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1. Introduction 

Mitochondria are dynamic subcellular organelles present in virtually all eukaryotic cells 

with numerous functions. The most important of these functions is production of ATP; 

however they play an important role in various metabolic and developmental processes 

such as calcium homeostasis, apoptosis and programmed cell death, just to mention some. 

Mitochondria produce ATP by means of the mitochondrial respiratory chain (MRC) and 

oxidative phosphorylation (OXPHOS) system, a series of five enzyme complexes embedded 

in the inner mitochondrial membrane. Mitochondrial disorders most often refer to the 

dysfunction of OXPHOS system leading to deficiency in the ATP production. They are a 

group of genetically and phenotypically heterogeneous disorders with an incidence 

estimated to be between 1:5,000 and 1:10,000 live births [1]. 

MRC is the result of the interplay of two physically and functionally separated genomes, the 

nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Thirteen of the key structural 

polypeptides that constitute the multimeric subunits of the respiratory chain complexes are 

mtDNA encoded, in addition two ribosomal RNA (rRNA) and 22 transfer RNA (tRNA) that 

are required for initiating translation and protein synthesis [2]. Approximately 90 of the 

remaining proteins that make up the respiratory chain complexes are encoded by nDNA. 

Therefore, although human mtDNA encodes the basic machinery for protein synthesis, it 

depends entirely on the nucleus for the provision of enzymes for replication, repair, 

transcription, and translation. This dependency lies at the heart of several newly recognized 

human diseases that are characterized by secondary abnormalities of mtDNA.  

The crosstalk between the two genomes is crucial for the cellular regulation of mtDNA 

integrity and copy number and correct mitochondrial protein production therefore 

mutations in genes involved in mitochondrial replication and maintenance can disrupt the 
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integrity of the mitochondrial genome, causing inter-genomic communication disorders. 

Multiple deletions, depletion of mtDNA or a combination of both phenomena 

(qualitative/quantitative lesions) in critical tissues, are the hallmarks of these disorders.  

The focus of this chapter is to review the clinical and molecular etiologies of nuclear defects 

involved in mtDNA stability and in mitochondrial protein synthesis. The overview done 

here will hopefully provide insights towards best diagnostic strategies of mitochondrial 

cross–talk disorders, being useful for clinicians when facing similar cases. Additionally we 

will present a diagnostic algorithm for these diseases based on our knowledge. 

2. Clinical manifestations of disorders affecting mtDNA integrity 

Maintenance of mtDNA is controlled by an intricate homeostatic network, whose effectors 

are the various components of the mitochondrial replicosome and the many enzymes and 

carrier proteins that provide the mitochondrion with a balance supply of 

deoxyribonucleotides (Figure 1). As all of the factors are nDNA encoded, it is not surprising 

that mutations in genes involved in mitochondrial replication and maintenance can disrupt 

the integrity of the ‘‘tiny’’ mitochondrial genome [3] leading to multiple deletions or 

depletion [4]. The mitonuclear crosstalk has gained increased relevance in the past years and 

since then many genes have been identified as being involved in these diseases. 

In the following section we will briefly review the clinical manifestations of both these 

group of disorders. 

2.1. mtDNA multiple deletion syndromes 

Mitochondrial diseases associated with the presence of multiple deletions of mtDNA are 

mostly autosomal dominant, occurring most often in adulthood. The size and terminals 

deletions are variable from one individual to another within the same family.  

The main clinical manifestations associated with multiple deletions are: 

i. PEO (autosomal dominant or recessive Progressive External Ophthalmoplegia). The 

most common clinical features include adult-onset of weakness of the external eye 

muscles, bilateral ptosis, proximal muscle weakness wasting and exercise intolerance. 

Additional symptoms are variable, and may include cataracts, hearing loss, sensory 

axonal neuropathy, ataxia, depression, hypogonadism, and Parkinsonism. Less 

common features include mitral valve prolapse, cardiomyopathy, and gastrointestinal 

dysmotility. Both autosomal dominant and autosomal recessive inheritance can occur; 

autosomal recessive inheritance is usually more severe [5,6]. The multiple deletions 

associated with PEO are exclusively found in muscle tissues of patients. 

ii. SANDO (Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoparesis) is an 

autosomal recessive systemic disorder characterized mainly by adult onset of sensory 

ataxic neuropathy, dysarthria, and ophthalmoparesis. The phenotype varies widely, 

even within the same family, and can include myopathy, seizures, and hearing loss, but 

the common clinical feature appears to be sensory ataxia [7].  
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Figure 1. Schematic overview of the mitochondrion and the mitochondrial disease genes involved in 

intergenomic communication disorders. Zooming in on the mitochondrion allows identification of 

genes (namely, POLG and C10orf2- Twinkle) thought to be involved in replication of mitochondrial DNA 

(mtDNA); those assumed to affect the metabolism of the mitochondrial deoxynucleotide (dNTP) pool 

(via progressive phosphorylations of deoxythymidine, deoxycytidine, deoxytadenine, and 

deoxiguanosine); and those belonging to the tricarboxylic acid cycle and affecting the respiratory chain 

complexes (OXPHOS). Moreover, the supposed role of genes involved in the complex machinery of 

mitochondrial protein synthesis (including the aminoacyl-tRNA synthetases) is illustrated. This figure 

was kindly provided by Prof. Filippo M. Santorelli. 

iii. MNGIE (Mitochondrial NeuroGastroIntestinal Encephalomyopathy), an autosomal 

recessive disorder clinically characterized by onset between the second and fifth 

decades of life, PEO, gastrointestinal dysmotility (often pseudo-obstruction), cachexia, 

diffuse leukoencephalopathy, peripheral neuropathy and early death. Mitochondrial 

DNA abnormalities can include depletion, multiple deletions, and point mutations [8]. 

iv. SCAE (SpinoCerebellar Ataxia – Epilepsy syndrome) disorder similar to SANDO but 

with a higher frequency of migraine headaches and seizures [9]. 

2.2. mtDNA depletion syndromes 

Quantitative alterations are characterized by depletion of mtDNA. Mitochondrial DNA 

depletion syndrome (MDS) comprises a heterogeneous group of autosomal recessive 
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disorders, all having the same molecular end result, low mtDNA amount in specific tissues. 

MDS are a group of rare and devastating diseases that manifest typically, although not 

exclusively, soon after birth, determining early death usually in infancy or early childhood. 

MDS differs from other respiratory chain disorders, as most often it may manifest solely in a 

specific organ (most commonly muscle or liver) [10]. However, it may occur that multiple 

organs, including heart, brain, and kidney are affected [11]. An extensive review on MDS 

was recently published [12]. 

Three major clinical categories can be recognized however, the clinical phenotypes are 

heterogeneous, overlapping and ever expanding [10,13]:  

i. Hepatocerebral MDS is most probably the most common variant of MDS; Onset of 

symptoms is between birth and 6 months; death usually occurs within one year of age. 

The most common symptoms and signs include persistent vomiting, failure to thrive, 

hypotonia and hypoglycemia associated with progressive neurological symptoms. 

Histological changes on liver biopsy include fatty degeneration, bile duct proliferation, 

fibrosis, and collapse of lobular architecture. Reduced COX histochemistry and 

combined deficiency of mtDNA encoded MRC complexes were found in the liver of a 

few patients.  

A peculiar form of hepatocerebral MDS is Alpers-Huttenlocher syndrome, an early 

onset, fatal disease, characterized by hepatic failure, intractable seizures, evolving into 

epilepsia partialis continua, and global neurological deterioration. The liver dysfunction is 

usually progressive as well, evolving from microvesicular staetosis with bile duct 

proliferation into cirrhosis and chronic liver failure. 

ii. Myopathic MDS typically onset of symptoms usually occur in the first year of life 

with feeding difficulty, failure to thrive, hypotonia, muscle weakness and 

occasionally PEO. Death is usually due to pulmonary insufficiency and infections,  

but some patients survive into their teens [14,15]. Muscle biopsy may show 

proliferation of mitochondria, which can increase with age, and patchy or diffuse 

COX deficiency. Biochemical defects of all mtDNA-related respiratory chain 

complexes are always present in muscle mitochondria. Serum CK levels may be 

variably elevated [4]. 

iii. Encephalomyopathic MDS is characterized by infantile onset of hypotonia with severe 

psychomotor retardation, high lactate in blood, progressive neurologic deterioration, a 

hyperkinetic-dystonic movement disorder, external ophthalmoplegia, deafness, 

generalized seizures and variable renal tubular dysfunction. Brain MRI was suggestive 

of Leigh syndrome [11]. 

3. Molecular etiologies of disorders affecting mtDNA integrity 

In the next sections we will mention the genes identified so far, to be responsible with these 

disorders. Table 1 summarizes the mutations described and the associated phenotypes. 
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Gene Phenotype 
Mutation Type  

M/N Sp Sd Si Sid Gd Gi Gr 

POLG 

PEO 61  1 2     

Alpers 37 5 2 6 2 3   

MDS 6  1      

Encephalopathy 3        

Mitochondrial spinocerebellar ataxia 

and epilepsy 
1        

SANDO 1   1     

POLG deficiency 29 1 2 2     

OXPHOS deficiency 2        

Ataxia 6 1       

Epilepsy 2  1      

Complex I deficiency 1        

Others 18 1       

POLG2 
PEO 1        

Mitochondrial disease 7  1    1  

SLC25A4 

PEO 5        

Mitochondrial myopathy & 

hypertrophic cardiomyopathy 
1 1 1 1     

SLC25A3 
Muscular hypotonia & hypertrophic 

cardiomyopathy 
1 1       

C10orf2 

PEO 34    1  1  

MDS 1        

Spirocerebellar ataxia, infantile onset 2        

Cholestatic liver disease 1        

Encephalopathy 1        

Ocular myopathy 1        

Complex I deficiency 1        

Dementia 1        

Reduced expression 1        

Tymp MNGIE 47 11 11 6 1    

TK2 

MDS 20 1 2 9 1 1  1 

Epileptic encephalomyopathy    1     

MDS with hearing loss    1     

PEO 1        

DGUOK MDS 28 6 9 4  1   

RRM2B 

MDS 12 2 1      

PEO 7  1 1     

MNGIE 2        

KSS 1        
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Gene Phenotype 
Mutation Type  

M/N Sp Sd Si Sid Gd Gi Gr 

 Altered p53 binding, association with  1       

MPV17 

MDS – hepatocerebral 7 1 1  1 2   

Liver failure in infancy   2      

Lethal hepatopathy & 

leukodystrophy 
 1       

SUCLA2 
MDS – encephalomyopatic & 

methylmalonic ac. 
4 1   1   1 

SUCLG1 

Succinyl-coenzyme A synthetase 

deficiency 
4 1 1      

Lactic acidosis with mitochondrial 

DNA depletion 
2  1      

Neonatal lactic acidosis with 

methylmalonic aciduria 
2        

Lactic acidosis, fatal infantile  1       

Mitochondrial 

hepatoencephalomyopathy 
1        

PUS1 

Mitochondrial myopathy and 

sideroblastic anaemia 
2        

Sideroblastic anaemia 1        

TRMU 

Infantile liver failure, increased risk 6 1 1      

Combined OXPHOS deficiency    2     

Phenotype modifier 1        

Respiratory chain deficiency, 

reversible infantile 
 1       

LRPPRC Cytochrome c oxidase deficiency 1    1    

TACO1 Cytochrome c oxidase deficiency    1     

TUFM Combined OXPHOS deficiency 1        

TSFM Combined OXPHOS deficiency 2        

GFM1 Combined OXPHOS deficiency 8  2      

MRPS16 MRC disorder 1        

RARS2 Pontocerebellar hypoplasia 3 1 1      

DARS2 

Leukoencephalopathy, brain & spine 

involvement, lactate elevation 
15 11 1  2 1   

Episodic ataxia, exercise-induced 1        

YARS2 MLASA syndrome 1        

Table 1. Mutations types described in genes involved in mtDNA integrity and mitochondrial 

translation and associated clinical phenotype (M/N- missense/nonsense; Sp- splicing; Sd- small 

deletions; Si- small insertions; Sid- small inddels; Gd- gross deletions; Gi- gross insertions; Gr- gross 

rearrangements) - source HGMD Professional database www.hgmd.cf.ac.uk/. 
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3.1. Genes involved in mitochondrial replisome 

3.1.1. POLG 

Human mitochondria contain a single DNA polymerase, Polymerase gamma (POLγ), 

nuclear encoded and solely responsible for mtDNA replication and repair in mitochondria. 

POLγ is composed of a catalytic subunit, POLγA, which possesses both polymerase  

and proofreading exonuclease activities and an accessory subunit, POLγB, which increases 

enzyme processivity [16]. The POLγ holoenzyme functions in conjunction with  

the mitochondrial DNA helicase and the mitochondrial single-stranded DNA- binding 

protein to form the minimal replication apparatus [17]. It was generally accepted that 

mutations within the mtDNA were the major cause of mitochondrial diseases; however this 

view is changing as several of these have been linked to ineffective mtDNA replication by 

POLγ.  

Mutations affecting the catalytic subunit POLγA, encoded by the nuclear gene POLG are a 

major cause of mitochondrial disease, being highly heterogeneous – PEO, Parkinsonism, 

AHS, MNGIE, SANDO and SCAE- and usually is associated with multiple mtDNA 

deletions [18]. POLG mutations have been shown to be associated with all types of 

inheritance. The unique features of mitochondrial physiology are in part responsible for this 

variability but POLG structure and function add to the riddle of how one gene product can 

demonstrate autosomal recessive and autosomal dominant transmission. POLγA is a key 

player in mtDNA maintenance that is absolutely necessary for mtDNA replication from an 

early stage in embryogenesis [19]  

In adPEO due to POLG mutations (most frequent), prominent features are severe dysphagia 

and dysphonia, and, occasionally, a movement disorder including Parkinsonism, cerebellar 

dysfunction, and chorea. Recessive mutations of POLG are responsible for sporadic and 

arPEO, as well as the syndromes referred above. Mutations in this gene can be also 

associated to the hepatocerebral form of MDS, namely AHS [18]. 

The POLG gene is located at chromosome 15, comprises 23 exons spanning 18.55 Kb. The 

gene was identified in 1996 [20] but only in 2001 the first pathogenic mutation was 

described. Since then more than 150 mutations have been reported and POLG gene is 

considered a hot-spot for mutations in mitochondrial diseases [21]. 

3.1.2. POLG2  

MtDNA is replicated by DNA polymerase gamma, which is composed of a 140-kD catalytic 

subunit (encoded by POLG) and a 55-kD accessory subunit (POLG2). The accessory subunit 

increases enzyme processivity therefore it is not surprising that failure in this processivity 

leads to the accumulation of mtDNA deletions. 

The POLG2 gene is located at chromosome 17, comprises 8 exons spanning 19.28 Kb. In 2006 

the first pathogenic mutation was described as being a cause of adPEO [22]. Since then, 10 

mutations in POLG2 have been reported. 
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3.1.3. C10orf2 (Twinkle) 

The mitochondrial helicase/primase encoded by C10orf2 gene is also responsible for the 

adPEO [23]. Mutations in C10orf2 may be of variable severity, being associated with clinical 

presentations ranging from late-onset ‘‘pure’’ PEO, to PEO complicated by proximal limb 

and facial muscle weakness, dysphagia and dysphonia, mild ataxia, and peripheral 

neuropathy. Recessive C10orf2 mutations were also described in patients with 

hepatocerebral form of MDS [24].  

The C10orf2 gene is located at chromosome 10; it comprises 5 exons spanning 6.38 kb. The 

first pathogenic mutation was reported in 2001 [23] to be associated with PEO and since 

then 45 pathogenic mutations have been reported. 

3.2. Genes involved in the synthesis and supply of nucleotide pools 

3.2.1. SLC25A4 

This gene, coding for the muscle-heart-specific mitochondrial adenine nucleotide 

translocator (ANT) is a member of the mitochondrial carrier subfamily of solute carrier 

protein genes [25]. ANT is the most abundant mitochondrial protein and in its functional 

state, it is a homodimer of 30-kD subunits embedded asymmetrically in the inner 

mitochondrial membrane. The dimer forms a gated pore through which ADP is moved from 

the matrix into the cytoplasm. There are three recognized isoforms of this protein. 

Mutations in this gene have been shown to be responsible for the adPEO and have been also 

associated with a relatively mild, slow progressive myopathy, with little or no 

extramuscular symptoms. 

The SLC25A4 gene was identified in 2000 [25], it is located at chromosome 4, comprises 4 

exons spanning 4.04 Kb. The first pathogenic mutations were described in 2000 and since 

then only seven mutations have been reported (most of them associated with PEO). 

3.2.2. SLC25A3 

The SLC25A3 gene codes for a mitochondrial phosphate carrier. A defect in this mitochondrial 

phosphate carrier has been described in two children with hypertrophic cardiomyopathy, 

muscular hypotonia, severe growth retardation and death in the first year of life [26]. 

The gene is located at chromosome 12, comprises 7 exons spanning 8.37 Kb. The first 

pathogenic mutations were described in 2007 [26] and since then only one more mutation 

has been reported. 

3.2.3. Tymp (ECGF1)  

The Tymp gene, responsible for MNGIE (Mitochondrial NeuroGastroIntestinal 

Encephalomyopathy), encodes the enzyme thymidine phosphorylase (TP), which is 
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involved in pyrimidines catabolism. Defects of TP result in systemic accumulation of 

thymidine and deoxyuridine, which leads to deoxynucleotide pool imbalance and mtDNA 

instability, resulting in the presence of multiple deletions and partial depletion of muscle 

mtDNA [27].  

The Tymp gene is located at chromosome 22 it comprises 10 exons spanning 4.3 kb. The first 

pathogenic mutations were described in 1999 [27] and since then 65 mutations have been 

described as being associated with MNGIE. 

3.2.4. TK2 

Thymidine kinase (TK2) is an intramitochondrial pyrimidine nucleoside kinase that 

phosphorylates deoxynucleotides (dNTPs), such as: deoxythymidine, deoxycytidine, and 

deoxyuridine, thereby participating in the salvage pathway of deoxynucleotide synthesis in 

the mitochondria [28]. Mitochondrial dNTPs pools arise either through active transport of 

cytosolic dNTP or through salvage pathways. Both pathways are essential for the replication 

of mtDNA, since the mitochondrion is unable to synthesize dNTPs de novo. Mutations in the 

TK2 gene on chromosome 16q22 affect primarily muscle tissue, with little or no effect on the 

liver, brain, heart, or skin. The typical manifestation of TK2 mutations is a severe, rapidly 

progressing myopathy of infantile or childhood onset. The disease course is rapidly 

progressive, leading to respiratory failure and death in months or years, but milder 

phenotypes with slower progression and longer survival have been reported [10]. Since the 

first mutation was described in 2001 [29], approximately 25 different pathogenic mutations 

in TK2 have been published so far, either as recessive homozygous or compound 

heterozygous mutations, and phenotypes may be explained by variable degrees of residual 

activity of the mutant enzymes. 

3.2.5. DGUOK 

Deoxyguanosine kinase is a 2-deoxyribonucleoside enzyme that catalyzes the first step of 

the mitochondrial deoxypurine salvage pathway, the phosphorylation of purine 

deoxyribonucleosides into the corresponding nucleotides deoxyguanosine and 

deoxyadenosine necessary for the maintenance of mitochondrial dNTPs pools [11,30]. The 

typical phenotype of mutations in the DGUOK gene, on chromosome 2p13, is characterized 

by neonatal onset of progressive liver disease and feeding difficulties, usually with 

neurological dysfunction (hypotonia, nystagmus, and psychomotor retardation), by the age 

of 3 months. Peripheral neuropathy and renal tubulopathy have occasionally been reported 

[31]. Depletion of mtDNA has been documented only in the liver and results in combined 

respiratory chain deficiencies in the liver, whereas the amount of mtDNA is usually normal 

in muscle and fibroblasts. Histological analyses of the liver biopsy show variable findings, 

typically microvacuolar steatosis, cholestasis, fibrosis, and cirrhosis. In most cases, there is a 

rapidly progressive liver disease and neurological deterioration, with death occurring by the 

age of 12 months or shortly thereafter [32]. The first pathogenic mutations was reported in 
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2001 [33], since then more than 80 affected patients from approximately 50 families have 

been reported, and over 40 different DGUOK mutations have been identified [10]. The 

infantile hepatocerebral form of MDS is the almost invariable clinical presentation. 

Genotype-phenotype correlation studies show that patients who harbor null mutations 

usually have early onset liver failure and significant neurological disease, including 

hypotonia, nystagmus, and psychomotor retardation, and death before two years of age. 

Patients carrying missense mutations usually have isolated liver disease, a better prognosis, 

and longer survival. 

3.2.6. RRM2B 

The RRM2B gene on chromosome 8q23 encodes the small subunit of p53-inducible 

ribonucleotide reductase, a heterotetrameric enzyme responsible for de novo conversion of 

ribonucleoside diphosphates into the corresponding deoxyribonucleoside diphosphates that 

are crucial for DNA synthesis [34]. The enzyme is the main regulator of the nucleotide pools 

in the cytoplasm, and its small subunit is expressed in postmitotic cells, where it  

probably has a key function in maintaining the mitochondrial dNTPs pools for mtDNA 

synthesis. Mutations in RRM2B usually result in hypotonia, lactic acidosis, failure to  

thrive, and tubulopathy in the first months of life. The disease has a rapid progression and 

leads to death in a few months. The associated complex phenotype suggests that the 

consequences of a defective mitochondrial dNTPs pools can vary dramatically depending 

on the residual amount of the functional enzyme. Recently, it has been shown that 

inactivating mutations in RRM2B also cause severe neonatal or infantile forms of mtDNA 

depletion, with profound reduction of mtDNA copy numbers in skeletal muscle [34]. The 

first pathogenic mutation was reported in 2007 [34] and since then 26 mutations have been 

described. 

3.2.7. MPV17 

The MPV17 gene is located on chromosome 2p23-p21 and encodes a mitochondrial inner 

membrane protein of unknown function recently recognized as responsible for mtDNA 

depletion. The clinical presentation is that of severe liver failure, hypoglycemia, growth 

retardation, neurological symptoms, and multiple brain lesions during the first year of life 

[35]. Marked mtDNA depletion in the liver is the molecular hallmark associated with 

multiple defects of respiratory chain complexes. Normal or mildly reduced levels of both 

mtDNA content and respiratory chain enzyme activities were also found in muscle [36]. 

Histological analyses of the liver have revealed swollen granular hepatocytes, 

microvesicular steatosis, and focal pericellular and periportal fibrosis. Since the first 

mutation was described in 2006 [37], about 15 different mutations have been reported in 

infantile-onset hepatocerebral syndrome and in Navajo neurohepatopathy, which is an 

autosomal recessive multisystem disorder found in the Navajo of the southwestern United 

States [30]. Three main subtypes are to be considered: infantile-onset (before 6 months) and 
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childhood-onset (before 5 years) forms with hypoglycemic episodes and severe progressive 

liver dysfunction requiring liver transplant, and a ‘classic’’ form with moderate hepatopathy 

and progressive sensorimotor axonal neuropathy. The three forms are also associated with 

variable degrees of demyelination in both the central and the peripheral nervous system.  

3.2.8. SUCLA2 and SUCLG1 

Succinyl CoA synthase is a mitochondrial matrix enzyme that catalyzes the reversible 

synthesis of succinate and ATP or GTP from succinyl-CoA and ADP in the tricarboxylic acid 

cycle. This enzyme is made up of two subunits, a and b, encoded by SUCLG1 on 

chromosome 2p11 and SUCLA2 on 13q12, respectively. Mutations in SUCLA2 and SUCLG1 

cause an encephalomyopathic form of infantile mtDNA depletion syndrome, but SUCLG1 

can also cause a very severe disorder with antenatal dysmorphisms, neonatal metabolic 

crisis, and early death, probably depending on the lower residual amount of the protein 

[38,39]. A useful diagnostic clue in Succinyl CoA synthase disorders of succinyl CoA 

synthase is a ‘‘mildly’’ elevated urinary methylmalonic acid, which is detected in all 

patients, and presence of tricarboxylic acid cycle intermediates (methylcitrate, lactate, 

carnitine esters, 3-hydroxyisovalericacid) in most cases. Some patients die as infants (sudden 

infant death syndrome), but some of them have a longer survival. The clinical features of 

patients with mutations in these genes include early childhood hypotonia, developmental 

delay, and almost invariably, progressive dystonia and sensorineural deafness. SUCLA2 and 

SUCLG1 mutations seem to disrupt an association between succinyl CoA synthase and 

mitochondrial nucleoside diphosphate kinase, resulting in an unbalanced mitochondrial 

dNTP pool and eventually, mtDNA depletion in muscle. The first pathogenic mutations 

were reported in 2005 [40] and 2007 [41] in SUCLA2 and SUCLG1, respectively and since 

then few mutations have been described. 

3.3. Genes involved in mitochondrial translation 

Mendelian diseases characterized by defective mitochondrial protein synthesis and 

combined respiratory chain defects have also been described in infants and are associated 

with mutations in nuclear genes that encode components of the translational machinery, 

such as those encoding elongation factors, aminoacyl-tRNA synthetases, or even mtDNA 

encoded tRNA [12]. Mitochondria contain a separate protein-synthesis machinery to 

produce the polypeptides encoded in mtDNA, and many mtDNA disease mutations affect 

this machinery. This group of disorders is highly heterogeneous and usually shares a 

combined disorder of respiratory chain complexes.  

3.3.1. Genes involved in mitochondrial translation factors 

3.1.1.1. PUS1  

The Pseudouridine synthase 1 (PUS1) gene on chromosome 12q24 encodes an enzyme 

that converts uridine into pseudouridine at several cytoplasmic and mitochondrial tRNA 
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positions and thereby improves translation efficiency in the cytosol as well as  

the mitochondrion. Thus, PUS1 is not part of the translation machinery, but it is required 

for protein synthesis because of its function in posttranscriptional modification of  

tRNA. Mutations in PUS1 are responsible for the rare myopathy, lactic acidosis, 

sideroblastic anemia syndrome and sometimes include mental retardation. The first 

pathogenic mutation was reported in 2004 [42] and since then few mutations have been 

described. 

3.1.1.2. TRMU 

The TRMU gene on chromosome 22q13 encodes an evolutionarily conserved protein 

involved in mitochondrial tRNA modification and is important for mitochondrial 

translation. Defects in tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase 

(TRMU), a mitochondria specific enzyme that is required for the 2-thiolation on the wobble 

position of the tRNA anticodon, result in reduced steady-state levels of 3 tRNA (tRNALys, 

tRNAGln, and tRNAGlu) and consequently, impaired mitochondrial protein synthesis 

[43,44]. Recently, mutations in TRMU were detected in patients with acute liver failure in 

infancy [44].  

3.1.1.3. LRPPRC 

The LRPPRC gene is located on chromosome 2p21. Leucine-rich PPR-motif containing 

protein has been suggested to function together with heterogeneous nuclear 

ribonucleoprotein K and RNA polymerase in coupling the mitochondrial transcription and 

translation machineries [45]. Mutations in LRPPRC lead to the French-Canadian subtype of 

Leigh syndrome, associated with a profound deficiency of complex IV of the OXPHOS 

system [46]. Patients exhibit neonatal or infantile onset hypotonia and psychomotor delay, 

and bilateral hyperluciencies of basal ganglia, like other more common forms of Leigh 

syndrome. The first pathogenic mutation was reported in 2003 [46] and since then one more 

mutation has been described. 

3.1.1.4. TACO1 

TACO1 represents the first specific mammalian mitochondrial translational activator, 

opening the possibility to a new class of proteins controlling efficiency of mitochondrial 

translation. Mutations in TACO1, located on chromosome 17q.6, are responsible for a 

relatively late-onset Leigh syndrome (onset range 4-13 years) characterized by short stature, 

mental retardation with autistic-like features, and a slowly progressive array of motor 

symptoms related mainly to basal ganglia involvement [47,48]. Only one mutation was 

described to date [47].  

3.1.1.5. TUFM, TSFM and GFM1 

Another important player during mitochondrial protein biosynthesis is the group of 

elongation factors. The mitochondrial EF-Tu forms a ternary complex with tRNA and GTP 

and promotes the binding of tRNA to the ribosome. A few patients have been described as 
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having mutations in genes encoding components of the mitochondrial translation 

elongation machinery, including elongation factor EF-Tu (TUFM), EF-Ts (TSFM) and EFG1 

(GFM1). These patients have severe disease, presenting neonatal lactic acidosis and 

neurological impairment resembling Leigh syndrome, leading to early fatality. The first 

pathogenic mutations in these genes were reported recently [49,50,51] and since then few 

mutations have been described. 

3.1.1.6. MRPS16 and MRPS22  

Of all 81 human mitochondrial ribosomal proteins (MRPs), mutations have been found in 

only two, MRPS16 and MRPS22 [52,53]. Both defects resulted in a marked decrease in the 

12S rRNA transcript level, probably caused by impaired assembly of the mitoribosomal 

small subunit, generating unincorporated and unstable 12S rRNA. Indeed, lack of MRPs 

results in the failure to assemble parts of small subunits of the mitoribosome, and 

subsequent degradation of its components [54]. Clinical manifestations include agenesis of 

the corpus callosum, dysmorphism, hypertrophic cardiomyopathy, and fatal neonatal lactic 

acidosis. The first pathogenic mutations were reported in 2004 [52] and in 2007 [53], and 

since then few mutations have been described. 

3.3.2. Genes involved in mitochondrial aminoacyl tRNA synthetases 

3.3.2.1. RARS2, DARS2, and YARS2  

To guarantee fidelity in translation, it is important to attach the right amino acid to the 

tRNA and to ensure that the tRNA recognizes, through its anticodon, the correct codon in 

the ribosomal A-site. Incorporation of an incorrect amino acid into the nascent polypeptide 

could cause misfolding and production of defective or dominant interfering proteins. 

Amino acids are attached to tRNA by amino-acyl-tRNA synthetases, each of which is 

specific for a single amino acid. However, as there can be several codons and several 

different tRNA for a single amino acid, an amino-acyl-tRNA synthetase can ‘‘charge’’ 

several different tRNA. If this function is defective, certain codons will become ambiguous, 

resulting in the synthesis of misfolded proteins, which could aggregate to form inclusions 

and induce further protein misfolding. Mutations in the RARS2 and DARS2 were recently 

described [55,56,57] and are associated with severe encephalopathy with pontocerebellar 

hypoplasia and leukoencephalopathy with brain stem and spinal cord involvement and 

lactate elevation, respectively, with most patients showing onset between 2-15 years of age 

[56]. Very recently, mutations in the gene encoding the mitochondrial YARS2 have been 

associated with a clinical condition characterized by myopathy, lactic acidosis, and 

sideroblastic anemia [54].  

4. Diagnostic approaches for intergenomic communication disorders 

Suspicion of intergenomic communication disorders arising from clinical presentation may 

range from well defined syndromes to unspecific multisystemic phenotype, where 

neurological involvement is usually present.  
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Establishing a specific diagnosis in a patient with suspected mendelian disease is a 

challenging task that requires the integration of clinical assessments, family history, 

biochemical testing and histopathological examination. It is important to obtain the 

appropriate biochemical and/or clinical information before starting any molecular 

investigations so that molecular diagnosis can be successfully.  

Biochemical determination of mitochondrial respiratory chain complexes is important for 

delineating the molecular approach in particular in patients without a specific neurological 

syndrome. As mtDNA encodes for subunits of respiratory chain complexes I, III, IV and the 

ATP-synthase, mtDNA depletion causes a combined respiratory chain deficiency of all 

complexes, except complex II. Biochemical analysis of the muscle respiratory chain enzyme 

activities may, however, be normal, if skeletal muscle is not among the affected tissues, e.g., in 

MDS of the brain or liver. Southern analysis or quantitative real-time polymerase chain 

reaction are two methods that simultaneously detects mtDNA deletion(s) and quantify total 

mtDNA content. In both approaches, mtDNA amount is compared to a specific nuclear 

reference gene. A prerequisite for correct interpretation of mtDNA amount is to consider the 

dynamic nature of mtDNA amount in different ages and tissues, and therefore to establish 

carefully age-matched control materials [58]. A reduction in mtDNA copy number to 60-65% 

of age-matched controls has been established for an empirical cut-off level for MDS diagnosis, 

but especially in children, the reduction may be severe (80-90%). Biochemical data, such as 

lactate, pyruvate, alanine, organic acid profiles as well as neuroimaging findings are also 

important clues for the diagnosis of these disorders. Some diagnostic clues exist for specific 

gene defects: serum creatine kinase (CK) is elevated in TK2 defects, serum thymidine in TYMP 

defects and urine methylmalonic acid and methylcitrate in SUCLA2 and SUCLG1 defects [10]. 

The POLG gene seems to be the most frequently mutated nuclear gene in cases of 

mitochondrial disease therefore in cases of normal mtDNA testing and clinical signs such as 

nonspecific hypotonia, developmental delay, epilepsy and progressive liver disease POLG 

gene investigation should be considered. Valproate-induced liver toxicity in POLG and 

C10orf2-MDS emphasizes the importance of diagnosing these patients, who usually suffer 

from severe treatment-resistant epilepsy [59]. We suggest POLG analysis before valproate 

treatment for such children and adolescents, whose first epileptic attack develops to a status 

epilepticus of unknown cause. 

Based on our practice, we present a testing algorithm for establishing an accurate diagnosis 

for these diseases (Figure 2). 

5. Therapeutic considerations 

The management of mitochondrial disease is largely supportive as no curative therapy is 

available. Palliative/supportive treatment with vitamins, cofactors and respiratory 

substrates have been used, but with poor efficacy. In the last years several approaches have 

been tried and the enhancement of mitochondrial biogenesis has emerged as an exciting 

therapeutic possibility. The enhancement of mitochondrial biogenesis might restore 

mitochondrial function in a variety of other contexts.  



 
Nuclear-Mitochondrial Intergenomic Communication Disorders 307 

 

Figure 2. Diagnostic algorithm for intergenomic communication disorders, based on clinical and 

biochemical information. 
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What has been noticed is that for every case there is a different strategy. For example liver 

transplantation may be beneficial to patients with hepatopathy caused by DGUOK 

mutations if no neurological symptoms have developed. However, significant hypotonia, 

psychomotor retardation or nystagmus should be contraindications for the liver 

transplantation [60]. In patients with MPV17, liver transplantation has increased quality and 

years to life for some patients [61,62], but the patients have developed neurological 

symptoms. Some children with POLG mutations have received a liver transplant after 

valproate-induced liver failure, and although it has rescued their liver function, neurological 

outcome has been unfavorable [63,64]. 

In patients with MPV17 mutations, a controlled diet avoiding hypoglycemias were 

suggested to slow down the progression of liver impairment and be useful in supportive 

care [65]. Some improvement of liver functions in a patient with MPV17 mutations was 

gained by treating them with succinate or coenzyme-Q10 together with a lipid-rich diet [66]. 

Further studies with larger patient materials and longer follow-up time are needed to 

confirm, if these dietary interventions were beneficial, and could be recommended. In 

MNGIE, correlation between plasma thymidine levels and the severity of the phenotype has 

been observed [67]. Therefore, attempts to reduce the circulating nucleotide levels could 

result in disease improvement. Enzyme replacement therapy has been applied for MNGIE: 

infusion of platelets from healthy donors to patients with MNGIE reduced their circulating 

thymidine and deoxyuracile levels, and partially restored TP activity. The limitation of this 

therapy was the short half-life of platelets [68]. Allogenic stem cell transfusions have been 

given to two patients with MNGIE [69]. Although more experience is needed to illustrate 

the clinical benefit of that treatment, it opens up a possibility of treatment for disorders of 

the nucleoside metabolism. In MNGIE, also continuous ambulatory peritoneal dialysis has 

been used to reduce the thymidine levels, and this resulted in improvement of the 

symptoms during 3-year follow-up time [70]. Good animal models will enable testing these 

hypotheses in vivo. 

6. Conclusive remarks 

The diagnostic process in nuclear disorders of oxidative metabolism is not too different from 

that employed for other diseases and includes patient and family history, physical and 

neurologic examination, routine and special laboratory tests, muscle biopsy for morphology 

and biochemistry, and molecular genetics screening [71]. A mitochondrial disease 

manifesting at or soon after birth is more likely to be associated with nDNA than with 

mtDNA mutations, but until very recently, our profound ignorance regarding the 

mechanisms underlying mitochondrial gene transcription and translation and the complex 

interaction between the ‘‘2 genomes’’ has limited our diagnostic power. Mitochondrial DNA 

deletion and depletion syndromes, and disturbances in the mitochondrial translation 

machinery have become an increasingly important cause of a wide spectrum of infantile and 

childhood-onset multisystem disorders. Depletion syndromes could result from any 

imbalance of the mitochondrial dNTPs pools available for mtDNA replication, as well as 

abnormalities in either the mitochondrial helicase or DNA polymerase. Consistent with the 
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different phenotypes, mtDNA depletion may affect specific tissue (most commonly, brain 

and muscle or liver) or multiple organs, including the heart and the kidney. Predictably, 

affected tissues show paucity of mtDNA-encoded translation products and multiple 

respiratory chain defects. More than 75% of these patients had onset during the first year of 

life, and the disease was rapidly fatal in most cases [3,72,]. Moreover, though the 

components of the complicated mitochondrial protein-synthesis machinery are exclusively 

nuclear encoded, the majority of mutation affects correct translation of mtDNA-encoded 

subunits of the OXPHOS system and accounts for a still undetermined number of genetic 

defects. Indeed, there is still limited information on the many mitoribosomal proteins; the 

several tRNA maturation enzymes; the aminoacyl-tRNA synthetases; the translation 

initiation, elongation, and termination factors; and the predictably larger number of 

unidentified factors needed for ribosome assembly [43,73]. 

The increasing number of nuclear governed mitochondrial diseases and its associated genes 

continues to increase the diversity of the genetic and clinical phenotypic heterogeneity of 

this group of disorders. Identifying the causative genes is not only important for adequate 

genetic counseling and prenatal diagnosis but also to have a better understanding of the 

disease pathophysiology leading to better therapy options. The increasing number of genes 

involved is a driving force for the development of high throughput strategies. The recent 

advances on sequencing technology will facilitate the molecular investigations of genes 

associated with mtDNA disorders in general. Reports concerning the use of next generation 

sequencing for the diagnosis of mitochondrial disorders are emerging [74,75,76]. In a recent 

report the use of target NGS for mitochondrial disorders proved its efficiency in clinical 

diagnosis as for 55% of the studied patients a clear molecular etiology was found. As more 

studies are reported the importance of applying this technology will be highlighted.  

The problems faced by patients with mitochondrial respiratory chain disease are 

particularly severe. Diagnosis is difficult, treatment is largely ineffective, genetic counseling 

and prenatal diagnoses are uncertain or unavailable and the prognosis is unpredictable. 

Because diagnosis is imperfect and laborious, many patients undergo a whole battery of 

unnecessary investigations during the diagnostic process. Accurate focused diagnosis will 

save time, money and distress. Only by understanding the molecular genetic basis of these 

disorders, whether nuclear or mitochondrial, will any progress be made. Furthermore this 

will help patients, but will also lead to fundamental advances in our understanding of 

mitochondrial biology. Identification of new disease-causing gene(s) will hopefully provide 

insights towards novel therapeutic strategies. 

Chapter highlights 

- The chapter focus on diseases of intergenomic communication disorders mainly the 

ones involved in mtDNA integrity and mitochondrial protein synthesis 

- Disorders affecting mtDNA stability lead to multiple deletions or depletion of mtDNA 

- This group of disorders can affect a variety of organ with variable ages of onset 

- POLG is frequently mutated being a hotspot for mitochondrial disease 
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- Diagnosis is difficult and laborious due to the increasing number of genes involved 

- Therapy in mainly palliative however novel strategies are emerging 

- Due to the increasing number of genes involved novel diagnostic strategies are 

emerging to optimize the diagnosis offered to these families 
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