (V, Σ, S, R, v) whose components are defined as
for additive valence grammars. The language generated by G consists of all strings w ∈ Σ∗

such that there is a derivation S
r1r2···rn====⇒ w where ∑

n
i=1 v(ri) = 0 and for any 1 ≤ j < n,

∑
j
i=1 v(ri) ≥ 0.

The families of languages generated by regularly controlled, matrix, vector, additive valence
and positive valence grammars (with erasing rules) are denoted by rC, MAT, VEC, aV, pV

(rCλ, MATλ, VECλ, aVλ, pVλ), respectively.

Theorem 2. The following inclusions and equalities hold (for details, see [16]):

(1) CF ⊂ aV = aVλ ⊂ MAT = rC = pV;

(2) MAT ⊆ VEC ⊂ CS;

(3) MAT ⊆ MATλ = rCλ = VECλ = pVλ ⊂ RE.

2.4 Petri nets

A Petri net (PN) is a construct N = (P, T, F, φ) where P and T are disjoint finite sets of places
and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the set of directed arcs, φ : F → N is a
weight function.

A Petri net can be represented by a bipartite directed graph with the node set P ∪ T where
places are drawn as circles, transitions as boxes and arcs as arrows. The arrow representing an
arc (x, y) ∈ F is labeled with φ(x, y); if φ(x, y) = 1, then the label is omitted.

341Grammars Controlled by Petri Nets

6 Petri Nets

An ordinary net (ON) is a Petri net N = (P, T, F, φ) where φ(x, y) = 1 for all (x, y) ∈ F. We

omit φ from the definition of an ordinary net, i.e., N = (P, T, F).

A mapping μ : P → N0 is called a marking. For each place p ∈ P, μ(p) gives the number of

tokens in p. Graphically, tokens are drawn as small solid dots inside circles. •x = {y | (y, x) ∈
F} and x• = {y | (x, y) ∈ F} are called pre- and post-sets of x ∈ P ∪ T, respectively. For t ∈ T

(p ∈ P), the elements of •t (•p) are called input places (transitions) and the elements of t• (p•)
are called output places (transitions) of t (p).

A transition t ∈ T is enabled by marking μ if and only if μ(p) ≥ φ(p, t) for all p ∈ •t. In this

case t can occur (fire). Its occurrence transforms the marking μ into the marking μ′ defined

for each place p ∈ P by μ′(p) = μ(p) − φ(p, t) + φ(t, p). We write μ
t
−→ μ′ to indicate

that the firing of t in μ leads to μ′. A marking μ is called terminal if in which no transition is

enabled. A finite sequence t1t2 · · · tk, ti ∈ T, 1 ≤ i ≤ k, is called an occurrence sequence enabled

at a marking μ and finished at a marking μk if there are markings μ1, μ2, . . . , μk−1 such that

μ
t1−→ μ1

t2−→ . . .
tk−1
−−→ μk−1

tk−→ μk. In short this sequence can be written as μ
t1t2 ···tk−−−−→ μk or

μ
ν
−→ μk where ν = t1t2 · · · tk. For each 1 ≤ i ≤ k, marking μi is called reachable from marking

μ. R(N, μ) denotes the set of all reachable markings from a marking μ.

A marked Petri net is a system N = (P, T, F, φ, ι) where (P, T, F, φ) is a Petri net, ι is the initial

marking.

A Petri net with final markings is a construct N = (P, T, F, φ, ι, M) where (P, T, F, φ, ι) is a

marked Petri net and M ⊆ R(N, ι) is set of markings which are called final markings. An

occurrence sequence ν of transitions is called successful for M if it is enabled at the initial

marking ι and finished at a final marking τ of M. If M is understood from the context, we say

that ν is a successful occurrence sequence.

A Petri net N is said to be k-bounded if the number of tokens in each place does not exceed

a finite number k for any marking reachable from the initial marking ι, i.e., μ(p) ≤ k for all

p ∈ P and for all μ ∈ R(N, ι). A Petri net N is said to be bounded if it is k-bounded for some

k ≥ 1.

A Petri net with place capacity is a system N = (P, T, F, φ, ι, κ) where (P, T, F, φ, ι) is a marked

Petri net and κ : P → N0 is a function assigning to each place a number of maximal admissible

tokens. A marking μ of the net N is valid if μ(p) ≤ κ(p), for each place p ∈ P. A transition

t ∈ T is enabled by a marking μ if additionally the successor marking is valid.

2.5 Special Petri nets

It is known that many decision problems are equivalent to the reachability problem [33],

which has been shown to be decidable. However, it has exponential space complexity [40],

thus from a practical point of view, Petri nets may be too powerful to be analyzed. The

result of this has been the definition of a number of subclasses of Petri nets in order to

find a subclass with a smaller complexity and still adequate modeling power for practical
purposes. These subclasses are defined by restrictions on their structure intended to improve

their analyzability. We consider the following main structural subclasses of Petri nets.

342 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 7

A state machine (SM) is an ordinary Petri net such that each transition has exactly one input
place and exactly one output place, i.e., |•t| = |t•| = 1 for all t ∈ T. This means that there can
not be concurrency but there can be conflict.

A generalized state machine (GSM) is an ordinary Petri net such that |•t| ≤ 1 and |t•| ≤ 1 for all
t ∈ T.

A marked graph (MG) is an ordinary Petri net such that each place has exactly one input
transition and exactly one output transition, i.e., |•p| = |p•| = 1 for all p ∈ P. This means that
there can not be conflict but there can be concurrency.

A generalized marked graph (GMG) is an ordinary Petri net such that |•p| ≤ 1 and |p•| ≤ 1 for
all p ∈ P.

A casual net (CN) is a generalized marked graph each subgraph of which is not a a cycle.

A free-choice net (FC) is an ordinary Petri net such every arc is either the only arc going from
the place, or it is the only arc going to a transition, i.e., that if p•1 ∩ p•2 �= ∅ then |p•1 | = |p•2 | = 1
for all p1, p2 ∈ P. This means that there can be both concurrency and conflict but not the same
time.

An extended free-choice net (EFC) is an ordinary Petri net such that if p•1 ∩ p•2 �= ∅ then p•1 = p•2
for all p1, p2 ∈ P.

An asymmetric choice net (AC) is an ordinary Petri net such that if p•1 ∩ p•2 �= ∅ then p•1 ⊆ p•2
or p•1 ⊇ p•2 for all p1, p2 ∈ P. In asymmetric choice nets concurrency and conflict (in sum,
confusion) may occur but not asymmetrically.

3. k-Petri net controlled grammars

Since a context-free grammar and its derivation process can also be described by a Petri net
(see [11]), where places correspond to nonterminals, transitions are the counterpart of the
production rules, and the tokens reflect the occurrences of symbols in the sentential form,
and there is a one-to-one correspondence between the application of (sequence of) rules and
the firing of (sequence of) transitions, it is a very natural and very easy idea to control the
derivations in a context-free grammar by adding some features to the associated Petri net. In
this section we introduce a Petri net associated with a context-free grammar (i.e., a context-free
Petri net), construct Petri net control mechanisms from cf Petri nets by adding new places, and
define the corresponding grammars, called k-Petri net controlled grammars.

The construction of the following type of Petri nets is based on the idea of using similarity
between the firing of a transition and the application of a production rule in a derivation in
which places are nonterminals and tokens are separate occurrences of nonterminals.

Definition 1. A context-free Petri net (in short, a cf Petri net) w.r.t. a context-free grammar
G = (V, Σ, S, R) is a septuple N = (P, T, F, φ, β, γ, ι) where

• (P, T, F, φ) is a Petri net;

• labeling functions β : P → V and γ : T → R are bijections;

• there is an arc from place p to transition t if and only if γ(t) = A → α and β(p) = A. The
weight of the arc (p, t) is 1;

343Grammars Controlled by Petri Nets

8 Petri Nets

•

Figure 1. A cf Petri net N1

• there is an arc from transition t to place p if and only if γ(t) = A → α and β(p) = x where
|α|x > 0. The weight of the arc (t, p) is |α|x;

• the initial marking ι is defined by ι(β−1(S)) = 1 and ι(p) = 0 for all p ∈ P − {β−1(S)}.

Example 1. Let G1 be a context-free grammar with the rules:

r0 : S → AB, r1 : A → aAb, r2 : A → ab, r3 : B → cB, r4 : B → c

(the other components of the grammar can be seen from these rules). Figure 1 illustrates a cf
Petri net N1 with respect to the grammar G1. Obviously, L(G1) = {anbncm | n, m ≥ 1}.

The following proposition shows the similarity between terminal derivations in a context-free
grammar and successful occurrences of transitions in the corresponding cf Petri net.

Proposition 3. Let N = (P, T, F, φ, ι, β, γ) be the cf Petri net with respect to a context-free grammar

G = (V, Σ, S, R). Then S
r1r2···rn====⇒ w, w ∈ Σ∗ is a derivation in G iff t1t2 · · · tn, ι

t1t2 ···tn−−−−→ μn, is an
occurrence sequence of transitions in N such that γ(t1t2 · · · tn) = r1r2 · · · rn and μn(p) = 0 for all
p ∈ P.

Now we define a k-Petri net, i.e., a cf Petri net with additional k places and additional arcs
from/to these places to/from transitions of the net, the pre-sets and post-sets of the additional
places are disjoint.

Definition 2. Let G = (V, Σ, S, R) be a context-free grammar with its corresponding cf Petri
net N = (P, T, F, φ, β, γ, ι). Let k be a positive integer and let Q = {q1, q2, . . . , qk} be a set
of new places called counters. A k-Petri net is a construct Nk = (P ∪ Q, T, F ∪ E, ϕ, ζ, γ, μ0, τ)
where

• E = {(t, qi) | t ∈ Ti
1, 1 ≤ i ≤ k} ∪ {(qi, t) | t ∈ Ti

2, 1 ≤ i ≤ k} such that Ti
1 ⊂ T and Ti

2 ⊂ T,

1 ≤ i ≤ k where Ti
l ∩ T

j
l = ∅ for 1 ≤ l ≤ 2, Ti

1 ∩ T
j
2 = ∅ for 1 ≤ i < j ≤ k and Ti

1 = ∅ if

and only if Ti
2 = ∅ for any 1 ≤ i ≤ k.

• the weight function ϕ(x, y) is defined by ϕ(x, y) = φ(x, y) if (x, y) ∈ F and ϕ(x, y) = 1 if
(x, y) ∈ E,

344 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 9

• the labeling function ζ : P ∪ Q → V ∪ {λ} is defined by ζ(p) = β(p) if p ∈ P and ζ(p) = λ
if p ∈ Q,

• the initial marking μ0 is defined by μ0(β−1(S)) = 1 and μ0(p) = 0 for all p ∈ P ∪ Q −
{β−1(S)},

• τ is the final marking where τ(p) = 0 for all p ∈ P ∪ Q.

Definition 3. A k-Petri net controlled grammar (k-PN controlled grammar for short) is a quintuple
G = (V, Σ, S, R, Nk) where V, Σ, S, R are defined as for a context-free grammar and Nk is a
k-PN with respect to the context-free grammar (V, Σ, S, R).

Definition 4. The language generated by a k-Petri net controlled grammar G consists of all
strings w ∈ Σ∗ such that there is a derivation

S
r1r2 ···rn====⇒ w where t1t2 · · · tn = γ−1(r1r2 · · · rn) ∈ T∗

is an occurrence sequence of the transitions of Nk enabled at the initial marking ι and finished
at the final marking τ.

We denote the family of languages generated by k-PN controlled grammars (with erasing
rules) by PNk (PNλ

k), k ≥ 1.

Example 2. Let G2 be a 2-PN controlled grammar with the production rules:

r0 : S → A1B1 A2B2, r1 : A1 → a1 A1b1, r2 : A1 → a1b1,
r3 : B1 → c1B1, r4 : B1 → c1, r5 : A2 → a2 A2b2,
r6 : A2 → a2b2, r7 : B2 → c2B2, r8 : B2 → c2

and the corresponding 2-Petri net N2 is given in Figure 2. Then it is easy to see that G2

generates the language
L(G2) = {an

1 bn
1 cn

1 am
2 bm

2 cm
2 | n, m ≥ 1}.

Theorem 4. The language

L =
k+1

∏
i=1

ani

i bni

i cni

i

where k ≥ 1 and ni ≥ 1, 1 ≤ i ≤ k + 1, cannot be generated by a k-PN controlled grammar.

The following theorem presents the relations of languages generated by k-Petri net controlled
grammars to context-free, (positive) additive valence and vector languages.

Theorem 5.

CF ⊂ PN
[λ]
1 ⊆ pV[λ], aV[λ] ⊂ PN

[λ]
2 and PN

[λ]
n ⊆ VEC[λ], n ≥ 1.

The next theorem shows that the language families generated by k-Petri net controlled
grammars form infinite hierarchy with respect to the numbers of additional places.

Theorem 6. For k ≥ 1, PN
[λ]
k ⊂ PN

[λ]
k+1.

The closure properties of the language families generated by k-PN controlled grammars are
given in the following theorem.

Theorem 7. The family of languages PNk, k ≥ 1, is closed under union, substitution, mirror image,
intersection with regular languages and it is not closed under concatenation.

345Grammars Controlled by Petri Nets

10 Petri Nets

•

Figure 2. A 2-Petri net N2

4. Arbitrary Petri net controlled grammars

In this section we consider a generalization of regularly controlled grammars: instead of a
finite automaton we associate a Petri net with a context-free grammar and require that the
sequence of applied rules corresponds to an occurrence sequence of the Petri net, i.e., to
sequences of transitions which can be fired in succession. However, one has to decide what
type of correspondence is used and what concept is taken as an equivalent of acceptance.
Since the sets of occurrence sequences form the language of a Petri net, we choose the
correspondence and the equivalent for acceptance according to the variations which are used
in the theory of Petri net languages.

Therefore as correspondence we choose a bijection (between transitions and rules) or a coding
(any transition is mapped to a rule) or a weak coding (any transition is mapped to a rule or
the empty word) which agree with the classical three variants of Petri net languages (see e.g.
[34, 57, 58]).

We consider two types of acceptance from the theory of Petri net languages: only those
occurrence sequences belonging to the languages which transform the initial marking into
a marking from a given finite set of markings or all occurrence sequences are taken
(independent of the obtained marking). If we use only the occurrence sequence leading to
a marking in a given finite set of markings we say that the Petri net controlled grammar is
of t-type; if we consider all occurrence sequences, then the grammar is of r-type. We add a
further type which can be considered as a complement of the t-type. Obviously, if we choose
a finite set M of markings and require that the marking obtained after the application of the
occurrence sequence is smaller than at least one marking of M (the order is componentwise),
then we can choose another finite set M′ of markings and require that the obtained marking
belongs to M′. The complementary approach requires that the obtained marking is larger
than at least one marking of the given set M. The corresponding class of Petri net controlled
grammars is called of g-type. Therefore, we obtain nine classes of Petri net controlled

346 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 11

grammars since we have three different types of correspondence and three types of the set
of admitted occurrence sequences. These types of control are generalizations of those types of
control considered in the previous chapter, too, where instead of arbitrary Petri nets only such
Petri nets have been considered where the places and transitions correspond in a one-to-one
manner to nonterminals and rules, respectively.

We now introduce the concept of control by an arbitrary Petri net.

Definition 5. An arbitrary Petri net controlled grammar is a tuple G = (V, Σ, S, R, N, γ, M) where
V, Σ, S, R are defined as for a context-free grammar and N = (P, T, F, ϕ, ι) is a (marked) Petri
net, γ : T → R ∪ {λ} is a transition labeling function and M is a set of final markings.

Definition 6. The language generated by a Petri net controlled grammar G, denoted by

L(G), consists of all strings w ∈ Σ∗ such that there is a derivation S
r1r2···rk====⇒ w ∈ Σ∗

and an occurrence sequence ν = t1t2 · · · ts which is successful for M such that r1r2 · · · rk =
γ(t1t2 · · · ts).

Example 3. Let G3 = ({S, A, B, C}, {a, b, c}, S, R, N3, γ, M) be a Petri net controlled grammar
where R consists of

S → ABC,

A → aA, B → bB, C → cC,

A → a, B → b, C → c

and N3 is illustrated in Figure 3. If M is the set of all reachable markings, then G3 generates
the language

L(G3) = {anbmck | n ≥ m ≥ k ≥ 1}.

If M = {μ} with μ(p) = 0 for all p ∈ P, then it generates the language

L(G3) = {anbncn | n ≥ 1}.

•

→

→ → →

→ → →

Figure 3. A labeled Petri net N3

Different labeling strategies and different definitions of the set of final markings result in
various types of Petri net controlled grammars. We consider the following types of Petri net
controlled grammars.

Definition 7. A Petri net controlled grammar G = (V, Σ, S, R, N, γ, M) is called free
(abbreviated by f) if a different label is associated to each transition, and no transition is
labeled with the empty string; λ-free (abbreviated by −λ) if no transition is labeled with the
empty string; extended (abbreviated by λ) if no restriction is posed on the labeling function γ.

347Grammars Controlled by Petri Nets

12 Petri Nets

Definition 8. A Petri net controlled grammar G = (V, Σ, S, R, N, γ, M) is called r-type if M
is the set of all reachable markings from the initial marking ι, i.e., M = R(N, ι); t-type if
M ⊆ R(N, ι) is a finite set; g-type if for a given finite set M0 ⊆ R(N, ι), M is the set of all
markings such that for every marking μ ∈ M there is a marking μ′ ∈ M0 such that μ ≥ μ′.

We use the notation (x, y)-PN controlled grammar where x ∈ { f ,−λ, λ} shows the type of

a labeling function and y ∈ {r, t, g} shows the type of a set of final markings. We denote by
PN(x, y) and PNλ(x, y) the families of languages generated by (x, y)-PN controlled grammars
without and with erasing rules, respectively, where x ∈ { f ,−λ, λ} and y ∈ {r, t, g}.

The following theorem shows that the labeling strategy does not effect on the generative
capacity of arbitrary Petri net controlled grammars.

Theorem 8. For y ∈ {r, t, g},

PN[λ](f , y) = PN[λ](−λ, y) = PN[λ](λ, y).

Not surprisingly, arbitrary Petri net controlled grammars generate matrix languages.
Moreover, in [65] it was proven that the erasing rules in arbitrary Petri net controlled
grammars can be eliminated without effecting on the generative power of the grammars. If
we take into consideration this result, we obtain the following inclusions and equalities:

Theorem 9. For x ∈ { f ,−λ, λ} and y ∈ {r, t, g},

MAT ⊆ PN(x, r) = PN(x, g) ⊆ PN(x, t) = PNλ(x, y) = MATλ.

5. Grammars controlled by special Petri nets

In the previous section we investigated arbitrary Petri net controlled grammars in dependence

on the type of labeling functions and on the definitions of final markings, and showed that
Petri net controlled grammars have the same power as some other regulating mechanisms
such as matrices, finite automata. If we consider these matrices and finite automata in
terms of control mechanisms, special types of matrices and special regular languages are
widely investigated in literature, for instance, as control, simple matrices ([37]) or some
subclasses of regular languages ([15, 17]) are considered. Thus, it is also natural to investigate
grammars controlled by some special classes of Petri nets. We consider (generalized) state
machines, (generalized) marked graphs, causal nets, (extended) free-choice nets, asymmetric
choice nets and ordinary nets. Similarly to the general case we also investigate the effects of
labeling policies and final markings to the computational power, and prove that the family of
languages generated by (arbitrary) Petri net controlled grammars coincide with the family of
languages generated by grammars controlled by free-choice nets.

Let G = (V, Σ, S, R, N, γ, M) be an arbitrary Petri net controlled grammar. The grammar G
is called a (generalized) state machine, (generalized) marked graph, causal net, (extended)
free-choice net, asymmetric choice net or ordinary net controlled grammar if the net N is a
(generalized) state machine, (generalized) marked graph, causal net, (extended) free-choice
net, asymmetric choice net or ordinary net, respectively.

348 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 13

We also use a notation an (x, y)-(generalized) state machine, ((generalized) marked graph,
causal net, (extended) free-choice net, asymmetric choice net and ordinary net) controlled
grammar where x ∈ { f ,−λ, λ} shows the type of a labeling function γ and y ∈ {r, t, g}
shows the type of a set of final markings.

We denote the families of languages generated by grammars controlled by state machines,
generalized state machines, marked graphs, generalize marked graphs, causal nets,
free-choice nets, extended free-choice nets, asymmetric nets, ordinary nets and Petri nets

SM[λ](x, y), GSM[λ](x, y), MG[λ](x, y), GMG[λ](x, y), CN[λ](x, y),

FC[λ](x, y), EFC[λ](x, y), AC[λ](x, y), ON[λ](x, y), PN[λ](x, y)

where x ∈ { f ,−λ, λ} and y ∈ {r, t, g}.

The inclusion X(x, y) ⊆ Xλ(x, y) immediately follows from the definition where

• X ∈ {SM, GSM, MG, GMG, CN, FC, EFC, AC, ON},

• x ∈ { f ,−λ, λ} and y ∈ {r, t, g}.

Example 4. Let G4 = ({S, A, B}, {a, b}, S, R, N4, γ, M) be a SM controlled grammar where R
consists of

S → AB,

A → aA, A → bA, A → λ,

B → aB, B → bB, B → λ,

the Petri net N4 illustrated in Figure 4 is a labeled state machine and M = {μ}where μ(p0) = 1
and μ(p) = 0 for all p ∈ P − {p0}, then

L(G4) = {ww | w ∈ {a, b}∗} ∈ SMλ(λ, t).

Example 5. Let G5 = ({S, A, B}, {a, b}, S, R, N5, γ′, M′) be a MG controlled grammar where R
is as for the grammar G1 in Example 4, a labeled marked graph N5 is illustrated in Figure 5
and M′ = {μ} where μ(p) = 0 for all p ∈ P. Then

L(G5) = {ww′ | w ∈ {a, b}∗ and w′ ∈ Perm(w)} ∈ MGλ(λ, t).

We have the same result on the labeling strategies as that in the previous section: the labeling
of transitions of special Petri nets do not effect on the generative powers of the families of
languages generated by grammars controlled by these nets.

Theorem 10. For X ∈ {SM, GSM, MG, GMG, CN, FC, EFC, AC, ON}, and y ∈ {r, t, g},

X[λ](f , y) = X[λ](−λ, y) = X[λ](λ, y).

The following theorem shows the relations of families of languages generated by special Petri
net controlled grammars.

349Grammars Controlled by Petri Nets

14 Petri Nets

•

p

→

→ →

→ →

→λ →λ

λ

λ

Figure 4. A labeled state machine N4

λ

→

→ →

→ →

→λ →λ

Figure 5. A labeled marked graph N5

350 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 15

Theorem 11. The following inclusions and equalities hold:

(1) MG[λ](x, y) = GMG[λ](x, y) and PN(x, y′) = X(x, y′),

(2) CN(x, y′) ⊆ MG(x, y′) ⊆ PN(x, y′) ⊆ MATλ,

(3) MAT ⊆ GSM(x, y′) ⊆ PN(x, y′) ⊆ MATλ,

(4) CF ⊂ MAT = SM(x, y) ⊆ VEC ⊆

{

GSM(x, t)
CN(x, t) ⊆ MG(x, t)

⊆ MATλ,

(5) MATλ = PNλ(x, y) = PN(x, t) = Xλ(x, t) = Yλ(x, t) = Zλ(x, y),

where x ∈ { f ,−λ, λ}, y ∈ {r, g, t}, y′ ∈ {r, g} and X ∈ {FC, EFC, AC, ON}, Y ∈
{MG, GMG, CN}, Z ∈ {SM, GSM, FC, EFC, AC, ON}.

6. Capacity-bounded grammars

In this section we continue the research in this direction by restricting to (context-free,
extended or arbitrary) Petri nets with place capacities. Quite obviously, a context-free
Petri net with place capacity regulates the defining grammar by permitting only those
derivations where the number of each nonterminal in each sentential form is bounded by
its capacity. Similar mechanisms have been introduced and investigated by several authors.
Grammar with finite index (the index of a grammar is the maximal number of nonterminals
simultaneously appearing in its complete derivations (considering the most economical
derivations for each string)) were first considered by Brainerd [7]. Nonterminal-bounded
grammars (a grammar a nonterminal-bounded if the total number of nonterminals in every
sentential form does not exceed an upper bound) were introduced by Altman and Banerji in
[3–5]. A “weak” variant of nonterminal-bounded grammars (only the complete derivations
are required to be bounded) were defined by Moriya [44]. Ginsburg and Spanier introduced
derivation-bounded languages in [32] (all strings which have complete derivation in a grammar
G consisting of sentential forms each of which does not contain more than k nonterminals
collected in the set Lk(G)). There it was shown that grammars regulated in this way generate
the family of context-free languages of finite index, even if arbitrary nonterminal strings are
allowed as left-hand sides of production rules. Finite index restrictions to regulated grammars
have also been investigated [29, 30, 48, 49, 51, 53–55]. There it was shown that the families of
most regulated languages are collapse.

In this section we show that capacity-bounded context-free grammars have a larger generative
power than context-free grammars of finite index while the family of languages generated
by capacity-bounded phrase structure grammars (due to Ginsburg and Spanier) and several
families of languages generated by grammars controlled by extended cf Petri nets with place
capacities coincide with the family of matrix languages of finite index.

We will now introduce capacity-bounded grammars and show some relations to similar
concepts known from the literature.

Definition 9. A capacity-bounded grammar is a tuple G = (V, Σ, S, R, κ) where G′ =
(V, Σ, S, R) is a grammar and κ : V → N is a capacity function. The derivation relation
⇒G is defined as α ⇒G β iff α ⇒G′ β and |α|A ≤ κ(A) and |β|A ≤ κ(A), for all A ∈ V. The
language of G is defined as L(G) = {w ∈ Σ∗ | S ⇒∗

G w}.

351Grammars Controlled by Petri Nets

16 Petri Nets

The families of languages generated by capacity-bounded GS grammars and by context-free
capacity-bounded grammars are denoted by GScb and CFcb, respectively. The capacity
function mapping each nonterminal to 1 is denoted by 1. The notions of finite index and
bounded capacities can be extended to matrix, vector and semi-matrix grammars. The
corresponding language families are denoted by

MAT
[λ]
fin , VEC

[λ]
fin , sMAT

[λ]
fin , MAT

[λ]
cb , VEC

[λ]
cb .

Capacity-bounded grammars are very similar to derivation-bounded grammars, which were
studied in [32]. A derivation-bounded grammar is a quintuple G = (V, Σ, S, R, k) where G′ =
(V, Σ, S, R) is a grammar and k ∈ N is a bound on the number of allowed nonterminals. The
language of G contains all words w ∈ L(G′) that have a derivation S ⇒∗ w such that |β|V ≤ k,
for each sentential form β of the derivation.

Other related concepts are nonterminal-bounded grammars and grammars of finite index. A
context-free grammar G = (V, Σ, S, R) is nonterminal-bounded if |β|V ≤ k for some fixed k ∈ N

and all sentential forms β derivable in G. The index of a derivation in G is the maximal number
of nonterminal symbols in its sentential forms. G is of finite index if every word in L(G) has a
derivation of index at most k for some fixed k ∈ N. The family of context-free languages of
finite index is denoted by CFfin.

Note that there is a subtle difference between the first two and the last two concepts. While
context-free nonterminal-bounded and finite index grammars are just context-free grammars
with a certain structural property (and generate context-free languages by definition),
capacity-bounded and derivation-bounded grammars are special cases of regulated rewriting
(and could therefore generate non-context-free languages). However, it has been shown that
the family of derivation bounded languages is equal to CFfin, even if arbitrary grammars
due to Ginsburg and Spanier are permitted [32]. We will now give an example of
capacity-bounded grammars generating non-context-free languages.

Example 6. Let G = ({S, A, B, C, D, E, F}, {a, b, c}, S, R, 1) be the capacity-bounded grammar
where R consists of the rules:

r1 : S → ABCD, r2 : AB → aEFb, r3 : CD → cAD, r4 : EF → EC,
r5 : EF → FC, r6 : AD → FD, r7 : AD → ED, r8 : EC → AB,
r9 : FD → CD, r10 : FC → AF, r11 : AF → λ, r12 : ED → λ.

The possible derivations are exactly those of the form

S
r1=⇒ ABCD
(r2r3r4r6r8r9)n

=======⇒ an ABbncnCD
r2r3=⇒ an+1EFbn+1cn+1AD
r5r7=⇒ an+1FCbn+1cn+1ED
r10r11r12====⇒ anbncn

(in the last phase, the sequences r10r12r11 and r12r10r11 could also be applied with the same
result). Therefore,

L(G) = {anbncn | n ≥ 1}.

352 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 17

The above example shows that capacity-bounded grammars – in contrast to derivation
bounded grammars – can generate non-context-free languages. Moreover, any context-free
language generated by a grammar of G of finite index is also generated by the
capacity-bounded grammar (G, κ) where κ is capacity function constantly k.

Let CF1
cb and GS1

cb be the language families generated by context-free and arbitrary grammars
with capacity function 1. Then,

Lemma 12. CFcb = CF1
cb and GScb = GS1

cb.

On the other hand, capacity-bounded GS grammars generate exactly the family of matrix
languages of finite index. This is in contrast to derivation bounded grammars which generate
only context-free languages of finite index [32].

Lemma 13. GScb = MATfin.

It turns out that capacity-bounded context-free grammars are strictly between context-free
languages of finite index and matrix languages of finite index.

Theorem 14. CFfin ⊂ CFcb ⊂ GScb = MATfin.

The next theorem shows that the families of capacity bounded matrix and vector languages
are exactly the family of matrix languages with finite index.

Theorem 15. MATfin = VEC
[λ]
cb = MAT

[λ]
cb .

As regards closure properties, we remark that the constructions showing the closure of CF
under homomorphisms, union, concatenation and Kleene closure can be easily extended to
the case of capacity-bounded languages.

Theorem 16. CFcb is closed under homomorphisms, union, concatenation and Kleene closure.

Regarding intersection with regular sets and inverse homomorphisms, we can show
non-closure properties.

Theorem 17. CFcb is neither closed under intersection with regular sets nor under inverse
homomorphisms.

Control by Petri nets can in a natural way be adapted to Petri nets with place capacities.
A context-free grammar is controlled by its context-free Petri net with place capacity by
only allowing derivations that correspond to valid firing sequences respecting the capacity
bounds. The (trivial) proof for the equivalence between context-free grammars and grammars
controlled by cf Petri nets can be immediately transferred to context-free grammars and Petri
nets with capacities:

Theorem 18. Grammars controlled by context-free Petri nets with place capacity functions generate
the family of capacity-bounded context-free languages.

353Grammars Controlled by Petri Nets

18 Petri Nets

Let us now turn to grammars controlled by arbitrary Petri nets with capacities. Let G =
(V, Σ, S, R, N, γ, M) be an arbitrary Petri net controlled grammar. G is called a grammar
controlled by an arbitrary Petri net with place capacity if N is a Petri net with place capacity.
The families of languages generated by grammars controlled by arbitrary Petri nets with place

capacities (with erasing rules) is denoted by PNcb(x, y) (PNλ
cb(x, y)) where x ∈ { f ,−λ, λ} and

y ∈ {r, t, g}.

The next statement indicates that the language generated by a grammar controlled by an
arbitrary Petri net with place capacities iff it is generated by a matrix grammar (for details,
see [56]).

Theorem 19. For x ∈ { f ,−λ, λ} and y ∈ {r, t, g},

PNcb(x, y) = MAT ⊆ PNλ
cb(x, y) = MATλ.

We summarize our results in the following theorem.

Theorem 20. The following inclusions and equalities hold:

CFfin ⊂ CFcb = CF1
cb

⊂ MATfin = MAT
[λ]
cb = VEC

[λ]
cb = GScb = GS1

cb

⊂ MAT = PNcb(x, y) ⊆ MATλ = PNλ
cb(x, y)

where x ∈ { f ,−λ, λ} and y ∈ {r, t, g}.

7. Conclusions and future research

The chapter summarizes the recent results on Petri net controlled grammars presented in
[18–23, 56, 59–62] and the close related topic: capacity-bounded grammars. Though the
theme of regulated grammars is one of the classic topics in formal language theory, a Petri
net controlled grammar is still interesting subject for the investigation for many reasons. On
the one hand, this type of grammars can successfully be used in modeling new problems
emerging in manufacturing systems, systems biology and other areas. On the other hand,
the graphically illustrability, the ability to represent both a grammar and its control in one
structure, and the possibility to unify different regulated rewritings make this formalization
attractive for the study. Moreover, control by Petri nets introduces the concept of concurrency
in regulated rewriting systems.

We should mention that there are some open problems, the study of which is of interest:
one of them concerns to the classic open problem of the theory of regulated rewriting

systems – the strictness of the inclusion MAT ⊆ MATλ. We showed that language families
generated by (arbitrary) Petri net controlled grammars are between the families MAT and

MATλ. Moreover, the work [65] of G. Zetzsche shows that the erasing rules in Petri net
controlled grammars with finite set of final markings can be eliminated without effecting on
the generative power, which gives hope that one can solve this problem.

There is also another very interesting topic in this direction for the future study. If we notice
the definitions of derivation-bounded [32] or nonterminal-bounded grammars [3–5] only
nonterminal strings are allowed as left-hand sides of production rules. Here, an interesting

354 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 19

question is emerged, what kind of languages can be generated if we derestrict this condition,
i.e., allow any string in the left-hand side of the rules?

In all investigated types of Petri net controlled grammars, we only used the sequential
firing mode of transitions. The consideration of simultaneous firing of transitions, another
fundamental feature of Petri nets, opens a new direction for the future research: one can study
grammars controlled by Petri nets under parallel firing strategy, which introduces concurrently
parallelism in formal language theory.

Grammar systems can be considered as a formal model for a phenomenon of solving a given
problem by dividing it into subproblems (grammars) to be solved by several parts in turn
(CD grammar systems) or in parallel (PC grammar systems). The control of derivations in
grammar systems also allows increasing computational power grammar systems. We can
extend the regulation of a rule by a transition to the regulation a set of rules by a transition,
which defines a new type of grammar systems: the firing of a transition allows applying
several (assigned) rules in a derivation step parallelly and different modes.

In [19–22, 41, 62] it was shown that by adding places and arcs which satisfy some
structural requirements one can generate well-known families of languages as random context
languages, valence languages, vector languages and matrix languages. Thus, the control by
Petri nets can be considered as a unifying approach to different types of control. On the
other hand, Petri nets can be transformed into occurrence nets, i.e., usually an infinite, tree-like
structure whose nodes have the same labels as those of the places and transitions of the Petri
net preserving the relationship of adjacency, using unfolding technique introduced in [43] and
given in [24] in detail under the name of branching processes. Any finite initial part, i.e., prefix of
the occurrence net of a cf Petri net can be considered as a derivation tree for the corresponding
context-free grammar as it has the same structure as a usual derivation tree, here we can
also accept the rule of reading “leaf”-places with tokens from the left to the right as in usual
derivation trees. We can also generalize this idea for regulated grammars considering prefixes
of the occurrences nets obtained from cf Petri nets with additional places. Hence, we can take
into consideration the grammar as well as its control, and construct (Petri net) derivation trees
for regulated grammars, which help to construct effective parsing algorithms for regulated
rewriting systems. Though the preliminary results (general parsing algorithms, Early-like
parsing algorithm for deterministic extended context-free Petri net controlled grammars, etc.)
were obtained in [63, 64], the problem of the development of the effective parsing algorithms
for regulated grammars remain open.

Acknowledgements

This work has been supported by Ministry of Higher Education of Malaysia via Fundamental
Research Grant Scheme FRGS /1/11/SG/UPM/01/1 and Universiti Putra Malaysia via
RUGS 05-01-10-0896RU/F1.

Author details

Jürgen Dassow and Ralf Stiebe
Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

355Grammars Controlled by Petri Nets

20 Petri Nets

Gairatzhan Mavlankulov, Mohamed Othman, Mohd Hasan Selamat and Sherzod Turaev
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, UPM Serdang,
Selangor, Malaysia

8. References

[1] Abraham, A. [1965]. Some questions of phrase-structure grammars, Comput. Linguistics
4: 61–70.

[2] Al-A’ali, M., Khan, A. & Al-Shamlan, N. [1996]. Simplification of context-free grammar
through Petri net, Computers and Structures 58: 1055–1058.

[3] Altman, E. [1964]. The concept of finite representability, Systems Research Center Report
SRC 56-A-64-20, Case Institute of Technology.

[4] Altman, E. & Banerji, R. [1965]. Some problems of finite representability, Information and
Control 8: 251–263.

[5] Banerji, R. [1963]. Phrase structure languages, finite machines, and channel capacity,
Information and Control 6: 153–162.

[6] Beek, M. t. & Kleijn, H. [2002]. Petri net control for grammar systems, Formal and Natural
Computing, Vol. 2300 of LNCS, Springer, pp. 220–243.

[7] Brainerd, B. [1968]. An analog of a theorem about context-free languages, Information and
Control 11: 561–567.

[8] Chomsky, N. [1956]. Three models for the description of languages, IRE Trans. on
Information Theory 2(3): 113–124.

[9] Chomsky, N. [1957]. Syntactic structure, Mouton, Gravenhage.
[10] Chomsky, N. [1959]. On certain formal properties of grammars, Information and Control

2: 137–167.
[11] Crespi-Reghizzi, S. & Mandrioli, D. [1974]. Petri nets and commutative grammars,

Internal Report 74-5, Laboraterio di Calcolatori, Instituto di Elettrotecnica ed Elettromca
del Politecnico di Milano, Italy.

[12] Crespi-Reghizzi, S. & Mandrioli, D. [1975]. Properties of firing sequences, Proc. MIT Conf.
Petri Nets and Related Methods, MIT, Cambridge, Mass., pp. 233–240.

[13] Crespi-Reghizzi, S. & Mandrioli, D. [1977]. Petri nets and Szilard languages, Inform. and
Control 33: 177–192.

[14] Darondeau, P. [2001]. On the Petri net realization of context-free graphs, Theor. Computer
Sci. 258: 573–598.

[15] Dassow, J. [1988]. Subregularly controlled derivations: Context-free case, Rostock. Math.
Kolloq. 34: 61–70.

[16] Dassow, J. & Pǎun, G. [1989]. Regulated rewriting in formal language theory,
Springer-Verlag, Berlin.

[17] Dassow, J. & Truthe, B. [2008]. Subregularly tree controlled grammars and languages,
in E. Csuhaj-Varjú & Z. Esik (eds), Proc. the 12th International Conference AFL 2008,
Balatonfured, Hungary, pp. 158–169.

[18] Dassow, J. & Turaev, S. [2008a]. Arbitrary Petri net controlled grammars, in G. Bel-Enguix
& M. Jiménez-López (eds), Linguistics and Formal Languages. Second International Workshop
on Non-Classical Formal Languages In Linguistics, Tarragona, Spain, pp. 27–39. ISBN
978-84-612-6451-3.

[19] Dassow, J. & Turaev, S. [2008b]. k-Petri net controlled grammars, in C. Martín-Vide,
F. Otto & H. Fernau (eds), Language and Automata Theory and Applications. Second

356 Petri Nets – Manufacturing and Computer Science

Grammars Controlled by Petri Nets 21

International Conference, LATA 2008. Revised Papers, Vol. 5196 of LNCS, Springer,
pp. 209–220.

[20] Dassow, J. & Turaev, S. [2009a]. Grammars controlled by special Petri nets, in A. Dediu,
A.-M. Ionescu & C. Martín-Vide (eds), Language and Automata Theory and Applications,
Third International Conference, LATA 2009, Vol. 5457 of LNCS, Springer, pp. 326–337.

[21] Dassow, J. & Turaev, S. [2009b]. Petri net controlled grammars: the case of special Petri
nets, Journal of Universal Computer Science 15(14): 2808–2835.

[22] Dassow, J. & Turaev, S. [2009c]. Petri net controlled grammars: the power of labeling and
final markings, Romanian Jour. of Information Science and Technology 12(2): 191–207.

[23] Dassow, J. & Turaev, S. [2010]. Petri net controlled grammars with a bounded number of
additional places, Acta Cybernetica 19: 609–634.

[24] Engelfriet, J. [1991]. Branching processes of petri nets, Acta Informatica 28: 575–591.
[25] Erqing, X. [2004]. A Pr/T-Net model for context-free language parsing, Fifth World

Congress on Intelligent Control and Automation, Vol. 3, pp. 1919–1922.
[26] Farwer, B., Jantzen, M., Kudlek, M., Rölke, H. & Zetzsche, G. [2008]. Petri net controlled

finite automata, Fundamenta Informaticae 85(1-4): 111–121.
[27] Farwer, B., Kudlek, M. & Rölke, H. [2006]. Petri-net-controlled machine models, Technical

Report 274, FBI-Bericht, Hamburg.
[28] Farwer, B., Kudlek, M. & Rölke, H. [2007]. Concurrent Turing machines, Fundamenta

Informaticae 79(3-4): 303–317.
[29] Fernau, H. & Holzer, M. [1997]. Conditional context-free languages of finite index, New

Trends in Formal Languages – Control, Cooperation, and Combinatorics (to Jürgen Dassow on
the occasion of his 50th birthday), Vol. 1218 of LNCS, pp. 10–26.

[30] Fernau, H. & Holzer, M. [2008]. Regulated finite index language families collapse,
Technical Report WSI-96-16, Universität Türbingen, Wilhelm-Schickard-Institut für
Informatik.

[31] Ginsburg, S. & Spanier, E. [1968a]. Contol sets on grammars, Math. Syst. Th. 2: 159–177.
[32] Ginsburg, S. & Spanier, E. [1968b]. Derivation bounded languages, J. Comput. Syst. Sci.

2: 228–250.
[33] Hack, M. [1975a]. Decidablity questions for Petri nets, PhD thesis, Dept. of Electrical

Engineering, MIT.
[34] Hack, M. [1975b]. Petri net languages, Computation Structures Group Memo, Project MAC

124, MIT, Cambridge Mass.
[35] Hauschildt, D. & Jantzen, M. [1994]. Petri nets algorithms in the theory of matrix

grammars, Acta Informatica 31: 719–728.
[36] Hopcroft, J. & Ullman, J. [1990]. Introduction to automata theory, languages, and computation,

Addison-Wesley Longman Publishing Co., Inc.
[37] Ibarra, O. [1970]. Simple matrix grammars, Inform. Control 17: 359–394.
[38] Jantzen, M., Kudlek, M. & Zetzsche, G. [2008]. Language classes defined by concurrent

finite automata, Fundamenta Informaticae 85(1-4): 267–280.
[39] Jiang, C. [1996]. Vector grammar and PN machine, Sci. Chin. (Ser. A) 24: 1315–1322.
[40] Liptop, R. [1976]. The reachability problem requires esponential space, Technical

Report 62, Yale University.
[41] Marek, V. & Češka, M. [2001]. Petri nets and random-context grammars, Proc. of the

35th Spring Conference: Modelling and Simulation of Systems, MARQ Ostrava, Hardec nad
Moravicí, pp. 145–152.

[42] Martín-Vide, C., Mitrana, V. & Pǎun, G. (eds) [2004]. Formal languages and applications,
Springer-Verlag, Berlin.

357Grammars Controlled by Petri Nets

22 Petri Nets

[43] McMillan, K. [1995]. A technique of a state space search based on unfolding, Formal
Methods in System Design 6(1): 45–65.

[44] Moriya, E. [1973]. Associate languages and derivational complexity of formal grammars
and languages, Information and Control 22: 139–162.

[45] Murata, T. [1989]. Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541–580.

[46] Peterson, J. [1976]. Computation sequence sets, J. Computer and System Sciences 13: 1–24.
[47] Peterson, J. [1981]. Petri net theory and modeling of systems, Prentice-Hall, Englewood

Cliffs, NJ.
[48] Pǎun, G. [1977]. On the index of grammars and languages, Inf. Contr. 35: 259–266.
[49] Pǎun, G. [1979]. On the family of finite index matrix languages, JCSS 18(3): 267–280.
[50] Reisig, W. & Rozenberg, G. (eds) [1998]. Lectures on Petri Nets I: Basic Models, Vol. 1491 of

LNCS, Springer, Berlin.
[51] Rozenberg, G. [1976]. More on ET0L systems versus random context grammars, IPL

5(4): 102–106.
[52] Rozenberg, G. & Salomaa, A. (eds) [1997]. Handbook of formal languages, Vol. 1–3, Springer.
[53] Rozenberg, G. & Vermeir, D. [1978a]. On ET0L systems of finite index, Inf. Contr.

38: 103–133.
[54] Rozenberg, G. & Vermeir, D. [1978b]. On the effect of the finite index restriction on several

families of grammars, Inf. Contr. 39: 284–302.
[55] Rozenberg, G. & Vermeir, D. [1978c]. On the effect of the finite index restriction on several

families of grammars; Part 2: context dependent systems and grammars, Foundations of
Control Engineering 3(3): 126–142.

[56] Selamat, M. & Turaev, S. [2010]. Grammars controlled by petri nets with place capacities,
2010 International Conference on Computer Research and Development, pp. 51–55.

[57] Starke, P. [1978]. Free Petri net languages, Mathematical Foundations of Computer Science
1978, Vol. 64 of LNCS, Springer, Berlin, pp. 506–515.

[58] Starke, P. [1980]. Petri-Netze, Deutscher Verlag der Wissenschaften.
[59] Stiebe, R. & Turaev, S. [2009a]. Capacity bounded grammars, Journal of Automata,

Languages and Combinatorics 15(1/2): 175–194.
[60] Stiebe, R. & Turaev, S. [2009b]. Capacity bounded grammars and Petri nets, EPTCS

3: 193–203.
[61] Stiebe, R. & Turaev, S. [2009c]. Capacity bounded grammars and Petri nets, in J. Dassow,

G. Pighizzini & B. Truthe (eds), Eleventh International Workshop on Descriptional Complexity
of Formal Systems, Magdeburg, Germany, pp. 247–258.

[62] Turaev, S. [2007]. Petri net controlled grammars, Third Doctoral Workshop on
Mathematical and Engineering Methods in Computer Science, MEMICS 2007, Znojmo,
Czechia, pp. 233–240. ISBN 978-80-7355-077-6.

[63] Turaev, S., Krassovitskiy, A., Othman, M. & Selamat, M. [2011]. Parsing algorithms
for grammars with regulated rewriting, in A. Zaharim, K. Sopian, N. Mostorakis &
V. Mladenov (eds), Recent Researches in Applied Informatics and Remote Sensing. The 11th
WSEAS International Conference on APPLIED COMPUTER SCIENCE, pp. 103–109.

[64] Turaev, S., Krassovitskiy, A., Othman, M. & Selamat, M. [2012]. Parsing algorithms for
regulated grammars, Mathematical Models & Methods in Applied Science . (to appear).

[65] Zetzsche, G. [2009]. Erasing in petri net languages and matrix grammars, Proceedings
of the 13th International Conference on Developments in Language Theory, DLT ’09,
Springer-Verlag, Berlin, Heidelberg, pp. 490–501.

358 Petri Nets – Manufacturing and Computer Science

