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1. Introduction

Controller synthesis refers to finding a controller which is running in parallel with the system
under study and preventing any violation from the given properties. Such a controller
guarantees satisfaction of the desired properties; a controller makes an open-loop system to
be closed-loop.

Controller synthesis can also be explained by game theory as a timed game with two players:
environment and the controller. The strategy of the game determines the sequence of actions
to be executed. In this context, the objective of controller synthesis is to find a strategy such
that no matter what action is executed by the environment, the controller wins absolutely
the game. Two main questions arise for the controller: the existence and possibility of
implementation. The first question, Control Problem says given a system S and a property
ϕ, does a controller C exist for the system S such that C running in parallel with S satisfies the
property ϕ (S||C |= ϕ). And the second one is the Controller Synthesis Problem; if the mentioned
controller exists, is there a solution to implement it? First, a system should be modeled and
then, synthesized regarding the desired property.

Among various models used to describe the behavior of S , Timed Automata (TA in short) and
Time Petri Nets (TPN in short) are the well-known. The properties studied in the TPN and
TA for control purposes are classified in two main categories:

1. Safety properties: Whatever path is traveled, for all situations, a given set of forbidden
states (or bad states) are never reached.

2. Reachability properties: Whatever path is traveled, for all situations, a state of a given set
of states (good states) will eventually be reached.

Some research has been done to find algorithms to control these kinds of properties for timed
models (TA and TPN), such as [10, 11, 20]. Two known methods in the literature are the
backward fix point method and the backward/forward on-the-fly method. Both methods

©2012 Heidari and Boucheneb, licensee InTech. This is an open access chapter distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original
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are based on computing controllable predecessors of abstract states (state zones). This
computation involves some expensive operations such as computing differences between
abstract states (state zones).

In this chapter, we discuss an efficient approach to check whether a safety / reachability

controller in time Petri nets exists or not [13]. Our approach is a completely forward on-the-fly

algorithm based on the state class graph method. Unlike approaches proposed in [10, 11, 20]

based on the state zone graph method, our approach does not need to compute controllable

predecessors. It consists of exploring the state class graph while extracting sequences leading

to undesired states and determining subclasses to be avoided. The state class graph is a

suitable choice for the forward on-the-fly exploration. Using the state class graph method, the

exploration algorithm converges fast and does not need any over-approximation operation to

enforce the convergence.

This chapter is organized as follows: The definition of time Petri nets and its semantics as well

as the state graph method come in Section 2. In Section 3, after a short survey on the control

theory, previous algorithms and related work are discussed. The algorithm proposed in this

chapter is developed in Section 4. Finally, Section 5 presents the conclusion and future work.

2. Time Petri nets

2.1. Definition and behavior

A time Petri net [14] is a Petri net augmented with time intervals associated with transitions.

Among the different semantics proposed for time Petri nets [18], here we focus on the classical

one, called intermediate semantics in [18], in the context of mono-server and strong-semantics

[7].

Formally, a TPN is a tuple (P, T, Pre, Post, M0, Is) where:

- P and T are finite sets of places and transitions such that (P ∩ T = ∅),
- Pre and Post are the backward and the forward incidence functions (Pre, Post : P × T →
N, N is the set of nonnegative integers),

- M0 is the initial marking (M0 : P → N), and

- Is is the static interval function (Is : T → Q+ × (Q+ ∪ {∞})). Q+ is the set of nonnegative

rational numbers. Is associates with each transition t an interval called the static firing interval

of t. Bounds ↓ Is(t) and ↑ Is(t) of the interval Is(t) are respectively the minimum and

maximum firing delays of t.

In a controllable time Petri net, transitions are partitioned into controllable and uncontrollable

transitions, denoted Tc and Tu, respectively (with Tc ∩ Tu = ∅ and T = Tc ∪ Tu). For the sake
of simplicity and clarification, in this manuscript the controllable transitions are depicted as

white bars, while the uncontrollable ones as black bars.

A TPN, is called bounded if for every reachable marking M, there is a bound b ∈ Np where

M ≤ b holds. In this condition p stands for the number of places in P.

Let M be a marking and t a transition. Transition t is enabled for M iff all required tokens for

firing t are present in M, i.e., ∀p ∈ P, M(p) ≥ Pre(p, t). In this case, the firing of t leads to the
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marking M′ defined by: ∀p ∈ P, M′(p) = M(p)− Pre(p, t) + Post(p, t). We denote En(M) the

set of transitions enabled for M:

En(M) = t ∈ T|∀p ∈ P, Pre(p, t) ≤ M(p). (1)

For t ∈ En(M), we denote CF(M, t) the set of transitions enabled in M but in conflict with t:

CF(M, t) = t′ ∈ En(M)|t′ = t ∨ ∃p ∈ P, M(p) < Pre(p, t′) + Pre(p, t). (2)

Let t ∈ En(M) and M′ the successor marking of M by t, a transition t′ is said to be newly

enabled in M′ iff t′ is not enabled in the intermediate marking (i.e., M − Pre(., t)) or t′ = t. We

denote New(M′, t) the set of transitions newly enabled M′, by firing t from M:

New(M′, t) = {t′ ∈ En(M′)|t = t′ ∨ ∃p ∈ P, M′(p)− Post(p, t) < Pre(p, t′)}. (3)

There are two known characterizations for the TPN state. The first one, based on clocks,

associates with each transition ti of the model a clock to measure the time elapsed since ti
became enabled most recently. The TPN clock state is a couple (M, ν), where M is a marking

and ν is a clock valuation function, ν : En(M) → R+. For a clock state (M, ν) and ti ∈
En(M), ν(ti) is the value of the clock associated with transition ti. The initial clock state is

q0 = (M0, ν0) where ν0(ti) = 0, for all ti ∈ En(M0). The TPN clock state evolves either by

time progression or by firing transitions. When a transition ti becomes enabled, its clock is

initialized to zero. The value of this clock increases synchronously with time until ti is fired

or disabled by the firing of another transition. ti can fire, if the value of its clock is inside its
static firing interval Is(ti). It must be fired immediately, without any additional delay, when

the clock reaches ↑ Is(ti). The firing of a transition takes no time, but may lead to another

marking (required tokens disappear while produced ones appear).

Let q = (M, ν) and q0 = (M0, ν0) be two clock states of the TPN model, θ ∈ R+ and

t f ∈ T. We write q θ
→ q′, also denoted q + θ, iff state q′ is reachable from state q after a time

progression of θ time units, i.e.:

∧

t′∈En(M)

ν(t) + θ ≤ ↑ Id(ti), M′ = M, and ∀tj ∈ En(M′), ν′(tj) = ν(tj) + θ. (4)

We write q
t f
→ q′ iff state q′ is immediately reachable from state q by firing transition t f ,

i.e.: t f ∈ En(M), ν(t f ) ≥↓ Is(t f ), ∀p ∈ P, M′(p) = M(p) − Pre(p, t f ) + Post(p, t f ), and

∀ti ∈ En(M′), ν′(ti) = 0, if ti ∈ New(M′, t f ), ν′(ti) = ν(ti) otherwise.

The second characterization, based on intervals, defines the TPN state as a marking and

a function which associates with each enabled transition the time interval in which the

transition can fire [5].

The TPN state is defined as a pair (M, Id), where M is a marking and Id is a firing interval

function (Id : En(M) → Q+ × (Q+ ∪ {∞})). The initial state is (M0, Id0) where M0 is the

initial marking and Id0(t) = Is(t), for t ∈ En(M0).

Let (M, Id) and (M′, Id′) be two states of the TPN model, θ ∈ R+ and t ∈ T. The transition

relation −→ over states is defined as follows:

441A Forward On-The-Fly Approach in Controller Synthesis of Time Petri Nets
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- (M, Id)
θ

−→ (M′, Id′), also denoted (M, Id) + θ, iff from state (M, Id), we will reach the

state (M′, Id′) by a time progression of θ units, i.e.,
∧

t′∈En(M)
θ ≤ ↑ Id(t′), M′ = M, and

∀t′′ ∈ En(M′), Id′(t′′) = [Max(↓ Id(t′′)− θ, 0), ↑ Id(t′′)− θ].

- (M, Id)
t

−→ (M′, Id′) iff the state (M′, Id′) is reachable from state (M, Id) by firing
immediately transition t , i.e., t ∈ En(M), ↓ Id(t) = 0, ∀p ∈ P, M′(p) = M(p) − Pre(p, t) +
Post(p, t), and ∀t′ ∈ En(M′), Id′(t′) = Is(t′), if t′ ∈ New(M′, t), Id′(t′) = Id(t′), otherwise.

The TPN state space is the structure (Q,−→, q0), where q0 = (M0, Id0) is the initial state of

the TPN and Q = {q|q0
∗

−→ q}(
∗

−→ being the reflexive and transitive closure of the relation

−→ defined above) is the set of reachable states of the model.

A run in the TPN state space (Q,−→, q0), of a state q ∈ Q, is a maximal sequence ρ = q1
θ1−→

q1 + θ1
t1−→ q2

θ2−→ q2 + θ2
t2−→ q3..., such that q1 = q. By convention, for any state qi, relation

qi
0
→ qi holds. The sequence θ1t1θ2t2... is called the timed trace of ρ. The sequence t1t2... is

called the firing sequence (untimed trace) of ρ. A marking M is reachable iff ∃q ∈ Q s.t. its

marking is M. Runs (resp. timed / untimed traces) of the TPN are all runs (resp. timed /

untimed traces) of the initial state q0.

To use enumerative analysis techniques with time Petri nets, an extra effort is required to

abstract their generally infinite state spaces. Abstraction techniques aim to construct by

removing some irrelevant details, a finite contraction of the state space of the model, which

preserves properties of interest. For best performances, the contraction should also be the

smallest possible and computed with minor resources too (time and space). The preserved

properties are usually verified using standard analysis techniques on the abstractions [16].

Several state space abstraction methods have been proposed, in the literature, for time Petri

nets like the state class graph (SCG) [4], the zone based graph (ZBG) [6], and etc. These

abstractions may differ mainly in the characterization of states (interval states or clock states),

the agglomeration criteria of states, the representation of the agglomerated states (abstract

states), the kind of properties they preserve (markings, linear or branching properties) and

their size.

These abstractions are finite for all bounded time Petri nets. However, if only linear

properties are of interest, abstractions based on clocks are less interesting than the interval

based abstractions. Indeed, abstractions based on intervals are finite for bounded TPN with

unbounded intervals, while this is not true for abstraction based on clocks. The finiteness is

enforced using an approximation operation, which may involve some overhead computation.

2.2. Zone Based Graph

In the Zone Based Graph (ZBG)[6], all clock states reachable by runs supporting the

same firing sequence are agglomerated in the same node and considered modulo some

over-approximation operation [2, 12]. This operation is used to ensure the finiteness of the

ZBG for Bounded TPNs with unbounded firing intervals. An abstract state, called state

zone, is defined as a pair β = (M, FZ) combining a marking M and a formula FZ which

characterizes the clock domains of all states agglomerated in the state zone. In FZ, the clock
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of each enabled transition for M is represented by a variable with the same name. The domain

of FZ is convex and has a unique canonical form represented by the pair (M, Z), where Z is

a DBM of order |En(M) ∪ {o} defined by: ∀(x, y) ∈ (En(M) ∪ {o})2, zxy = SupFZ(x − y),
where o represents the value 0. State zones of the ZBG are in relaxed form.

The initial state zone is the pair β0 = (M0, FZ0), where M0 is the initial marking and FZ0 =∧

ti ,tj∈En(M0)
0 ≤ ti = tj ≤ ↑

tu∈En(M0)
Is(tu).

As an example, consider the TPN given in [11] and reported at Figure 1, its state zone graph

is reported at Figure 2 and its state zones are reported in Table 1.

In this document, we consider the state class method and study the possibility to enforce

the behavior of a given TPN so that to satisfy a safety / reachability property. The idea is to

construct on-the-fly the reachable state classes of the TPN while collecting progressively firing

subintervals to be avoided so that to satisfy the properties of interest.

2.3. The state class graph method

In the state class graph method [4], all states reachable by the same firing sequence from

the initial state are agglomerated in the same node and considered modulo the relation of

equivalence defined by: Two sets of states are equivalent iff they have the same marking and

the same firing domain. The firing domain of a set of states is the union of the firing domains

of its states. All equivalent sets are agglomerated in the same node called a state class defined

as a pair α = (M, F), where M is a marking and F is a formula which characterizes the firing

domain of α. For each transition ti enabled in M, there is a variable ti, in F, representing its

firing delay. F can be rewritten as a set of atomic constraints of the form1: ti − tj ≤ c, ti ≤ c or

−tj ≤ c, where ti, tj are transitions, c ∈ Q ∪ {∞} and Q is the set of rational numbers.

Though the same domain may be expressed by different conjunctions of atomic constraints

(i.e., different formulas), all equivalent formulas have a unique form, called canonical form

that is usually encoded by a difference bound matrix (DBM) [3]. The canonical form of F is

encoded by the DBM D (a square matrix) of order |En(M)|+ 1 defined by: ∀ti, tj ∈ En(M) ∪
{t0}, dij = (≤, SupF(ti − tj)), where t0 (t0 /∈ T) represents a fictitious transition whose delay

is always equal to 0 and SupF(ti − tj) is the largest value of ti − tj in the domain of F. Its

computation is based on the shortest path Floyd-Warshall’s algorithm and is considered as the

most costly operation (cubic in the number of variables in F). The canonical form of a DBM

makes easier some operations over formulas like the test of equivalence. Two formulas are

equivalent iff the canonical forms of their DBMs are identical.

The initial state class is α0 = (M0, F0), where F0 =
∧

ti∈En(M0)
↓ Is(ti) ≤ ti ≤↑ Is(ti).

Let α = (M, F) be a state class and t f a transition and succ(α, t f ) the set of states defined by:

succ(α, t f ) = {q′ ∈ Q | ∃q ∈ α, ∃θ ∈ R+ s.t. q θ
−→ q + θ

t f
−→ q′} (5)

1 For economy of notation, we use operator ≤ even if c = ∞.

443A Forward On-The-Fly Approach in Controller Synthesis of Time Petri Nets
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β0 : p1 + p2 0 ≤ t1 = t2 ≤ 3

β1 : p2 + p3 0 ≤ t2 ≤ 3 ∧ 0 ≤ t3 ≤ 3 ∧ 0 ≤ t2 − t3 ≤ 3

β2 : p1 + p4 2 ≤ t1 ≤ 4

β3 : p3 + p4 0 ≤ t3 ≤ 3 ∧ 0 ≤ t4 ≤ 1 ∧ 0 ≤ t3 − t4 ≤ 3

β4 : p2 2 ≤ t2 ≤ 3

β5 : p3 + p4 0 ≤ t3 = t4 ≤ 2

β6 : p4

Table 1. State zones of the TPN presented at Figure 2

The state class α has a successor by t f (i.e. succ(α, t f ) �= ∅), iff t f is enabled in M and can

be fired before any other enabled transition, i.e., the following formula is consistent2: F ∧
(

∧

ti∈En(M)
t f ≤ ti). In this case, the firing of t f leads to the state class α′ = (M′, F′) = succ(α, t f )

computed as follows [4]:

1. ∀p ∈ P, M′(p) = M(p)− Pre(p, t f ) + Post(p, t f ).

2. F′ = F ∧ (
∧

ti∈En(M)
t f − ti ≤ 0)

3. Replace in F′ each ti �= t f , by (ti + t f ).

4. Eliminate by substitution t f and each ti of transition conflicting with t f in M.

5. Add constraint ↓ Is(tn) ≤ tn ≤↑ Is(tn), for each transition tn ∈ New(M′, t f ).

Formally, the SCG of a TPN model is a structure (CC ,−→, α0), where α0 = (M0, F0) is the

initial state class, ∀ti ∈ T, α
ti−→ α′ iff α′ = succ(α, ti) �= ∅ and CC = {α|α0

∗
−→ α}.

The SCG is finite for all bounded TPNs and preserves linear properties [5]. As an example,

Figure 2 shows the state class graph of the TPN presented at Figure 1. Its state classes are

reported in Table 2. For this example, state class graph and state zone based graph of the

system are identical while classes and zones are different.
p1 p2

p3 p4

t2[2, 3]

t4[0, 1]t3[2, ∞[

t1[0, 4]

• •

Figure 1. A simple Petri net with Tc = {t1}

2 A formula F is consistent iff there is, at least, one tuple of values that satisfies, at once, all constraints of F.
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α0

α1 α2α3

α4 α5α6

t1

t2

t3t3

t2

t1

t2t4

t4

Figure 2. The State Graph of the TPN presented at Figure 1

α0 : p1 + p2 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3
α1 : p2 + p3 0 ≤ t2 ≤ 3 ∧ 2 ≤ t3

α2 : p1 + p4 0 ≤ t1 ≤ 2
α3 : p3 + p4 0 ≤ t3 ∧ 0 ≤ t4 ≤ 1

α4 : p2 0 ≤ t2 ≤ 1

α5 : p3 + p4 2 ≤ t3 < ∞ ∧ 0 ≤ t4 ≤ 1
α6 : p4

Table 2. The state classes of the TPN presented at Figure 2

2.4. A forward method for computing predecessors of state classes

Let α = (M, F) be a state class and ω ∈ T+ a sequence of transitions firable from α. We

denote succ(α, ω) the state class reachable from α by firing successively transitions of ω.

We define inductively this set as follows: succ(α, ω) = α, if ω = ǫ and succ(α, ω) =
succ(succ(α, ω′), ti), if ω = ω′.ti.

During the firing of a sequence of transitions ω from α, the same transition may be newly

enabled several times. To distinguish between different enabling of the same transition ti, we

denote tk
i for k > 0 the transition ti (newly) enabled by the kth transition of the sequence; t0

i

denotes the transition ti enabled in M. Let ω = tk1
1 ....tkm

m ∈ T+ with m > 0 be a sequence of

transitions firable from α (i.e., succ(α, ω) �= ∅). We denote Fire(α, ω) the largest subclass α′ of

α (i.e., α′ ⊆ α) s.t. ω is firable from all its states, i.e.,

Fire(α, ω) = {q1 ∈ α | ∃θ1, ..., θm, q1
θ1−→ q1 + θ1

t
k1
1−→ q2...qm + θm

tkm
m−→ qm+1} (6)

Proposition 1. Fire(α, ω) is the state class (M′, F′) where M′ = M and F′ can be computed as
follows3: Let M1 = M and M f+1, for f ∈ [1, m], be the marking reached from M by the subsequence

tk1

1 ....t
k f

f of ω.

1. Initialize F′ with the formula obtained from F by renaming all variables ti in t0
i .

3 We suppose that the truth value of an empty set of constraints is always true.

445A Forward On-The-Fly Approach in Controller Synthesis of Time Petri Nets
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2. Add the following constraints:

∧

f∈[1,m]
(

∧

ti∈(En(M1)−
⋃

j∈[1, f [
CF(Mj,tj))

t
k f

f − t0
i ≤ 0∧

∧

j∈[1, f [,tn∈(New(Mj+1,tj)−
⋃

k∈]j, f [
CF(Mk,tk))

t
k f

f − tj
n ≤ 0∧

∧

tn∈New(M f +1,t f )
↓ Is(tn) ≤ t f

n − t
k f

f ≤↑ Is(tn))

(7)

3. Put the resulting formula in canonical form and eliminate all variables tj
i such that j > 0, rename

all variables t0
i in ti.

Note that Fire(α, ω) �= ∅ (i.e., ω is firable from α) iff ω is feasible in the underlying untimed

model and the formula obtained at step 2) above is consistent.

Proof. By step 1) all variables associated with transitions of En(M) are renamed (ti is renamed

in t0
i ). This step allows us to distinguish between delays of transitions enabled in M from

those that are newly enabled by the transitions of the firing sequence.

Step 2) adds the firing constraints of transitions of the sequence (for f ∈ [1, m]). For each

transition t
k f

f of the sequence, three blocks of constraints are added. The two first blocks

mean that the delay of t
k f

f must be less or equal to the delays of all transitions enabled in

M f (i.e., transitions of En(M) and those enabled by tj (New(Mj+1, tj), 1 ≤ j < f ) that are

maintained continuously enabled at least until firing t
k f

f ). Transitions of En(M) that are

maintained continuously enabled at least until firing t
k f

f are transitions of En(M) which are not

in conflict with tk1

1 in M1, and, ..., and not in conflict with t
k f −1

f−1 in M f−1. Similarly, transitions

of New(Mj, tj) (with 1 ≤ j < f ) that are maintained continuously enabled at least until firing

t
k f

f are transitions of New(Mj+1, tj) which are not in conflict with t
k j+1

j+1 in Mj+1, and, ..., and

not in conflict with t
k f −1

f−1 in M f−1. The third block of constraints specifies the firing delays of

transitions that are newly enabled by t
k f

f .

Step 3) isolates the largest subclass of α such that ω is firable from all its states.

As an example, consider the TPN depicted at Figure 1 and its state class graph shown at Figure

2. Let us show how to compute Fire(α0, t0
1t0

2t1
3). We have En(M0) = {t1, t2}, CF(M0, t1) =

{t1}, CF(M1, t2) = {t2}, New(M0, t1) = {t3} and New(M1, t2) = {t4}. The subclass (p1 +
p2, F′) = Fire(α0, t0

1t0
2t1

3) is computed as follows:

1. Initialize F′ with the formula obtained from 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3 by renaming all

variables ti in t0
i : 0 ≤ t0

1 ≤ 4 ∧ 2 ≤ t0
2 ≤ 3

446 Petri Nets – Manufacturing and Computer Science
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2. Add the firing constraints of t1 before t2, t2 before t3 and constraints on the firing intervals

of transitions enabled by these firings (i.e., t3 and t4):

t0
1 − t0

2 ≤ 0 ∧ t0
2 − t1

3 ≤ 0 ∧ 2 ≤ t1
3 − t0

1 ∧ 0 ≤ t2
4 − t0

2 ≤ 1

3. Put the resulting formula in canonical form and eliminate all variables tj
i such that j > 0,

rename all variables t0
i in ti: 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3.

The subclass Fire(α0, t0
1t0

2t1
3) consists of all states of α0 from which the sequence t1t2t3 is firable.

If t1 is controllable, to avoid reaching the marking p4 by the sequence t1t2t3, it suffices to

choose the firing interval of t1 in α0 outside its firing interval in Fire(α0, t0
1t0

2t1
3) (i.e., ]2, 4]).

Note that this forward method of computing predecessors can also be adapted and applied to

the clock based abstractions. For instance, using the zone based graph, the initial state zone
of the TPN shown at Figure 1 is β0 = (p1 + p2, 0 ≤ t1 = t2 ≤ 3). The sub-zone β′0 of β0,

from which the sequence t1t2t3 is firable, can be computed in a similar way as the previous

procedure where delay constraints are replaced by clock constraints:

β′0 = (p1 + p2, 0 ≤ t1 = t2 ≤ 2). To avoid reaching by the sequence t1t2t3 the marking p4, it

suffices to delay the firing of t1 until when its clocks overpasses 2, which means that its firing

interval should be ]2, 4].

3. Related work

The theory of control was initially introduced by Ramadge and Wonham in [17]. They have

formalized, in terms of formal languages, the notion of control and the existence of a controller

that forces a discrete event system (DES) to behave as expected. The concept of control has

been afterwards extended to various models such as timed automata [21] and time Petri nets

[19], where the control specification is expressed on the model states rather than the model

language. Thus, for every system modeled by a controllable language, timed automata or

time Petri nets, controller synthesis is used to restrict the behavior of the system making it

to satisfy the desired safety or reachability properties. The typical procedure is: a system is

modeled, the desired properties are defined, then, the existence and the implementation of

the appropriate controller (control problem and controller synthesis problem respectively [1])

are investigated.

Several approaches of controller synthesis have been proposed in the literature. They may

differ in the model they are working on (various types of Petri nets or automata), the approach

they are based on (analytical as in [22], structural as in [9], semantic as in [10, 11, 20]), and

finally the property to be controlled.

In [22], the authors have considered a particular type of capacity timed Petri net, where

timing constraints are associated with transitions and some places, and all transitions are

controllable. This timed Petri net is used to model a cluster tool with wafer residency time

constraints. The wafers and their time constraints are represented by timed places. Using

analytical approaches of schedulability and the particular structure of their model (model of

the cluster tool), the authors have established an algorithm for finding, if it exists, an optimal

periodic schedule which respects residency time constraints of wafers. The control consists
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q′ /∈ Xq

qc ∈ X

q + δq + δcδc δ − δc t

tc

Figure 3. Controllable Predecessors

of limiting timing constraints of transitions and some places so as to respect residency time

constraints of wafers.

In [8, 9], the authors have considered safe and live time Petri nets where deadlines can be

associated with some transition firings. The control consists of enforcing the model to meet

deadlines of transition firings. The controller has the possibility to disable any transition t
which prevents to meet the deadline of a transition td. A transition t is allowed to fire only if

its latency (the maximum delay between firing t and the next firing of td) is not greater than the

current deadline of td. The latencies of transitions are computed by constructing an unfolding

Petri net of the underlying untimed Petri net. This approach does not need to explore the state

space. However, in general, the resulting controller is not maximally permissive (i.e. meaning

that the controller may disable a net behavior that does not violate the properties of interest).

In [10, 11, 20], the authors have considered timed models (TA or TPN) with two kinds of

transitions (controllable and uncontrollable) and investigated the control problem for safety or

reachability properties. To prevent some undesired states, the controller can act on any firable

and controllable transition by delaying or forcing its firing but it cannot disable transitions.

The control problem is addressed by computing the winning states of the model, i.e. states

which will not lead, by an uncontrollable transition, to an undesired state. The computation

of the winning states is based on the concept of controllable predecessors of states. In the

literature, the set of controllable predecessors is usually denoted by π(X), where X is a set of

states satisfying the desired property (safe/goal states). The set π(X) is defined by [11]:

π(X) = {q ∈ Q|((∃ δ ∈ R≥0, t ∈ T q′ ∈ X q
δ
→

t
→ q′)∨

(∃ δ ∈ R≥0, q′ ∈ X q δ
→ q′))∧

∀ δ ∈ R≥0 i f ∃ t ∈ T, q′ /∈ X q δ
→

t
→ q′

then ∃ δc < δ, tc ∈ Tc, qc ∈ X q
δc→

tc→ qc}

(8)

Intuitively, π(X) is the set of predecessors of X which will not bring the system out of X.

Figure 3 clarifies this concept. If the environment can execute an uncontrollable transition
after δ time units, leading the system out of X (denoted by X̄), then the controller should be

able to execute a controllable action to keep the system in X before δ time units. In addition,

in the context of timed models with strong semantics (a transition must be fired, without any

additional delay, when the upper bound of its firing interval is reached), the controller should

not be forced to execute a controllable transition leading the system out of X.

Let AG φ be a safety property and X0 = Sat(φ) the set of states which satisfy the property

φ (safe states). The fix point of Xi+1 = h(Xi) = Xi ∩ π(Xi), i ≥ 0 gives the largest set of
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safe states whose behaviors can be controlled so as to maintain the system inside this set of

states (i.e., winning states). If the largest fix point of h includes the initial state then, it gives a

controller which forces the system to stay in safe states (i.e., a winning strategy).

Similarly, the fix point method is also used for reachability properties. Let AF ψ be a

reachability property and X0 = Sat(ψ) the set of goal states. The least fix point of Xi+1 =
h(Xi) = Xi ∪ π(Xi), i ≥ 0 is the set of states whose behaviors can be controlled so as to reach

one of the goal states (i.e., winning states) [10, 20].

In the context of a timed model, this technique is applied on a state space abstraction of the

timed model. In this case, Xi is a set of abstract states. If Xi is a finite set of abstract states,

then the controllable predecessors of Xi is also a finite set of abstract states. The computation

of the fix point of h will converge after a finite number of steps if the state space abstraction is

finite [10, 11, 20].

Note that the state space abstractions used in [10, 11, 20] are based on clocks but the state space

abstraction used in [11] is not necessarily complete. The fix point method cannot guarantee to

give the safety controller when it exists, unless the state space abstraction is both sound and

complete. A state space abstraction of a given model is sound and complete iff it captures all

firing sequences of the model and each firing sequence in the state space abstraction reflects a

firing sequence of the model. Indeed, a synthesis may fail because of some unreachable states,

while for the reachable state space the safety controller exists. However, the cost of processing

is increased as a sound and complete state space abstraction should be entirely calculated

before applying the fix point algorithm.

Let us explain by means of an example how to compute the fix point of h for a safety property.

Consider the TPN given in [11] and reported in Figure 1. The state class graph (SCG) and the

zone based graph (ZBG) of this TPN are equal, except that nodes are defined differently (state

classes or state zones). The state class graph is depicted in Figure 2. Its state zones and state

classes are reported in Table 1 and Table 2, respectively.

Consider the state zone graph and suppose that we are interested to force the following safety

property: AG Σ4
i=1 pi = 2 which means that the number of tokens in the TPN is always 2. The

transition t1 is the only controllable transition and the forbidden markings is determined by

Σ4
i=1 pi �= 2. As the state class graph shows, if t2 happens before t1 the right path happens

which is safe and the controller has nothing to do. On the other hand, if t1 happens before t2,

two state classes having forbidden markings may be reached (α4, α6).

To verify whether or not there is a controller for such a property, we compute the fix point of

Xi+1 = h(Xi) = Xi ∩ π(Xi), where X0 = {β0, β1, β2, β3, β5} is the set of state zones which

satisfy the property not p1 + p3 = 0. Such a controller exists iff the initial state of the model is

a winning state (i.e., belongs to the fix point of h). The fix point is computed, in 3 iterations, as

follows:

1) Iteration 1: X1 = X0 ∩ π(X0) = {β0, β′1, β2, β′3, β5}. In this iteration, all states of β1 and β3,

which are uncontrollable predecessors of bad state classes β4 and β6 are eliminated:

β′1 = (p2 + p3, 1 < t2 ≤ 3 ∧ 0 ≤ t3 < 2 ∧ 1 < t2 − t3 ≤ 3) and

β′3 = (p3 + p4, 1 ≤ t3 <≤ 3 ∧ 0 < t4 ≤ 1 ∧ 1 ≤ t3 − t4 ≤ 3).
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2) Iteration 2: X2 = X1 ∩ π(X1) = {β0, β′′1 , β2, β′3, β5}. This iteration eliminates from β′1 all

states, which are uncontrollable predecessors of bad states of β3 − β′3:

β′′1 = {p2 + p3, 2 < t2 ≤ 3 ∧ 0 ≤ t3 < 1 ∧ 2 ≤ t2 − t3 ≤ 3}.

3) Iteration 3: X2 = X2 ∩ π(X2) = {β0, β′′1 , β2, β′3, β5}. The fix point X2 is then the set of

winning states. Since the initial state zone belongs to X2, there is a controller for forcing the

property AG not p1 + p3 = 0. To keep the model in safe states (in states of X2), the controller

must delay, in β0, the firing of t1 until its clock overpasses the value 2. Doing so, the successor

of β0 by t1 will be β′′1 .

This approach needs however to construct a state space abstraction before computing the set

of winning states. To overcome this limitation, in [10, 20], the authors have investigated the

use of on-the-fly algorithms besides the fix point to compute the winning states for timed

game automata (timed automata with controllable and uncontrollable transitions). We report,

in Fig 4, the on-the-fly algorithm given in [10] for the case of reachability properties and timed

game automata. This algorithm uses three lists Passed containing all state zones explored so

far, Waiting, containing the set of edges to be processed and Depend indicating, for each state

zone S, the set of edges to be reevaluated in case the set of the winning states in S (Win[S])
is updated. Using this on-the-fly method, in each step, a part of the state zone graph is

constructed and an edge e = (S, a, S′) of the Waiting list is processed. If the state zone S′

is not in Passed and there is, in S′, some states which satisfy the desired reachability property,

then these states are added to the winning states of S′ (Win[S′]). The winning states of S will

be recomputed later (the edge e is added to the Waiting list). If S′ is in Passed, the set of the

winning states of S (Win[S]) is recomputed and possibly those of its predecessors and so on.
The set Win[S] is the largest subset of S which is included in the controllable predecessors of

the winning states of all its successors.

This on-the-fly algorithm, based on computing controllable predecessors, requires some

expensive operations such as the difference between abstract states (state zones). The

difference between two state zones is not necessarily a state zone and then may result in

several state zones which need to be handled separately.

In this chapter, we propose another on-the-fly approach which does not need this expensive

operation. Our approach differs from the previous ones by the fact it computes bad states (i.e.:

states which may lead to an undesired state) instead of computing the winning states and it

constructs a state class graph instead of a state zone graph. In addition, the bad states are

computed, using a forward approach, for only state classes containing at least a controllable

transition.

4. An on-the-fly algorithm for investigating the existence of a controller

for a TPN

This chapter aims to propose an efficient forward on-the-fly method based on the state

class graph for checking the existence of a safety/reachability controller for a TPN. As

discussed earlier, the state class graph is a good alternative for the on-the-fly algorithms as

the exploration converges fast and does not need any over-approximation operation to enforce

the convergence. The method, proposed here, is completely a forward and does not compute
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Figure 4. On-the-fly algorithm for timed game automata proposed in [10]

controllable predecessors (which is considered as an expensive operation). To explain the

method, we start with safety properties.

Let us introduce informally the principle of our approach by means of the previous example.

Consider the TPN shown in Figure 1, its state class graph depicted in Figure 2 and its state

classes reported in Table 2. Our goal is to avoid to reach bad states (i.e., state classes α4 and

α6) by choosing appropriately the firing intervals for controllable transitions.

From the initial state class α0, there are two elementary paths α0t1α1t3α4 and α0t1α1t2α3t3α6

that lead to bad states. In both paths, there is only one state class (α0) where the controllable

transition t1 is firable. To avoid these bad paths, we propose to compute all states of α0 from

which t1t3 or t1t2t3 is firable, i.e., B(α0) = Fire(α0, t1t3) ∪ Fire(α0, t1t2t3), where:

Fire(α0, t1t3) = (p1 + p2, 0 ≤ t1 ≤ 1 ∧ 2 ≤ t2 ≤ 3 ∧ 2 ≤ t2 − t1 ≤ 3) and

Fire(α0, t1t2t3) = (p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3).

To avoid these bad states, it suffices to replace in α0, the firing interval of t1 with ]2, 4]. This

interval is the complement of [0, 2] ∪ [0, 1] in the firing interval of t1 in α0 ([0, 4]).
The approach we propose in the following section, is a combination of this principle with a

forward on-the-fly method.
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Figure 5. Path satisfying or not a safety property. Black states should be avoided.

4.1. Controller for safety properties

A controller for safety properties running in parallel with the system should satisfy the

property ’AG not bad’ where ’bad’ stands for the set of states having a forbidden marking and

it means that ’bad’ states will never happen. We introduce here an algorithm to re-constrain

the controllable transitions and reach a safe net.

The idea is to construct, using a forward on-the-fly method, the state class graph of the TPN to

determine whether controllable transitions have to be constrained, in order to avoid forbidden

markings. This method computes and explores, path by path, the state class graph of a TPN

looking for the sequences leading the system to any forbidden marking (bad sequences or

bad paths). And using Proposition 1, we get the subclasses causing the bad states happening

later through the found sequences (bad subclasses). We restrict the domain of controllable

transitions in the state class where they were enabled so as to avoid its bad subclasses.

The restriction of the interval of a controllable transition t of a state class α is obtained by

subtracting from its interval in α (INT(α, t)), intervals of t in its bad subclasses.

Before describing the procedure formally, we define an auxiliary operation over intervals to

be used in the algorithm. Let I and I ′ be two nonempty (real) intervals. We denote I ⊕ I ′

intervals defined by:

∀a ∈ R, a ∈ I ⊕ I ′i f f∃b ∈ I, ∃c ∈ I ′, a = b + c. (9)

As an example, for I = [1, 4] and I ′ =]2, 5], I ⊕ I ′ =]3, 9]. And also

LI(α) = {(tc, ts, BI)|tc ∈ Enc(M), ts ∈ En0
c (M); BI =

⋃

ω∈Ω(α)

INT(Fire(α,ω), tc − ts) �= INT(α, tc − ts)} (10)

This method is presented in the algorithms 1 and 2. The symbol Tc refers to the set of

controllable transitions and all forbidden markings of the net are saved in a set called, bad.

The list Passed is used to retrieve the set of state classes processed so far, their bad sequences,

and the bad intervals of controllable transitions (their domains in bad subclasses). Function

main consists of an initialization step and a calling to the recursive function explore. The

call explore(α0, ∅, {α0}) returns the set of bad sequences that cannot be avoided, from α0, by
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restricting firing domains of controllable transitions. If this set is nonempty, it means that

such a controller does not exist. Otherwise, it exists and the algorithm guarantees that for

each state class α with some bad sequences, there is a possibility to choose appropriately the

firing intervals of some controllable transitions so as to avoid all bad subclasses of α. The

control of α consists of eliminating, from the firing intervals of such controllable transitions,

all parts figuring in its bad subclasses. The restriction of domains is also applied on firing

delays between two controllable transitions of α. We get in Ctrl, all possibilities of controlling

each state class. In case there is only one controllable transition in α, its delay with a fictitious

transition whose time variable is fixed at 0 is considered.

Each element of Passed is a triplet (α, Ω(α), LI(α)) where α = (M, F) is a state class s.t. M /∈
bad, Ω(α) is the set of bad sequences of α, which cannot be avoided, independently of α, from

its successors, and LI(α) gives the intervals of controllable transitions in bad subclasses of α

(bad intervals). The set LI(α) allows to retrieve the safe intervals of controllable transitions, by

computing the complements, in α, of the forbidden intervals (i.e., all possibilities of controlling

α, Ctrl(α)).

The function explore receives parameters α being the class under process, t the transition

leading to α and C the set of traveled classes in the current path. It uses functions succ(α, t)
and Fire(α, ω) already explained by equations 5 and 6 (in sections 2.3 and 2.4, respectively). It

distinguishes 3 cases:

1) α has been already processed (i.e., α is in Passed): In this case, there is no need to explore it

again. However, its bad sequences have to be propagated to its predecessor by t, in case the

control needs to be started before reaching α in order to avoid bad states of its predecessors.

The control of α is independent of its predecessors along the path if all possibilities of control

in α are limited to the newly enabled transitions. In case there is, in α, a possibility of control,

which limits the firing interval of some controllable transition not newly enabled in α, it

means that the predecessor of α by t has some bad states that must be avoided. The condition

Dep(α, t, LI), used in Algorithm 2, is to control α independently of its predecessor by t.

2) α has a forbidden marking (i.e., α is a bad state class): In this case, the transition t is returned,

which means that this sequence needs to be avoided before reaching α.

3) In other cases, the function explore is called for each successor of α, not already encountered

in the current path (see Figure 5), to collect, in Ω, the bad sequences of its successors. Once all

successors are processed, Ω is checked:

3.1) If Ω = ∅, it means that α does not lead to any bad state class or its bad sequences can be

avoided later by controlling its successors, then (α, ∅, ∅) is added to Passed and the function

returns with ∅.

3.2) If Ω �= ∅, the function explore determines intervals of controllable transitions in bad

subclasses, which do not cover their intervals in α. It gets such intervals, identifying states to

be avoided, in LI (bad intervals). It adds (α, Ω, LI) to Passed and then verifies whether or not

α is controllable independently of its predecessor state class in the current path. In such a case,

there is no need to start the control before reaching α and then the empty set is returned by
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the function. Otherwise, it is needed to propagate the control to its predecessor by t. The set

of sequences, obtained by prefixing with t sequences of Ω, is then returned by the function.

This algorithm tries to control the system behavior starting from the last to the first state

classes of bad paths. If it fails to control a state class of a path, so as to avoid all bad state

classes, the algorithm tries to control its previous state classes. If it succeeds to control a state

class, there is no need to control its predecessors. The aim is to limit as little as possible the

behavior of the system (more permissive controller).

Algorithm 1 On-the-fly algorithm for safety control problem of TPN- Part A

Function main(TPN N , Markings bad)
Where N is a TPN
bad is a set of bad markings.
Let Tc be the set of controllable transitions of N and
α0 the initial state class of N .
Passed = ∅

if (explore(α0, ǫ, {α0}) �= ∅) then
{Controller does not exist}
return

end if
for all ((α, Ω, LI) ∈ Passed) do

Ctrl[α] =
⋃

(tc,ts,BI)∈LI
{(tc, ts, INT(α, tc − ts)− BI)}

end for
(∗)
α = (M, F);
Enc(M) = En(M)∩ Tc ;
En0

c (M) = Enc(M)∪ {t0};
Newc(M, t) = New(M, t) ∩ Tc;
New(M0, ǫ) = En(M0);
t0 is a fictitious transition whose time variable is fixed at 0.
Dep(α, t, LI) ≡
∃(tc, ts, BI) ∈ LI, tc /∈ New(M, t) ∧ (ts /∈ New(M, t)∨
INT(α, tc − t0) �⊆

⋂
I∈BI

(I ⊕ INT(α, ts − t0)))

4.2. Example

To explain the procedure, we trace the algorithm on the TPN shown in Figure 1. Its SCG and

its state classes are reported in Figure 2 and Table 2, respectively. For this example, we have

Tc = {t1}, bad = {p2, p4}, Passed = ∅ and α0 = (p1 + p2, 0 ≤ t1 ≤ 4 ∧ 2 ≤ t2 ≤ 3).

The process starts by calling explore(α0, ǫ, {α0}) (see Figure 6). Since α0 is not in Passed
and its marking is not forbidden, explore is successively called for the successors of α0:

explore(α1, t1, {α0, α1}) and explore(α2, t2, {α0, α2}). In explore of α1, function explore is

successively called for α3 and α4. In explore of α3, function explore is called for the successor

α6 of α3 by t3: explore(α6, t3, {α0, α1, α3, α6}). For the successor of α3 by t4 (i.e., α0), there is

no need to call explore as it belongs to the current path. Since α6 has a forbidden marking,

explore of α6 returns to explore of α3 with {t3}, which, in turn, adds (α3, {t2t3}, ∅) to Passed
and returns to explore of α1 with {t2t3}.
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Algorithm 2 On-the-fly algorithm for safety control problem of TPN- Part B

Function Traces explore(Class α, Trans t, Classes C)
if (∃Ω, LI s.t. (α, Ω, LI) ∈ Passed) then

if (Ω �= ∅ ∧ Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

end if
if (M ∈ bad) then

return {t}
end if
Traces Ω = ∅;
for all t′ ∈ En(M) s.t succ(α, t′) �= ∅ ∧ succ(α, t′) /∈ C do

Ω = Ω ∪ explore(succ(α, t′), t′, C ∪ {succ(α, t′)})
end for{Ω contains all bad sequences of α.}
if (Ω = ∅) then

Passed = Passed ∪ {(α, ∅, ∅)}
return ∅

end if
LI = {(tc, ts, BI)|(tc, ts) ∈ Enc(M)× En0

c(M) ∧

BI =
⋃

ω∈Ω

INT(Fire(α, ω), tc − ts) ⊂ INT(α, tc − ts)}

Passed = Passed ∪ {(α, Ω, LI)}
if (Dep(α, t, LI)) then

return {t.ω|ω ∈ Ω}
end if
return ∅

In explore of α1, function explore is called for α4 (explore(α4, t3, {α0, α1, α4})). This call returns,

to explore of α1, with {t3}, since α4 has a forbidden marking. In explore of α1, the tuple

(α1, {t2t3, t3}, ∅) is added to Passed and {t1t2t3, t1t3} is returned to explore of α0. Then, explore
of α0 calls explore(α2, t2, {α0, α2}), which in turn calls explore(α5, t1, {α0, α2, α5}). Since α5 has

only one successor (α0) and this successor belongs to the current path, the call of explore for α5

adds (α5, ∅, ∅) to Passed and returns to explore of α2 with ∅, which, in turn, returns to explore
of α0.

After exploring both successors of α0, in explore of α0, we get in Ω = {t1t2t3, t1t3} the set of

bad paths of α0. As the state class α0 has a controllable transition t1, its bad subclasses are

computed: Fire(α0, t1t2t3) = {(p1 + p2, 0 ≤ t1 ≤ 2 ∧ 2 ≤ t2 ≤ 3 ∧ 1 ≤ t2 − t1 ≤ 3) and

Fire(α0, t1t3) = (p1 + p2, 0 ≤ t1 ≤ 1 ∧ 2 ≤ t2 ≤ 3 ∧ 2 ≤ t2 − t1 ≤ 3)}. The firing interval

of t1 in α0 ([0, 4]) is not covered by the union of intervals of t1 in bad subclasses of α0 ([0, 2] ∪
[0, 1] �= [0, 4]). Then, (α0, {t1t2t3, t1t3}, {(t1, t0, {[0, 2]})}) is added to Passed. As t1 is newly

enabled, the empty set is returned to the function main, which concludes that a controller
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explore(α0, ǫ, {α0})
Return ∅

explore(α1, t1, {α0, α1})
Return {t1t2t3, t1t3}

explore(α3, t2,
{α0, α1, α3})

Return {t2t3}

explore(α4, t3, {α0, α1, α4})
Return {t3}

explore(α6, t3, {α0, α1, α3, α6})
Return {t3}

explore(α2, t2, {α0, α2})
Return ∅

explore(α5, t1, {α0, α2, α5})
Return ∅

t1
t2

t2
t3

t1

t3

α0α0

α1 α2

α3

α4

α5

α6

Figure 6. Applying Algorithms 1 & 2 on the TPN at Figure 1 for AG not p1 + p3 = 0

exists. According with the list Passed, α0 needs to be controlled (Ctrl[α0] = {(t1, t0, {[0, 4] −
[0, 2]})}). For all others, there is nothing to do.

Note that for this example, it is possible to carry out a static controller, which is, in this case,

a mapping over controllable transitions. Indeed, it suffices to replace the static interval of t1

with ]2, 4]. Such a controller is in general less permissive than the state dependent controller.

However, its implementation is static and very simple as if the model is corrected rather than

controlled.

It is also possible to carry out a marking dependent controller (a mapping over markings).

Such a controller can be represented by duplicating t1, each of them being associated with an

interval and conditioned to a marking (see Table 3 and Figure 7).

This algorithm is able to determine whether a safety controller exists or not. If the algorithm

fails to determine a controller, then the controller does not exist. This failure may have two

p1 p2

p4

p3

t2[2, 3]

t3[2, ∞[

t4[0, 1]t11]2, 4] t12[0, 4]
p1 + p2 not p1 + p2

• •

Figure 7. The controlled TPN obtained for the TPN at Figure 1 for AG not p1 + p3 = 0
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Marking Constraint to be applied on t1

p1 + p2 2 < t1 ≤ 4

Others 0 ≤ t1 ≤ 4

Table 3. A marking dependent controller for the TPN at Figure 1

reasons: no class having enabled controllable transitions exists in a bad path; or, calculated bad

subclasses covers entire domain of controllable transitions. Note that, in a time Petri net[15]

it is impossible to cancel a transition. Thus, if the entire domain of a controllable transition

leads to bad states, as it cannot be canceled or delayed, the state class cannot be controlled so

as to avoid bad states.

In the algorithms presented here, a state class is declared to be uncontrollable if it does not
contain controllable transitions or it cannot be controlled so as to avoid all bad state classes.
Note that if a state class cannot be controlled to avoid all bad classes, it can be however

controlled to avoid some bad classes. To limit as little as possible the behavior of the system,
the set of bad sequences of a state class α can be partitioned in two subsets: the set of bad
sequences that can be avoided from α and the set of bad sequences that cannot to be avoided
from α. The former set is avoided from α while the latter is let to be controlled by the
predecessors of α. The function explore in this case should return the set of bad sequences
that cannot be controlled from α. In this way, we increase the permissiveness of the controller.

The most significant advantage of this algorithm is the possibility of choosing the level of
control. Three levels of control can be carried out:

1) Static controller: The control is independent of markings and states of the system. For
each controllable transition, the intersection of all safe intervals is considered. Let tc be a
controllable transition whose interval needs to be restricted and SIr(tc) = {Ir|∀(α, Ω, L) ∈
Passed, ∃(tc, SI) ∈ Ctrl[α], Ir ⊆ SI ∧ Ir �= ∅}. The static firing interval of tc should be
replaced with any interval of SIr(tc). Note that SIr(tc) may be empty. In this case, such a
controller does not exist. Otherwise, it exists and its implementation is static as if the model
is corrected rather than controlled. On the other hand, the permissiveness is sacrificed for the
sake of simplicity of implementation. Albeit being simple, the controller has a high impact on
performance of the system. For the previous example, such a controller exists and consists of
replacing the static interval of t1 with [2, 4].

2) Marking dependent controller: The controller is a function of marking. The intersection
of all safe intervals of controllable state classes with the same marking is considered, causing
loss of permissiveness. Let tc be a controllable transition whose interval needs to be restricted
and SIm(M, tc) = {Im|∀((M, I), Ω, L) ∈ Passed, ∃(tc, SI) ∈ Ctrl[(M, I)], Im ⊆ SI ∧ Im �= ∅}.
For each marking M, the firing interval of each controllable transition tc enabled in M should
be any interval of SIm(M, tc). The set SIm(M, tc) may be empty and then such a controller
does not exist. Otherwise, it exists and can be represented by duplicating some controllable
transitions, each of them being associated with an interval and conditioned to a marking. Such
a controller exists for the previous example and is given in Table 3 and the controlled TPN is
what comes in Figure 7.

3) State dependent controller: The third level is the most permissive. A controllable transition

is limited depending on the class the system is. In fact, making decision is delayed as much as
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possible. When the algorithm is being synthesized, different scenarios are considered. During

the execution, the controller decides upon the scenario the system is (the current state class).

4.3. Controller for reachability properties

The algorithm proposed here for the safety properties, is also adaptable to reachability

properties. A reachability controller running in parallel with the system should satisfy the

property AFgoal meaning that a goal state will certainly be reached, where ’goal’ is an atomic

proposition specifying the goal states (Figure 8). For reachability properties, the controller

should prevent all paths which terminates without reaching a goal state, or contains a loop

on none goal states (Figure 8.b). Then, if we define state classes leading to such cases as bad

states, a safety controller is able to control this system to satisfy the given reachability property.

Thus, the algorithm proposed to safety properties is extensible to reachability properties with

some minor modification and is presented in the algorithms 3 and 4. Note that, in this case,

the set goal stands for the set of markings of goal states.

Algorithm 3 On-the-fly algorithm for the reachability control of TPN- Part A

Function main(TPN N , Markings goal)
Where N is a TPN and
goal is a set of goal markings.
Let Tc be the set of controllable transitions of N and
α0 the initial state class of N .

Passed = ∅

if (explore(α0, ǫ, {α0}) �= ∅) then
{Controller does not exist}
return

end if

for all ((α, Ω, LI) ∈ Passed) do
Ctrl[α] =

⋃

(tc,ts,BI)∈LI
{(tc, ts, INT(α, tc − ts)− BI)}

end for
return

(∗)

α = (M, F);

Enc(M) = En(M)∩ Tc ;

En0
c (M) = Enc(M)∪ {t0};

Newc(M, t) = New(M, t) ∩ Tc;

New(M0, ǫ) = En(M0); New0(M0, ǫ) = En(M0) ∪ {t0};

t0 is a fictitious transition whose time variable is fixed at 0.

Dep(α, t, LI) ≡

∃(tc, ts, BI) ∈ LI, tc /∈ New(M, t) ∧ (ts /∈ New(M, t)∨

INT(α, tc − t0) �⊆
⋂

I∈BI
(I ⊕ INT(α, ts − t0)))
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Algorithm 4 On-the-fly algorithm for the reachability control of TPN-Part B

Function Traces explore(Class α, Trans t, Classes C)
if (∃Ω, LI s.t. (α, Ω, LI) ∈ Passed) then

if (Ω �= ∅ ∧ Dep(α, t, LI)) then
return {t.ω|ω ∈ Ω}

end if
return ∅

end if
if (M ∈ goal) then

return ∅

end if
if (En(M) = ∅) then

return {t}
end if
Traces Ω = ∅

for all t′ ∈ En(M) s.t succ(α, t′) �= ∅ do
if succ(α, t′) ∈ C then

Ω = Ω ∪ {t′}
else

Ω = Ω ∪ explore(succ(α, t′), t′, C ∪ {succ(α, t′)})
end if

end for
if (Ω = ∅) then

Passed = Passed ∪ {(α, Ω, ∅)}
return ∅

end if
LI = {(tc, ts, BI)|(tc, ts) ∈ Enc(M)× En0

c(M) ∧

BI =
⋃

ω∈Ω

INT(Fire(α, ω), tc − ts) ⊂ INT(α, tc − ts)}

Passed = Passed ∪ {(α, Ω, LI)}
if (Dep(α, t, LI)) then

return {t.ω|ω ∈ Ω}
end if
return ∅
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Figure 8. Paths satisfying or not a reachability property. Black states should be avoided.

5. Conclusion

In this chapter, we have proposed a completely forward on-the-fly algorithm for synthesizing

safety and reachability controllers for time Petri nets. This approach guarantees to find a

controller if it exists as it explores all possible state classes in the state graph and collects paths

which do not satisfy the properties (bad paths).

To limit as little as possible the behavior of the system (more permissive controller), this

algorithm tries to control the system behavior starting from the last to the first state classes of

bad paths. If it fails to control a state class of a path, so as to avoid all bad paths, the algorithm

tries to control its previous state classes. If it succeed to control a state class, there is no need to

control its predecessors. The control of a state class consists of restricting the firing intervals

of controllable transitions and does not need to compute any controllable predecessor.

Computing controllable predecessors involves some expensive operations such as the

difference between time domains. Three levels of control can be carried out from the

algorithm: the first level being independent from marking and state is static but not

permissive. Second and third levels being dependent of marking and state, respectively are

more permissive. One can choose to control the system during execution (third level), modify

the model and make transitions conditioned to marking (second level), or re-constraining

the intervals, correct the system statically before execution(first level). Correcting the system

statically before the execution can reduce the impact of controller interference and solve the

problem of synchronization between the controller and system.

The algorithm proposed here is decidable for a bounded TPN because the state class graph is

finite and the algorithm explores, path by path, the state class graph (the exploration of a path

is abandoned as soon as a loop is detected or a bad state class is reached).

One perspective of this work is the investigation of the use of more compact abstraction

(abstraction by inclusion, abstraction by convex-combination) and then, extend the devised

and optimized algorithm to large scale and modular systems.
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