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1. Introduction 

Inflammation, free radical damage and oxidative stress have become major health issues in 

recent years and the subject of plenty of research. These processes are implicated in cancer 

[1], cardiovascular diseases [2], multiple sclerosis [3], diabetes mellitus [4], Alzheimer’s and 

Parkinson’s diseases [5], rheumatoid arthritis [6], premature aging [7] and almost any other 

degenerative condition. Reactive oxygen species (ROS), which are involved in these 

physiological functional changes, are often either by-products of the normal cellular 

processes or are formed by action of exogenous factors - xenobiotics, ionizing radiation, 

stress, pathogens etc. Overproduction of ROS leads to oxidative stress, with biomolecules, 

including lipids, proteins and nucleic acids undergoing oxidative alterations. 

1.1. Lipid peroxidation 

Lipid peroxidation (LP) – oxidative degradation of polyunsaturated fatty acids caused by 

ROS – is responsible for degradation of membrane lipids resulting in cell damage and 

formation of many toxic products. LP is a free radical chain reaction where three major steps 

- the initiation, propagation and termination – can be recognised (Figure 1.). 

In initiation phase, highly reactive hydroxyl radical, formed in Fenton reaction, abstracts 

hydrogen atom in α position relative to the polyunsaturated fatty acid double bond. This 

results in the formation of fatty acid radical, highly unstable, short-lived intermediate that 

stabilises by abstracting hydrogen from another chemical species, or reacts with triplet 

oxygen to generate different radical species, including fatty acid peroxyl radical. In the 

termination step peroxyl radicals transform into nonradical compounds – hydrocarbons, 

aldehydes, alcohols, volatile ketones and lipid polymers, some of which are harmful (Figure 

1.) [8, 9]. 
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Figure 1. Steps in lipid peroxidation process 

Organism uses a number of endogenous antioxidants, such as glutathione, α-lipoic acid, 

coenzyme Q10, bilirubin and antioxidant enzymes (glutathione peroxidase, catalase, 

superoxide dismutase), to protect itself from oxidative stress. When they are insufficient, it 

becomes necessary to introduce exogenous antioxidants. Most of these compounds are 

primarily taken into the body by food and are predominantly of herbal origin (phenolics, 

carotenoids, terpenoids and vitamins – ascorbic acid and tocopherol). Herbal antioxidants 

exhibit their activity through a wide variety of mechanisms, such as inhibition of oxidising 

enzymes, chelation of transition metals, transfer of hydrogen or single electron to radicals, 

singlet oxygen deactivation, or enzymatic detoxification of ROS [8]. They can stop LP 

process in either initiation or propagation step. Herbal antioxidants have become subjects of 

growing interest and targets of numerous scientific research. However, enormous number 

of plant species is still waiting to be investigated in this manner and explored as potential 

medical drugs or dietary supplements. 

1.2. Eicosanoid pathway 

In addition to direct detrimental effects on biomolecules and cellular structures, lipid 

peroxidation is also involved in biosynthesis of eicosanoids – arachidonic acid metabolites 

serving as inflammatory mediators. Arachidonic acid, released from phospholipids by 

action of phospholipase A, can be converted into these products by three different 

pathways: cyclooxygenase, leading to the formation of prostanoids (prostaglandins and 

thromboxanes), lipoxygenase, where leukotrienes and certain mono-, di- and trihydroxy 
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acids are synthesised, and epoxygenase pathway, which includes cytochrome P-450 and 

gives epoxides as final products [10]. 

Cyclooxygenase (COX), key enzyme in cyclooxygenase pathway (Figure 2.), exists in three 

forms, COX-1, COX-2, and recently discovered COX-3. Despite the differences in structure, 

localisation and regulation, reactions catalysed by COX isoforms follow the same 

mechanism. All of them transform arachidonic acid into prostanoids: prostaglandins (PGH2, 

PGE2, PGF2α), thromboxanes (TXA2, TXB2), and 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic 

acid (12(S)-HHT) as a co-product. 

 

 

Figure 2. COX and 12-LOX branches of eicosanoid pathway 

COX-catalysed transformation of arachidonic acid starts with tyrosyl radical generation 

through Tyr385 oxidation by heme in COX active site. Formed tyrosyl radical abstracts 

hydrogen from C-13 of arachidonic acid. In subsequent steps, free electron migration, 

reaction with oxygen yielding peroxyl radical, and cyclisation reactions give PGG2 which is 

converted to PGH2 through the action of peroxidase (Px) (Figure 3.) [11]. 

COX-1 is expressed constitutively in different tissues, blood monocytes and platelets, and is 

involved in normal cellular homeostasis. In contrast, COX-2 may be induced by a series of 

pro-inflammatory stimuli and its role in the progress of inflammation, fever and pain has 

been known [12]. Furthermore, COX-2 has been targeted in many cancers including: colon 

cancer, colorectal cancer, breast cancer, gliomas, prostate cancer, esophageal carcinoma, 

pancreatic cancer, lung carcinoma, gastric carcinoma, ovarian cancer, Kaposi’s sarcoma and 

melanoma [13]. 

In lipoxygenase branch of arachidonic acid metabolism, there are three types of 

lipoxygenases, termed 5-, 12- and 15-lipoxygenase. In 12-lipooxigenase (12-LOX) pathway, 

the first reaction is abstraction of hydrogen from C-10 of arachidonic acid, which includes 

reduction of Fe3+ to Fe2+ in enzyme active site. This results in the formation of arachidonic 

acid radical, which than reacts with oxygen and generates 12-hydroperoxyeicosatetraenoic 

acid (12-HPETE). Finally, formation of 12(S)-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid 

(12-HETE) is catalysed by glutathione peroxidase (GPx), whereby glutathione (GSH) is 

oxidised to GS-SG (Figure 3.) [14, 15]. 
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Figure 3. Mechanism of COX and 12-LOX-catalysed arachidonic acid transformation. 
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12-HETE is implicated in regulation of platelet aggregation, angiogenesis, as well as the 

progression of several human diseases like various cancers, rheumatoid arthritis and 

psoriasis [13, 16, 17]. Also, 12-HETE is known to take part in the metastatic cascade as a 

crucial intracellular signalling molecule which activates protein kinase C and mediates the 

biological functions of growth factors and cytokines. 

Nowadays, there is a great need for a new anti-inflammatory compounds with minimal side 

effects. Natural products, especially phenolics frequently consumed in a diet of plant origin, 

are known to have great anti-inflammatory potential considering inhibition of COX and 

LOX enzymes [18, 19]. Thus, screening of plants for COX/LOX inhibitory activity, followed 

by effect-guided fractionation, can be a useful tool for discovering new secondary 

biomolecules with anti-inflammatory potential. Although plant species widely used in 

traditional medicine may be a good starting point, there is also a vast number of currently 

unexplored species of unknown composition and activity. Therefore, this study included the 

poorly investigated plant species classified into four families – Alliaceae, Cupressaceae, 

Plantaginaceae and Polygonaceae – wild growing in Serbia, that are part of our continuing 

research [20-29]. Most of these species are used in diet or used in folk medicine for healing 

various disorders.  

Considering the fact that lipid peroxidation is involved in an inflammation process, the aim 

of this study was to compare antioxidant activity (more specifically, the ability to inhibit 

lipid peroxidation) of the selected plant extracts with their ability to inhibit production of 

particular arachidonic acid metabolites and to correlate these activities with the phenolic 

and flavonoid content. 

2. Methods 

2.1. Plant material and extract preparation 

Plant material used in this study was collected from different locations in Serbia during the 

period between 2008–2010, during a flowering phase or as ripe specimens. Species belonging 

to four families: Alliaceae (genus Allium – A. flavum L., A. carinatum L., A. melanantherum 

Panč., A. pallens L., A. rhodopeum Velen., A. paniculatum L.), Cupressaceae (genus Juniperus L. – 

J. communis L., J. sibirica Burgsdorf., J. foetidissima Willd.), Plantaginaceae (genus Plantago L. – P. 

major L., P. maritima L., P. media L., P. lanceolata L., P. altisima L.) and Polygonaceae (genus 

Rumex L. – R. patientia L., R. crispus L., R. obtusifolius L.) were investigated. The voucher 

specimens were deposited in the Herbarium of the Department of Biology and Ecology (BUNS 

Herbarium), University of Novi Sad Faculty of Sciences.  

Air-dried and grounded plant material (30 g) (whole plants of Allium sp., needles and cones 

of Juniperus sp., aerial parts of Plantago sp. and herbs and rhizomes of Rumex sp.) was 

extracted by maceration with 80% aqueous methanol (8 mL per 1 g of drug) during 72 h at 

room temperature. After filtration, the solvent was evaporated to dryness under reduced 

pressure. All raw extracts except those of Allium sp. and of Rumex sp. rhizomes were 

resuspended in hot distilled water (to a final concentration of approx. 1 g/mL), washed 
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exhaustively with petroleum ether (fraction 40–60 °C) to remove nonpolar pigments, and 

evaporated to dryness under vacuum.  

Dried extracts were dissolved in 80% aqueous methanol and DMSO for evaluation of the 

antioxidant and anti-inflammatory activity, respectively, to obtain 300 mg/mL stock 

solutions. 

2.2. Determination of total phenolic content 

Total phenolic content was determined according to method of Singleton et al. [30], 

modified for 96-well microplates. Gallic acid was used as a standard for calibration curve 

construction. Thirty microliters of each extract or standard solution was added to 150 μL of 

0.1 mol/L Folin-Ciocalteu reagent and after 10 min mixed with 120 μL of sodium carbonate 

(7.5%). The same mixture, with solvent instead of extract, was used as a blank. Absorbance 

at 760 nm was read after 2 h. The phenolics concentration was determined by using the 

calibration curve of gallic acid. The total phenolics value was expressed as milligrams of 

gallic acid equivalents per gram of dry weight (dw).  

2.3. Determination of total flavonoid content 

The aluminium chloride spectrophotometric method described by Chang et al. [31] and 

modified for 96-well microplates, was used for determination of of the total flavonoid 

content. Quercetin was used as a standard to prepare a calibration curve. The reaction 

mixture was comprised of 30 μL of the extract or standard solution, 90 μL of methanol, 6 μL 

of 10% aluminium chloride (substituted with distilled water in blank probe), 6 μL of 1 mol/L 

potassium acetate and 170 μL of distilled water. Absorbance at 415 nm was measured after 

30 min. Flavonoid content was calculated according to the standard calibration curve and 

are expressed in milligrams of quercetin equivalents per gram of dw. 

2.4. Lipid peroxidation 

There are several methods for measuring the ability of plant extracts to inhibit lipid 

peroxidation [8]. Some of the methods are based on monitoring of malondialdehyde (MDA), 

a degradation product of polyunsaturated fatty acids peroxidation. Possible ways for 

quantification of MDA are GC-FID after derivatisation, HPLC with DAD or fluorimetric 

detector and spectrophotometric method. The latter is based on the reaction of MDA with 

thiobarbituric acid (TBA) and it is commonly used both in in vitro and in vivo studies. 

Formation of the red-coloured MDA-TBA adduct is measured at 532 nm. Different 

substrates can be used in this test: lecithin liposomes, free fatty acids, LDL and body fluids 

[8, 32]. Also, a few different initiators of LP, such as ionizing radiation, chemical agents – 

metal ions, free radicals and metalloproteins may be used [8]. 

In this study, we used spectrophotometric TBA assay [28, 33] for evaluation the ability of 

extracts to inhibit LP. Linseed oil, used as a source of polyunsaturated fatty acids (69.7 % 

linolenic, 13.5 % linoleic acid, as determined by GC-MS), was obtained from linseed by 
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Soxhlet extraction. Oil was added to 0.067 mol/L phosphate buffer, pH 7.4, in the presence of 

0.25% Tween-80 to obtain a 0.035% suspension and sonicated for 1 hour. This suspension 

(3.0 mL) was mixed with 20 μL of FeSO4 (4.58 mmol/L), 20 μL of ascorbic acid (87 μmol/L), 

and 20 μL of extract (or solvent in control); 3.0 mL of phosphate buffer and 20 μL of extract 

were added in the blank probe. After incubation at 37 °C for 1 hour, 0.2 mL 3.72% EDTA 

was added to all samples followed by 2 mL of an aqueous mixture containing TBA (3.75 

mg/mL), HClO4 (1.3%), and trichloroacetic acid (0.15 g/mL). Reaction mixtures were heated 

at 100 °C for 15 min, cooled, centrifuged at 1600 g for 15 min, and absorbance was measured 

at 532 nm. All samples and control were made in triplicate. IC50 values were determined 

from inhibition vs. concentration plots.  

2.5. Anti-inflammatory activity 

There are a great number of different in vitro methods used for estimation of inhibitory 

activity of COX and LOX enzymes including a number of commercial kits. Some assays, as a 

source of enzymatic activity, include native or recombinant enzymes, animals or human 

origin, while others use different cell lines that express desirable activities. Arachidonic acid 

is often added in reaction medium and in some cases is radio labelled. Induction of 

inflammatory respond also differs, and in most cases is performed by bacterial 

lipopolysaccharide, various cytokines and tumour necrosis factor. Different techniques are 

used for detection of enzymatic activity, such as different chromatographic techniques (TLC, 

HPLC-UV), as well as EIA [19, 34]. 

In this study, COX-1 and 12-LOX inhibitory activity was investigated using ex vivo assay 

according to modified method of Safayhi et al. [29, 35]. Intact cells (human platelets) were 

used as a source of COX-1 and 12-LOX enzymes. Arachidonic acid metabolites (12-HHT and 

12-HETE) were determined by use of LC–MS/MS technique [29]. 

An aliquot of human platelet concentrate (viable but outdated for medical use) containing 

4·108 cells was suspended in buffer (0.137 mol/L NaCl, 2.7 mmol/L KCl, 2.0 mmol/L KH2PO4, 

5.0 mmol/L Na2HPO4 and 5.0 mmol/L glucose, pH 7.2) to obtain final volume of 2 mL. This 

mixture was slowly stirred at 37 °C for 5 min. Subsequently, 0.1 mL of extracts or standard 

compounds solutions in DMSO (concentration ranging from 10.0 to 200.0, 0.156 to 5.0 and 

0.01 to 0.6 mg/ml for extracts, quercetin and aspirin, respectively) and 0.1 mL of calcimycin 

(Calcium Ionophore A23187, 125 μmol/L in DMSO) were added and incubated for 2 min at 

37 °C, with moderate shaking. The exact volume of extract in control and calcimycin in 

blank probe were substituted with solvent (DMSO). Thereafter, 0.3 mL of CaCl2 aqueous 

solution (16.7 mmol/L), substituted with water in blank probe, was added and the mixture 

was incubated for further 5 min at 37 °C with shaking. Acidification with cold 1% aqueous 

formic acid (5.8 mL) to pH 3 terminated the reaction. If gel formation occurred, vortexing 

was applied before mixing with the acid. Prostaglandin B2 (50 μL of 6 μg/mL solution in 

DMSO) was added as internal standard, and extraction of products was done with mixture 

of chloroform and methanol (1:1, 8.0 mL) with vigorous vortexing for 15 min. After 

centrifugation at 7012 × g for 15 min at 4 °C, organic layer was separated, evaporated to 
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dryness, dissolved in methanol (0.5 mL), filtered and used for further LC–MS/MS analysis. 

All samples and control were made in triplicate. 

Test for estimation of the anti-inflammatory activity, applied in our research, has a lot of 

advantages. Firstly, the advantage is avoidance of the undesirable in vivo tests on experimental 

animals. Even though the exact anti-inflammatory activity can be validated only through in vivo 

tests, creating in vitro assays, in which physiological conditions similar to in vivo assays are used, 

can provide valuable information about inhibitory potential of the compounds tested. Platelets 

are a suitable cell system for testing inhibitory activity, because they can provide physiological 

cell conditions and possibility to examine the inhibition of both enzymes at the same time. 

Secondly, for determination of the formed metabolites as a measure of level of inhibition of 

COX and LOX activity, LC-MS/MS technique was used. LC-MS/MS provided a highly sensitive 

and specific detection of desirable metabolites within a short analysis time [29]. 

2.6. Statistical analysis 

Percent of lipid peroxidation inhibition achieved by different concentration of extracts was 

calculated by the following equation: I(%) = (A0−A)/A0 × 100, where A0 was the absorbance of 

the control reaction and A was the absorbance of the examined samples, corrected for the 

value of blank probe. Percent of COX-1 and 12-LOX inhibition achieved by different 

concentrations of extracts was calculated by the following equation: I(%) = 100 × (R0−R)/R0, 

where R0 and R were response ratios (metabolite peak area divided by internal standard 

peak area) in the control reaction and in the examined samples, respectively. Both R and R0 

were corrected for the value of blank probe. For both assays, corresponding inhibition-

concentration curves were drawn using Origin software, version 8.0 (Origin Labs) and IC50 

values (concentration of extract that inhibited lipid peroxidation and COX-1 and 12-LOX 

metabolites formation by 50%) were determined. All of the results were expressed as mean ± 

SD of three replicates. Correlation analyses were done using Statistica software version 6 

(StatSoft). Concentrations of total phenolics and the total flavonoids were used as 

independent variables, while inhibitory activities towards LP and 12-HETE synthesis 

(expressed as 1/IC50) were used as dependent variables. Due to a wide range of values, log-

log plots were applied. Pearson’s correlation coefficients were calculated. 

3. Results 

In this study, we tested the effect of 17 taxa from four families (Alliaceae, Cupressaceae, 

Plantaginaceae and Polygonaceae) on lipid peroxidation and metabolism of arachidonic acid. 

The total phenolic and flavonoid contents were determined in the plant extracts, as well. All 

results are presented in Figures 4, 5, 6 and 9. 

Among all tested samples, herb and rhizome extracts of Rumex species were the most potent 

inhibitors of LP (0.009-0.047 mg/mL). Slightly lower activity was shown by herb extracts of 

Plantago species (0.025-0.178 mg/mL), while extracts of cones and needles of Juniperus 

species, as well as the whole plant extracts of Allium species expressed a much lower activity 

(0.117-0.887 and 0.68-1.986 mg/mL, respectively).  
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Legend: H – herb, Rh – rhizome, C – cones, N – needles, W – whole plant, n.a. - not achieved. 

Figure 4. Results of lipid peroxidation inhibition assay.  

 
Legend: H – herb, Rh – rhizome, C – cones, N – needles, W – whole plant. 

Figure 5. Results of total phenolic content assay (expressed as mg eq. gallic acid / 1 g dw).  

Total phenolic content in examined genera decreased in following order: Rumex, Juniperus, 

Plantago and Allium, with R. patentia and R. crispus extracts being by far the richest in 

phenolics (550 and 527 mg eq. gallic acid per 1 g dw, respectively). Regarding the content of 

the total flavonoids, significant intrageneric variations were observed, hence it was not 
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possible to point out a genus with the highest content. Flavonoids were the most abundant 

in J. foetidissima needles extract (60 mg quercetin eq per 1 g dw), and scarcest in A. rhodopeum 

(0.2 mg quercetin eq per 1 g dw). 

 

Legend: H – herb, Rh – rhizome, C – cones, N – needles, W – whole plant. 

Figure 6. Results of total flavonoid content assay (expressed as mg eq. quercetin / 1 g dw).  

Plant phenolics present in extracts can counteract lipid peroxidation in either initiation or 

propagation step. Possible mechanisms are chelation of transition metals (Fe2+), reduction of 

Fe3+ and neutralisation of lipid peroxidation radical intermediates by transfer of hydrogen or 

single electron [8]. An attempt was made to correlate the observed lipid peroxidation 

inhibitory activity (given as 1/IC50) with the content of the total phenolics and total 

flavonoids. The corresponding plots are given in Figure 7. and Figure 8.  

A high degree of correlation was observed between the lipid peroxidation inhibitory activity and 

the total phenolic content (r = 0.7713), while correlation with the total flavonoids content was not 

established (r = 0.1410). Thus, flavonoids do not contribute to the total observed activity to a 

significant extent. The lower activity of flavonoids, compared to other phenolics, can be 

explained through Porter’s polar paradox. Namely, flavonoids present in the extracts 

investigated were predominantly in glycosylated form and thus highly polar. It is demonstrated 

that compounds of lower polarity are more effective in polar reaction media, such as oil-in-water 

emulsion used in our experiments, since they exhibit their activity at oil-water interface [36]. In 

addition, hydrogen atom donation ability of flavonoids decrease with glycosylation, especially if 

the most active hydroxyl groups (C-3, C-3’ or C-4’) are occupied by carbohydrate moiety [37, 38]. 

Regarding the eicosanoid pathway, Rumex and Plantago species showed, on average, very 

high 12-LOX inhibitory effect, with IC50 in range 0.75–3.59 mg/mL (Figure 9.). While 
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Juniperus and Allium also exhibited dose-dependent inhibition of 12-HETE production, their 

IC50 values were higher, ranging from 1.45 mg/mL to 11.04 mg/mL.  

 

Figure 7. Correlation between total phenolic content and ability of extracts to inhibit lipid peroxidation 

 

Figure 8. Correlation between total flavonoids content and ability of extracts to inhibit lipid 

peroxidation 
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Legend: H – herb, Rh – rhizome, C – cones, N – needles, W – whole plant. 

Figure 9. Results of 12-LOX inhibition assay. 

Moreover, certain inhibitory activity of the examined extracts towards COX-1 was also 

confirmed in the anti-inflammatory assay applied in this research. Determined IC50 values 

ranged from 0.34 to 8.00 mg/mL, with no genus exhibiting significantly higher activity than 

others. However, the results are not shown due to lack of correlation with the total phenolics 

and flavonoid content. This is in agreement with our previous findings [27]. 

The exact mechanism of COX and LOX enzymes inhibition by natural products is still not fully 

elucidated. However, bearing in mind their structures and chemical properties, several 

mechanisms could be speculated. Both pathways of arachidonic acid metabolism include free 

radical reactions (Figure 3.). Due to their radical scavenging activity or reducing properties, 

many plant natural products can interfere with reactions catalysed by COX and LOX [39]. 

They can neutralise radical intermediates, thus terminating the reaction. In addition, they can 

reduce Fe3+ ion that is a part of active site of both enzymes and is necessary for initiation 

reaction. Some natural products, including acetylenes, can bind covalently to enzymes and 

inhibit them irreversibly [19]. Also, in inhibition of LOX, isoprenyl moiety of some phenolics 

and terpenoid backbone structure could play an important role. Prenylated phenolics are 

usually more hydrophobic than conventional ones. Terpenoids are also mostly non-polar 

compounds. These characteristics suggest an easy penetration through the cell membrane and 

their good 12-lipoxygenase inhibitory properties [19]. Finally, the COX or LOX activity can be 

decreased by suppressing their transcription by phenolics [18], although this effect is 

observable only in long-duration experiments. 

To identify the compound class responsible for the observed 12-LOX-inhibitory activity, 1/IC50 

was correlated with the content of the total phenolics and flavonoids. The corresponding plots 
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are given in Figure 10. and Figure 11. As with the lipid peroxidation, the correlation between 

the content of the total phenolics and 12-LOX-inhibitory activity was also observed, although 

slightly weaker, with Pearson’s correlation coefficient r = 0.6037. At the same time, no 

relationship was found between the total flavonoids content and 12-HETE production (r = 

0.2825). Bearing in mind a good correlation of 12-LOX inhibition with the phenolic content, 

and the lack thereof with the flavonoid content, it is possible that only small phenolic 

molecules, but not the voluminous flavonoid glycosides, can enter 12-LOX active site and 

exhibit the inhibitory effect there. Thus, the observed differences in the total phenolics and the 

total flavonoids effects can at least partially be explained by steric hindrance. 

 

Figure 10. Correlation between total phenolic content and 12-LOX inhibitory activity 

The differences in COX and LOX inhibition (LOX inhibition being correlated with phenolic 

content) can be attributed to the differences in reaction mechanism and active site three-

dimensional structure. Namely, both mechanisms include abstraction of hydrogen from 

arachidonic acid leading to formation of radical species. However, hydrogen acceptor in 

COX is tyrosyl radical (formed through tyrosine oxidation by Fe3+) while in LOX, electron is 

transferred directly to Fe3+. Phenolics from plant extracts could reduce Fe3+ to Fe2+, thus 

inactivating both enzymes. However, the presence of tyrosyl residue in COX active site 

could provide steric protection and prevent phenolics from approaching the Fe3+ ion. 

Finally, the correlation between the ability of extracts to counteract lipid peroxidation and 

inhibit production of 12-HETE is shown in Figure 12. High correlation coefficient (r = 0.6819) 

suggests that extracts with a high inhibitory effect on LP, also represent potent inhibitors of 

12-LOX pathway. Methods for examination of anti-inflammatory activity are labour-

intensive, expensive and sometimes involve ethical issues due to the usage of laboratory 
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animals. Therefore, in vitro measurement of lipid peroxidation inhibition and the total 

phenolic content could be a useful tool for screening of plant extracts with a potential anti-

inflammatory activity. 

 

Figure 11. Correlation between total flavonoid content and 12-LOX inhibitory activity 

 

Figure 12. Correlation between the ability of extracts to inhibit 12-HETE production and lipid 

peroxidation  
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To summarise, the most of the examined species expressed high lipid peroxidation and anti-

inflammatory activity, especially Rumex and Plantago species. High inhibitory activity of 

these species towards 12-LOX pathway makes them good candidates for further research 

taking into account role of this enzyme in cancer development. A good correlation was 

found between total phenolic content of 23 investigated plant extracts and their ability to 

inhibit lipid peroxidation and 12-LOX pathway. Consequently, LP inhibitory activity was 

also highly correlated with 12-LOX inhibition. Thus it can serve as indicator for preliminary 

selection of plant extracts further to be tested for anti-inflammatory activity by expensive 

and time-consuming methods. 
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