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1. Introduction 

Diabetes mellitus is a group of metabolic disorder characterized by hyperglicemia and 
insufficiency of action or secretion of insulin. More than 346 million people worldwide 
have diabetes. 80 per cent of diabetes-induced deaths ocur in low- and middle-income 
countries. Most people with diabetes are above the age of retirement in developed 
countries, whereas in developing countries those most frequently affected are aged 
between 35 and 64 [1]. Although the etiology of this disease is not well defined, viral 
infections, autoimmunity, genetic and environmental factors have been implicated [2-5]. 
Four major types of diabetes have been defined by the American Diabetes Association 
(ADA): type 1 diabetes, type 2 diabetes, other spesific types of diabetes and gestational 
diabetes mellitus (GDM) [6].  

Type 1 diabetes (T1D) usually develops in childhood and adolescence and the cause of the 
disease is an absolute deficiency of insulin secretion. Individuals at increased risk of 
developing this type of diabetes can often be identified by serological evidence of an 
autoimmune pathologic process occurring in the pancreatic islets and by genetic markers 
[6].  

Type 2 diabetes (T2D) usually develops in adulthood and is related to obesity, lack of 
physical activity, and unhealthy diets. This is the more common type of diabetes 
(representing 90% of diabetic cases worldwide) and the cause is a combination of resistance 
to insulin action and an inadequate compensatory insulin secretory response. In Type 2 
diabetes, a degree of hyperglycemia sufficient to cause pathologic and functional changes in 
various target tissues, but without clinical symptoms, may be present for a long period of 
time before diabetes is detected. During this asymptomatic period, it is possible to 
demonstrate an abnormality in carbohydrate metabolism by measurement of plasma 
glucose in the fasting state or after a challenge with an oral glucose load. 
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The third category “other spesific types of diabetes” includes diabetes caused by a spesific 
and identified underlying defect, such as genetic syndromes, acquired processes such as 
pancreatitis, diseases such as cystic fibrosis, exposure to certain drugs, viruses, and 
unknown causes. Gestational diabetes is a state of hyperglicemia which develops during 
pregnancy [6].  

Currently, ADA recommends the use of any of the following four criteria for diagnosing 
diabetes: 1) glycated hemoglobin (A1c) value of 6.5% or higher, 2) fasting plasma glucose ≥ 
126 mg.dL-1 (7.0 mmol.L-1), 3) 2-h plasma glucose ≥ 200 mg.dL-1 (11.1 mmol.L-1) during an 
oral glucose tolerance test using 75 g of glucose, and/or 4) classic symptoms of 
hyperglycemia (e.g., polyuria, polydipsia, and unexplained weight loss) or hyperglycemic 
crisis with a random plasma glucose of 200 mg.dL-1 (11.1 mmol.L-1) or higher. In the absence 
of unequivocal hyperglycemia, the first three criteria should be confirmed by repeat testing 
[6]. 

Hyperglycaemia and hyperlipidaemia are key promoters of diabetes dysmetabolism, 
namely, through the formation of reactive oxygen species (ROS) and advanced glycation 
end products (AGEs), which causes cell damage and insulin resistance [7-9]. Moreover, both 
of them stimulate proinflammatory cytokines, thus contributing to β-cell degradation, 
particularly due to apoptosis pathways [10].  

Increased oxidative stress is a widely accepted participant in the development and 
progression of diabetes and its complications [11-13]. Diabetes is usually accompanied by 
increased production of free radicals [14,15] or impaired antioxidant defenses [16]. 
Mechanisms by which increased oxidative stress is involved in the diabetic complications 
are partly known, including activation of transcription factors, advanced glycated end 
products (AGEs) [2], and protein kinase C [17].  

Modern medical care uses a vast array of lifestyle and pharmaceutical interventions aimed 
at preventing and controlling hyperglycemia. In addition to ensuring the adequate delivery 
of glucose to the tissues of the body, treatment of diabetes attempts to decrease the 
likelihood that the tissues of the body are harmed by hyperglycemia. The importance of 
protecting the body from hyperglycemia cannot be overstated; the direct and indirect effects 
on the human vascular tree are the major source of morbidity and mortality in both type 1 
and type 2 diabetes. Generally, the injurious effects of hyperglycemia are separated into 
macrovascular complications (coronary artery disease, peripheral arterial disease, and 
stroke) and microvascular complications (diabetic nephropathy, neuropathy, and 
retinopathy) [11].  

Physical activity (PA) and diet are cornerstones of diabetes therapy [19]. Physical activity is 
a multifaceted behavior of which exercise is just one component. PA is defined as “bodily 
movement produced by the contraction of skeletal muscle that substantially increases 
energy expenditure’’ and exercise is defined as ‘‘a subset of PA done with the intention of 
developing physical fitness (i.e., cardiovascular, strength, and flexibility training).’’ [19]. In 
this chapter, PA and exercise is used interchangeably. 
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In last decades, an impressive body of research has accumulated that demonstrates the 
varied benefits of regular physical activity for people with type 1 or type 2 diabetes [20]. 
Notably, exercise has been shown to improve glycemic control, reduce the need for insulin 
and oral hypoglycemic agents, and improve body weight control. Exercise has been shown 
to promote beneficial effects on insulin resistance, both in humans and in rodent models of 
T2DM [21, 22]. Moreover, exercise has myriad benefits for all people beyond those relating 
to diabetes alone. It can work wonders for the heart, improving the lipid profile, reducing 
risk for heart disease, restoring function after a heart attack, and moderating blood pressure. 
It helps in maintaining bone health regardless of age, it can significantly relieve depression 
and anxiety, and it appears to help maintain cognitive function in old age [23, 24]. A 
correlation between the effects of acute and chronic aerobic exercise upon oxidative stress 
and inflammation and the diabetic dysmetabolism has been previously described [25-27].  

This chapter focuses on recent clinical and experimental studies of diabetes and exercise 
interventions done within the context of lipid peroxidation. 

2. Lipid peroxidation and diabetic complications 

2.1. Overview of lipid peroxidation and diabetic complications 

Excessively high levels of free radicals cause damage to cellular proteins, membrane lipids 
and nucleic acids, and eventually cell death [2]. Various mechanisms have been suggested to 
contribute to the formation of these reactive oxygen-free radicals in diabetic state. Glucose 
oxidation is believed to be the main source of free radicals. In its enediol form, glucose is 
oxidized in a transition-metal dependent reaction to an enediol radical anion that is 
converted into reactive ketoaldehydes and to superoxide anion radicals. The superoxide 
anion radicals undergo dismutation to hydrogen peroxide, which if not degraded by 
catalase or glutathione peroxidase, and in the presence of transition metals, can lead to 
production of extremely reactive hydroxyl radicals [28, 29]. Superoxide anion radicals can 
also react with nitric oxide to form reactive peroxynitrite radicals [30, 31]. Hyperglycemia is 
also found to promote lipid peroxidation of low density lipoprotein (LDL) by a superoxide-
dependent pathway resulting in the generation of free radicals [32, 33]. Another important 
source of free radicals in diabetes is the interaction of glucose with proteins leading to the 
formation of an Amadori product and then advanced glycation endproducts (AGEs) [34, 
35]. These AGEs, via their receptors (RAGEs), inactivate enzymes and alter their structures 
and functions [36], promote free radical formation [37, 38], and quench and block 
antiproliferative effects of nitric oxide [39, 40]. By increasing intracellular oxidative stress, 
AGEs activate the transcription factor NF-κB, thus promoting up-regulation of various NF-
κB controlled target genes [41]. NF-κB enhances production of nitric oxide, which is 
believed to be a mediator of islet beta cell damage. Considerable evidence also implicates 
activation of the sorbitol pathway by glucose as a component in the pathogenesis of diabetic 
complications, for example, in lens cataract formation or peripheral neuropathy [42-44]. 
Efforts to understand cataract formation have provoked various hypotheses. In the aldose 
reductase osmotic hypothesis, accumulation of polyols initiates lenticular osmotic changes. 
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In addition, oxidative stress is linked to decreased glutathione levels and depletion of 
NADPH levels [45, 46]. Alternatively, increased sorbitol dehydrogenase activity is 
associated with altered NAD+ levels, which results in protein modification by nonenzymatic 
glycosylation of lens proteins [47, 48]. Mechanisms linking the changes in diabetic 
neuropathy and induced sorbitol pathway are not well delineated. One possible mechanism, 
metabolic imbalances in the neural tissues, has been implicated in impaired neurotrophism 
[49, 50], neurotransmission changes [51, 52], Schwann cell injury [53, 54], and axonopathy 
[55, 56].  

2.2. Overview of antioxidants 

While on the one hand hyperglycemia engenders free radicals, on the other hand it also 
impairs the endogenous antioxidant defense system in many ways during diabetes [57]. 
Antioxidant defense mechanisms involve both enzymatic and nonenzymatic strategies. 
Common antioxidants include the vitamins A, C, and E, glutathione, and the enzymes 
superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Other 
antioxidants include α-lipoic acid, mixed carotenoids, coenzyme Q10, several bioflavonoids, 
antioxidant minerals (copper, zinc, manganese, and selenium), and the cofactors (folic acid, 
vitamins B1, B2, B6, B12). They work in synergy with each other and against different types 
of free radicals. Vitamin E suppresses the propagation of lipid peroxidation; vitamin C, with 
vitamin E, inhibits hydroperoxide formation; metal complexing agents, such as 
penicillamine, bind transition metals involved in some reactions in lipid peroxidation [58] 
and inhibit Fenton and Haber- Weiss-type reactions; vitamins A and E scavenge free 
radicals [30, 37].  

Several discrepancies observed in the activities of SOD, catalase, and glutathione peroxidase 
in experimentally diabetic animals. Decreased levels of glutathione and elevated 
concentrations of thiobarbituric acid reactants are consistently observed in diabetes [59, 60]. 
In addition, changes in nitric oxide and glycated proteins are also seen in diabetes.  

3. Biomarkers of lipid peroxidation 

Since the initial discoveries of Dilliard and colleagues [61], several commercial assay kits 
have been made available for the measurement of oxidative stress, with many new kits 
emerging each year. Furthermore, the discovery and utilization of F2-isoprostanes, a 
prostaglandin like compound, measured via gas chromotomography mass spectrometry has 
emerged as a substantially more reliable and valid measure of lipid peroxidation [62]. 
Newly developed ELISA kits for both isoprostanes as well as protein carbonyls are also now 
available, proving an opportunity for a more widespread use of these biomarkers. In 
regards to measurement of oxidative stress, due to the high reactivity and relatively short 
half lives (e.g., 10-5, 10-9 seconds for superoxide radical and hydroxyl radical, respectively) of 
reactive oxygen and nitrogen species (RONS), direct measurement is extremely difficult to 
employ. However, direct assessment of free radical production is possible via electron spin 
resonance spectroscopy (ESR) involving spin traps, as well as two other less common 
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techniques such as radiolysis and laser flash photolysis [63]. ESR works by recording the 
energy changes that occur as unpaired electrons align in response to a magnetic field [64]. 
Due to the high cost of such equipment and the high degree of labor associated with each 
direct method, the majority of free radial research related to exercise has utilized indirect 
methods for the assessment of resultant oxidative stress. Indirect assessment of oxidative 
stress involves the measurement of the more stable molecular products formed via the 
reaction of RONS with certain biomolecules. Common molecular products include stable 
metabolites (e.g., nitrate/nitrite), and/or concentrations of oxidation target products, 
including lipid peroxidation end products [isoprostanes, malondialdehyde (MDA), 
thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), conjugated 
dienes (CD), oxidized low density lipoprotein (oxLDL)], oxidized proteins [protein 
carbonyls (PC), individual oxidized amino acids, nitrotyrosine (NT), and nucleic acids [8-
hydroxy-2-deoxyguanosine (8-OHdG), oxidized DNA bases (via the Comet Assay), strand 
breaks] [65]. Additionally, oxidative stress can be measured by observing alterations in the 
body's antioxidant defense system. This is typically done by measuring the redox changes in 
the major endogenous antioxidant glutathione, as well as circulating levels of vitamin E, and 
vitamin C. Moreover, the activity of certain antioxidant enzymes [e.g., superoxide dismutase 
(SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR)] can be 
assessed as indicators of the oxidative stress imposed on the tissue. Numerous antioxidant 
capacity assays also exist and include: Trolox Equivalent Antioxidant Capacity (TEAC), 
Total Antioxidant Status (TAS), Ferric Reducing Ability of Plasma (FRAP), Total 
RadicalTrapping Antioxidant Parameter (TRAP), and Oxygen Radical Absorbance Capacity 
(ORAC) [66].  

4. Exercise and lipid peroxidation 

4.1. Lipid peroxidation and antioxidant status in acute exercise research 

Numerous studies have reported an increase in several lipid peroxidation markers 
following both maximal [67-69] and submaximal [70, 71] exercise. In opposition to these 
findings, a few studies have reported no increase in lipid peroxidation despite the use of 
similar maximal [72-74] and submaximal [75, 76] protocols. Increased lipid peroxidation 
seems to be a result of increased mitochondrial oxidative enyzme activation during aerobic 
exercise. However, studies reporting conflictiong findings for lipid peroxidation may be 
partially related to the timing of sampling, in addition to the trained status of the subjects or 
an insufficient intensity of exercise. 

In response to conditions of strenuous physical work the body's antioxidant capacity may be 
temporarily decreased as its components are used to quench the harmful radicals produced. 
It appears that the antioxidant capacity may be temporarily reduced during and 
immediately post exercise [77, 78], after which time levels typically increase above basal 
conditions during the recovery period [79, 80]. However, conflicting findings have been 
reported for each of the four main enzymes, with investigators noting increases in GPx [81, 
82], SOD [82, 83], and CAT [70, 84, 85], as well as decreases in GPx [86], GR [81], SOD [78]. 
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Furthermore, no change has also been reported for GPx [69], GR [87], SOD (Tauler et al., 
2006), CAT [87] activity following exercise. Clearly, these results are mixed and likely 
depend on the time of sampling, as well as the duration and intensity of exercise, which has 
varied considerably across studies.  

During low-intensity and duration protocols, antioxidant defenses appear sufficient to meet 
the RONS production, but as intensity and/or duration of exercise increases, these defenses 
are no longer adequate, potentially resulting in oxidative damage to surrounding tissues 
[67]. Other factors appear to impact the degree of antioxidant defenses present, including 
age, training status [81, 88], and dietary intake [80].  

It has been shown that anaerobic exercise results in increased RONS production [89]. The 
mechanisms responsible for the exercise-induced increases in RONS have been suggested to 
be largely a function of radical generating enzymes (activated in response to ischemia 
followed by reperfusion) and/or phagocytic immune response following muscle damaging 
exercise. In the literature, there are fewer data on the markers of lipid peroxidation after 
anaerobic exercise. It currently remains to be elucidate whether increased RONS formation 
observed during anaerobic exercise represents a necessary or harmful event. 

4.2. Lipid peroxidation and antioxidant status after exercise training 

Regular physical exercise exerts numereous adaptive responses in several tissues. In the 
context of lipid peroxidation, repeated exposure of RONS production appears to induced to 
maintain the optimal health. Literature data demonstrated that regular moderate exercise is 
strengthening the endogenous antioxidant defense system [90, 91,92], and in some animal 
studies, it has decreased lipid peroxidation. On the other hand, exercise training – both 
endurance and interval type - appears to protects against exercise induced oxidative stress 
[93, 94, 95].  

5. Exercise and diabetes 

The therapeutic use of physical exercise for diabetes treatment has been promoted since 600 
B.C. before the discovery of insulin in 1922. Some investigators highlighted the interaction 
between this hormone and regular physical activity, with possible beneficial results in 
diabetes treatment [96]. Recent guidelines provide exercise recommendations for people 
with diabetes based on the strong and convincing epidemiologic association of aerobic 
exercise with lower cardiovascular disease risk in people with diabetes. The recent 2010 
ADA/American College of Sports Medicine (ACSM) exercise guidelines recommend 150 
minutes of weekly aerobic exercise (i.e. brisk walking or an equivalent activity with intensity 
≥ 40% VO2max); and resistance exercise of major muscle groups two to three times weekly 
on non-consecutive days (ACSM evidence category B, ADA B level recommendation). The 
ADA/ACSM guidelines also suggest adding unstructured physical activity as much as 
possible. Before undertaking exercise more intense than brisk walking, sedentary people 
with T2D should be evaluated by a physician and an exercise trainer [19].  
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Exercise has been shown to promote beneficial effects on insulin resistance, both in humans 
and in rodent models of diabetes [97, 98]. Regular physical exercise may prevent diabetes 
complications through beneficial effects on glycemic control, insulin sensitivity, blood 
pressure, lipid profile, and endothelial function. Moderate exercise training has been 
demonstrated to decrease the plasma glucose concentration in STZ-induced diabetic rats 
[99]. Hypoglycemic effect of exercise can be explained by exercise induced increase in 
uptake of glucose of muscle which induces increase of GLUT 4 expression and translocation 
from intracellular pool [100, 101]. Increase in glucose uptake seems to be related to the 
increased number of GLUT-4 glucose transporters, although the type of training, strain, age 
and sex of the animals seem to affect significantly the expression of GLUT-4 [100]. On the 
other hand, Etgen et al. [101] found that exercise training of normal rats results in an 
elevated maximal insulin-stimulated hindlimb glucose uptake. They suggested that this 
increase was only partially explained by an increase in total muscle GLUT-4 protein content. 
A recent study showed that physical training improves in vivo mitochondrial function 
concomitantly with increased insulin sensitivity in type 2 diabetes patients and control 
participants [102].  

6. Exercise and chronical complications of diabetes 

6.1. Exercise and cardiovascular disease (CVD) 

Regular exercise has beneficial effects on glucose control and cardiovascular disease (CVD) 
risk factors. Exercise improves and maintains cardiorespiratory fitness, muscular strength, 
endurance, and body composition [103]. Exercise has a favorable effect on cardiovascular 
risk factors. In particular, it has specific beneficial effects on the reduction of hypertension, 
hyperlipidemia, and obesity and the improvement in blood lipid profile [104] even when 
combined with a rigorous calorie-restricted diet in obese patients with T2DM [105].  

The effects of exercise training on abnormal vascular structure and function (including 
endothelial dysfunction and vascular distensibility) associated with diabetes are yet to be 
fully understood [106].  

Oxidative stress has been suggested to play a role in either the primary or secondary 
etiology of both congestive heart failure (CHF) and coronary arter disease (CAD) [107, 108] 
evident by increased oxidative stress biomarkers and/or decreased antioxidant defenses at 
rest in diseased compared to healthy controls [109]. Increased TBARS [110, 111] and GSSG 
[110] have been reported following submaximal aerobic exercise in type 1 diabetic subjects. 
In regards to maximal exercise, direct production of RONS via electron spin resonance 
spectroscopy has been reported following a graded exercise testing. However, it is 
important to note that significance was only achieved when data for both type 1 diabetic 
and healthy control subjects were pooled [112]. Despite the observation of increased levels 
of exercise-induced oxidative stress biomarkers in studies involving type 1 diabetics, when 
compared to healthy individuals, the relative magnitude of increase does not differ; rather 
the group differences at rest are merely maintained during the post exercise period. Other 
investigators have reported no changes in MDA [112], total glutathione (TGSH), antioxidant 
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enzyme activity or circulating antioxidants [111] in response to acute exercise in type 1 
diabetics . 

6.2. Diabetic nephropathy 

Diabetic nephropathy is the most feared complication of diabetes, due to its substantial co-
morbidity (need for dialysis, blindness, amputations, etc.), cost, and mortality (the annual 
mortality rate of diabetic patients with kidney failure on dialysis is about 25%) [113, 114]. 
The major determinants of kidney disease and its progression to end-stage kidney failure in 
diabetes are uncontrolled blood glucose, blood pressure and albuminuria [115, 116].  

Diabetic nephropathy is an important complication of diabetes since it can lead to end-stage 
renal failure and also it is a risk factor of cardiovascular disease. The clinical problems 
caused by diabetic nephropathy are proteinuria and decreased renal function. Diabetic 
nephropathy is defined by proteinuria > 500 mg in 24 hours in the setting of diabetes, but 
this is preceded by lower degrees of proteinuria, or “microalbuminuria.”. Microalbuminuria 
is defined as albumin excretion of 30–299 mg/24 hours [11]. Without intervention, diabetic 
patients with microalbuminuria typically progress to proteinuria and overt diabetic 
nephropathy. 

In vitro studies indicate that hyperglycemia directly enhances oxidative stress in cultured 
endothelial and mesangial cells, which are targets for injury in diabetes [38, 117]. Several 
different antioxidants, including vitamin E (VE), vitamin C (VC), taurine, and α-lipoic acid 
(LA), have been reported to ameliorate renal injury in experimental diabetes [118-120]. In 
human diabetes, there is evidence that short-term (3 to 4 mo), high-dose (1600 to 1800 IU/d) 
VE supplementation reduces proteinuria in type 1 and 2 patients with overt nephropathy 
and decreases hyperfiltration in type 1 patients without overt nephropathy [121].  

Urinary albumin excretion occurs normally after exercise [122, 123]. Post-exercise urinary 
albumin excretion is explained by increased glomerular capillary membrane permeability as 
a result of increased filtration pressure with increased filtered protein load, and decreased 
tubular absorption [122, 123]. In normal subjects, proteinuria is better related to exercise 
intensity and lactate production than to exercise duration [124], it diminishes after 1 h [125] 
and returns to baseline within 24 h [122]. In diabetes mellitus, the kidneys are more sensitive 
to the haemodynamic exercise stress [122]. Under exercise, patients with Type 1 diabetes 
show a partial depletion of negative charges on the glomerular capillary wall [126] that 
permits the increase of urinary albumin excretion [127]. Reports indicate that urinary 
albumin excretion increases after exercise, without correlation with glycaemic control, renal 
function, disease evolution or resting urinary albumin excretion [128, 129]. In contrast, post-
exercise albuminuria has been found to be associated with HbA1c [127, 129].  

On the other hand, recent data demonstrated that exercise might protect the diabetic renal 
function [130]. Kutlu et al. demonstrated that moderate exercise with combined vitamin E 
and C supplement was strengthen the antioxidant defense system and reduced the lipid 
peroxidation in STZ-induced diabetic rat kidney [131]. 
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6.3. Diabetic retinopathy 

Diabetic retinopathy may be the most common microvascular complication of diabetes. The 
risk of developing diabetic retinopathy or other microvascular complications of diabetes 
depends on both the duration and the severity of hyperglycemia. Development of diabetic 
retinopathy in patients with type 2 diabetes was found to be related to both severity of 
hyperglycemia and presence of hypertension in the U.K Prospective Diabetes Study 
(UKPDS) [132] and most patients with type 1 diabetes develop evidence of retinopathy 
within 20 years of diagnosis [133]. Retinopathy may begin to develop as early as 7 years 
before the diagnosis of diabetes in patients with type 2 diabetes [134]. There are several 
proposed pathological mechanisms by which diabetes may lead to development of 
retinopathy. 

Oxidative stress may also play an important role in cellular injury from hyperglycemia. 
High glucose levels can stimulate free radical production and reactive oxygen species 
formation. Animal studies have suggested that treatment with antioxidants, such as vitamin 
E, may attenuate some vascular dysfunction associated with diabetes, but treatment with 
antioxidants has not yet been shown to alter the development or progression of retinopathy 
or other microvascular complications of diabetes [11].  

6.4. Diabetic neuropathy 

Diabetic polyneuropathy affects 30% of the hospital-based population and 20% of 
community based samples of diabetic patients [135]. There is a growing body of evidence to 
support the notion that oxidative stress is the biochemical trigger for nerve dysfunction. 
Various disturbances such as reduced endoneurial blood flow, altered electroconductive 
properties of the myelin sheath, impaired incorporation of acetate and glucose into the 
neuron cells should also be mentioned in diabetic condition. It has been shown [136] that 
superoxide dismutase activity is decreased in nerves from streptozotocin-induced diabetic 
rats. Glutathione content and glutathione peroxidase activity are also diminished in sciatic 
nerves from diabetic rats [137, 138]. Nerves of diabetic rats show lower amounts of vitamin 
E compared to control animals [139]. Lipid peroxidation products such as 
malondialdehydes or conjugated dienes are elevated in diabetic sciatic nerves [136, 139]. 
Treatment of diabetic rats with insulin or antioxidants is associated with improved nerve 
function [51, 140].  

Sensory, visual and auditory neural conduction deficits are well documented both in 
diabetic animals and human studies. As an early marker of visual system deficits observed 
in diabetic state, visual evoked potential (VEP) latencies were measured in STZ-induced 
diabetic rats in our laboratories. The results of the previous studies were demonstrated that 
visual evoked potential (VEP) latencies were prolonged in STZ-induced diabetic rats 
whereas the latencies were restored by moderate physical exercise [60, 141, 142]. The VEP 
alterations were found to be accompanied with the increased TBARS concentration in the 
brain tissues of the diabetic rats.  
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The impact of diabetes on nervous system is complex and poorly elucidated. The brain is 
particularly vulnerable to oxidative damage because of its high rate of oxygen consumption, 
intense production of reactive radicals, and high levels of transition metals, such as iron, 
that catalyze the production of reactive radicals [143]. Moreover, neuronal membranes are 
rich in poly unsaturated fatty acids, which are a source of lipid peroxidation [37]. Free 
radicals are formed disproportionately in diabetes by glucose oxidation, non-enzymatic 
glycation of proteins, and the subsequent oxidative degradation of glycated proteins. 
Abnormally high levels of free radicals and the simultaneous decline of antioxidant defense 
mechanisms can lead to damage of cellular organelles and enzymes, increased lipid 
peroxidation, and development of insulin resistance. These consequences of oxidative stress 
can promote the development of complications of diabetes mellitus [143].  

Previous experimental studies demonstrated that diabetes resulted increased lipid 
peroxidation and decreased antioxidant enzymes in several brain regions such as 
hypocampus, striatum and cerebral cortex as well as in whole brain tissue homogenates 
[59]. The lipids oxidation in the CNS usually demonstrates different concentrations at 
different regions of the brain, and it can be attributed to regional differences in the O2 
consumption [144, 145].  

Nervous system complications of diabetes mellitus can become one of the most debilitating 
complications and affect sensitive and cognitive functions that modulates memory function, 
resulting in significant functional impairment and dementia. Oxidative stress forms the 
foundation for the induction of multiple cellular pathways that can ultimately lead to both 
the onset and subsequent complications of DM [146]. Defects in hippocampal synaptic 
plasticity and transmission resulting in impairment of learning and memory is one the 
central nervous system complications of diabetes mellitus [147, 148]. Increasing evidence in 
both experimental and clinical studies suggests that oxidative stress plays a central role in 
the onset and subsequent complications of diabetes mellitus [149].  

Physical exercise has been demonstrated to induce several neurobiological changes in the 
brain and to prevent diabetes-induced cognitive decline. The neurobiological changes 
induced by physical exercise have been demonstrated to facilitate the acquisition of a spatial 
memory task in rats. Exercise has also been demonstrated to increase the cognitive function 
both in healthy and diabetic people [150, 151, 152]. However, intense exercise has been 
shown to impaired the cognitive function in murine model that was prevented by vitamin C 
and E supplementation [153].  

7. Conclusion 

Literature results emphasize the beneficial role of physical exercise in the promotion of in 
diabetic complications probably by decreasing hyperglicemia, increasing insulin sensitivity 
and enhancing antioxidant status of the several systems. The type, duration and the 
intensity of the exercise as well as the degree of the diabetic complications should be 
determined before the exercise prescription in diabetic person. For future research, the 
effects of the different exercise protocols for maintaining the optimum health and 
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stimulating the cellular processes for decreasing the hyperglicemia-induced complications 
in diabetes in children and older people remains to be explored.  
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