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1. Introduction 

Pluripotent stem cells have the capacity to develop into different cell lineages, and can be 

promoted into skeletal muscle lineage through the use of small molecule inducers. Retinoic 

acid (RA) signaling through the retinoic acid receptor (RAR) and retinoid X receptor (RXR), 

is important for embryonic development, and is able to enhance myogenic differentiation in 

vitro if used in combination with other small molecule inducers. Nevertheless, it only yields 

moderate results in promoting the differentiation of embryonic stem (ES) cells into skeletal 

myocytes. RXR is also known to be essential for embryonic development, but it is generally 

considered to act as a silent partner for other nuclear receptors such as RAR. We recently 

discovered that RXR selective ligand efficiently induces myogenic differentiation in mouse 

ES cells which respond poorly to RA. In addition, myogenic differentiation, enhanced by the 

RXR ligand, is mediated through a RAR independent mechanism, and recapitulates closely 

the sequential events observed in vivo. Since ES cell differentiation represents the properties 

of early developing embryo, efficiently generating skeletal myocytes with RXR selective 

ligand provides means to further scrutinize signaling pathways in skeletal myogenesis, in 

view of developing cell-based therapies for skeletal muscle-related diseases. In this chapter, 

we attempt to provide an in-depth analysis of recent research findings and the current stage 

of knowledge in the field of skeletal myogenesis. 

2. The retinoid X and retinoic acid receptors  

RXR belongs to the nuclear hormone receptor superfamily, such as steroid hormone, thyroid 

hormone, vitamin D receptors, and nuclear receptors including RAR, PPAR, LXR and PXR 

(Szanto et al., 2004). It is a very unique protein with the ability to form heterodimers with one 

third of the 48 other nuclear receptors (Mangelsdorf et al., 1995) giving it the potential to 

converge a large array of signaling pathways. The RXR can form homodimers, permissive 
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heterodimers, and non-permissive heterodimers  in a ligand-dependent or -independent 

manner (Tanaka and De Luca, 2009). When RXR forms homodimers or permissive 

heterodimers (with PPAR, LXR, PXR etc.), it is amenable to RXR ligand-dependant activation 

since the activation domain of the partner receptor is placed in proximity to RXR helixes. Once 

RXR is activated by the ligand, conformational changes cause direct stabilization of the 

activation domain of its partner (Gampe, Jr. et al., 2000b). When RXR forms non-permissive 

heterodimers (with RAR, VDR, TR etc.), it is not activated by ligand, as the binding of the 

partner receptor to RXR allosterically inhibits it (Kurokawa et al., 1994; Tanaka et al., 2009). 

Furthermore, the activation domain of the partner is not located in proximity to ligand 

activated residues in the RXR interface (Bourguet et al., 2000; Gampe, Jr. et al., 2000b). 

2.1. DNA binding 

The receptor dimers of RXR and its partner, constitutively bind to specific DNA response 

elements in the promoters or enhancers of the genes they govern. DNA binding specificity is 

determined by the number of spacer nucleotides present between two direct repeats of the 

canonical binding sequence 5’-PuGGTCA (Leid et al., 1992; Umesono and Evans, 1989). The 

RXR/RAR heterodimers bind to the retinoic acid response element (RARE) with a consensus 

half site separated by 2 or 5 nucleotides (DR2 or DR5), whereas the RXR homodimers bind to 

the retinoid X response element (RXRE) separated by only one nucleotide (DR1) (Tanaka et al., 

2009) (Figure 1). Selective response element recognition is due to a short sequence (the P box) 

located at the C-terminal base of the N-terminal C1 finger of the DNA binding domain (DBD) 

which interacts with the binding motif, and also due to a weak dimerization function which 

encompasses the N-terminal base of the CII finger (D-box) of the DBD (Danielsen et al., 1989; 

Green et al., 1988; Kumar and Chambon, 1988; Luisi et al., 1991; Mader et al., 1989; Umesono et 

al., 1989). While RXR/RAR heterodimers bind more effectively to the RAREs than RXR 

homodimers, RXRs homodimers can bind RXREs with high affinity (Zhang et al., 1992). 

RAREs can overlap with RXREs, and since RXR/RAR heterodimers bind with a higher affinity 

than RXR homodimers, (Tanaka et al., 2009), this may interfere with RXR signaling. 

 

Figure 1. The Binding of RXR/RAR Heterodimer and RXR Homodimer to DNA. RXR/RAR 

heterodimers (left) and RXR homodimers (right) bind via the DNA binding domain to two direct 

repeats of the canonical binding sequence 5’-PuGGTCA separated by 2 or 5 nucleotides, or 1 nucleotide 

respectively.  
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2.2. Ligands of RXR and RAR 

While RXR and RAR constitutively bind to DNA, they require agonist binding to activate 

gene transcription. Several endogenous ligands are well characterized and many synthetic 

ligands have been developed. 

RA, the active derivative of vitamin A, can exist as two isoforms: all-trans RA and 9-cis RA. 

RAR bind and are activated by all-trans RA as well as its 9-cis isomer, while the RXR bind 

and are activated only by 9-cis RA (Ricaud et al., 2005). However, due to the considerable 

difficulty of detecting 9-cis RA endogenously in embryos or in adult tissue (Niederreither 

and Dolle, 2008), there has been debate about the in vivo role of activated RXR, and has led 

to the belief that RXR serves only to orient and position the heterodimers properly on the 

DNA (Perlmann and Jansson, 1995; Willy et al., 1995; Willy and Mangelsdorf, 1997) 

In the last two decades, a wide range of RXR selective compounds has been engineered. The 

synthetic RXR ligands can act as agonists and activate both homodimers and permissive 

heterodimers. Conversely, they can also act antagonistically of homodimers, as is the case 

for the synthetic ligand LG100754, and promote only the activation of non-permissive 

heterodimers (Lala et al., 1996). Bexarotene (LGD1069) is a synthetic RXR selective 

compound used in the treatment of cancer. It is unable to transactivate the RXR-RAR 

heterodimer (Lehmann et al., 1992) and will not activate RARs (Nau et al., 1999). 

There are conflicting interpretations of RXR participation in the activation of RXR/RAR 

heterodimers. Some studies demonstrate that allosteric inhibition of RXR in the RXR/RAR 

heterodimer only occurs when the RAR is unliganded and that this inhibition is relieved 

once RAR is liganded (Forman et al., 1995; Lala et al., 1996). Other reports indicate that both 

receptors bind their ligands independently and that their effects are additive (Kersten et al., 

1995). The discrepancy between varying reports can possibly be reconciled by the fact that 

different ligands interact with distinct side chains in the ligand binding domain and thus 

mediate differential activation of the receptor complex. The exact response is therefore 

highly dependent on the identity of the ligand and cannot simply be classified as agonistic 

versus antagonistic. Although RXR can engage in ligand binding when RAR is ligand 

occupied and/or if a suitable synthetic ligand is present (Chen et al., 1996; Kersten et al., 1996; 

Lala et al., 1996; Minucci et al., 1997; Roy et al., 1995), bexarotene is unable to transactivate the 

RXR/RAR heterodimer (Lehmann et al., 1992). In fact, bexarotene has been reported to 

reduce interactions between RXRs and RARs whereas ligand such as 9-cis increases the 

binding of RXRs to RARs (Dong and Noy, 1998).  

All-trans RA does not bind RXR (Mangelsdorf et al., 1992), and more importantly, although 

all-trans RA has the ability to isomerize to 9-cis RA, pharmacological doses of all-trans RA 

are required to generate enough 9-cis to activate the RXRs (Mic et al., 2003). Optimal 

enhancement of skeletal myogenic differentiation requires low concentrations of all-trans 

RA. Thus, all-trans RA isomerization is simply not a feasible explanation to the similar 

enhancement of myogenic differentiation by RA and bexarotene observed in P19 stem cells 
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(Le May et al., 2011). Finally, while RA metabolites, such as 4-oxo-RA, were originally 

believed to play a role in RA signaling, they have more recently been shown as 

physiologically not required (Niederreither et al., 2002; Pijnappel et al., 1993).  

2.3. The interaction of RXR and RAR with their cofactors 

In response to ligand activation, RXR and RAR bind co-activators and the respective binding 

of cofactors again depends on the identity of the ligand. Agonist binding induces large 

conformational changes within the receptor causing helix 11 and 12 (the AF-2 domain) to 

close the lid of the ligand binding pocket and generate high affinity co-activator binding 

sites. This charged surface has a high affinity for a specific amino acid motif, LXXLL, which 

mediates the binding of co-activators to nuclear receptors (Westin et al., 1998). Alternatively, 

if an antagonist or partial agonist binds, helix 12 is repositioned to an adjacent groove on the 

LBD and a charged surface that favors the co-repressor binding motif is formed (Perissi et 

al., 1999).  

Co-activators, as their name implies, have the ability to activate transcription and interact 

with the basal transcriptional machinery, bridge and direct the assembly of transcriptional 

pre-initiation complexes, and induce chromatin remodeling (Rosenfeld et al., 2006; Bastien 

and Rochette-Egly, 2004). Co-activators such as p300, CREB Binding Protein (CBP), and 

p300/CBP-Associated Factor (PCAF) can all act as histone acetyltransferases (HATs) 

(Niederreither et al., 2008; Ogryzko et al., 1996) and form large multimolecular complexes.  

Interestingly, co-activators p300 and CBP are also able to acetylate proteins other than 

histones, such as transcription factors (Gu and Roeder, 1997; Li et al. 1998; Li et al. 1999). CBP 

and p300 are heavily autoacetylated and upon recruitment to the receptors, can acetylate 

more of themselves in an intermolecular fashion (Karanam et al., 2006). In addition to this, 

they have the ability to recruit PCAF (Yang et al., 1996), a coactivator involved in 

myogenesis. p300 influences RXR activity as RXR are subjects for p300 acetylation, which 

promotes their binding to RXRE and increases their transcriptional activity as well (Zhao et 

al., 2007). Co-activators play crucial roles in gene activation, however, those recruited by 

particular RXR dimers at specific genetic loci in response to ligand have yet to be identified.  

Alternatively, in the absence of ligand, the co-repressors, such as the nuclear receptor 

corepressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor 

(SMRT) family, bind and recruit a mulitprotein complex containing the histone deacetylase 

HDAC3 (Guenther et al., 2000; Li et al., 2000). The recruited histone methyl-transferases and 

histone deacetylases stabilize the nucleosome structure so that the DNA is inaccessible for 

transcription (Niederreither et al., 2008).  

When RXR forms permissive heterodimers (i.e.: RXR/PPAR), neither receptor binds the co-

repressors under normal circumstances (DiRenzo et al., 1997). Ligand binding to one 

receptor recruits the co-activators and although the other receptor may be unliganded, the 

high local concentration of bound co-activators favor the docking of the second LXXLL 

motif with the co-activator binding sites of the other receptor. If ligand is present for both 
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receptors of the permissive heterodimer, they can synergistically recruit co-activators (Ahuja 

et al., 2003).  

Non-permissive heterodimers (i.e.: RXR/RAR) do bind co-repressors and this binding to 

unliganded RXR and its partner is stabilized by both receptors. Transactivation requires 

ligand binding to the RXR partner (i.e.: RAR) to convert it into the agonist conformation, 

displace co-repressors, and recruit co-activators (Zhang et al., 1999; Vivat et al., 1997). As 

with permissive heterodimers, synergistic recruitment of co-activators occurs when ligands 

are present for both receptors (Ahuja et al., 2003). 

2.4. RXR and RAR in development 

Gene mutation studies have determined that both RXR and RAR are essential for proper 

development, and delineated roles and tissue expression patterns for the different isoforms 

of the two receptors (α, β, and γ). The different RAR and RXR isotypes are encoded by 

different genes and their isoforms differ in their NH2-terminal regions which are generated 

by differential promoter usage and alternative splicing (Chiba et al., 1997). While RXR-α null 

embryos show defects in RXR/PPARγ (Peroxisome Proliferator Activated Receptor) 

signaling, the RARs appear to be the most important partners for RXRs (Ahuja et al., 2003). 

RXR/RAR non-permissive heterodimers have been extensively studied in the context of 

development. 

During development, RXR-α and β are ubiquitously expressed with the highest levels of 

RXR-α present in the liver, heart, intestines, kidney, spleen, placenta, and the epidermis 

(Ahuja et al., 2003; Pratt et al., 1998). RXR-γ is expressed in all developing skeletal and 

cardiac muscles, the anterior pituitary, and the brain. The expression of RXR isoforms is 

tissue specific and often overlaps, yet occasionally certain isoforms are uniquely 

expressed.(Mangelsdorf et al., 1992)  RXR-α is the primary isoform and supports the activity 

of all three RARs. Furthermore, RXR-α may be important in the expression of RXRγ since 

the RXR gene contains a RXRE (Barger and Kelly, 1997).  

Studies with mice lacking expression of RXR-α have found that these mice die in utero as a 

result of hypoplastic myocardium (Kastner et al., 1994; Sucov et al., 1994) and RXR-α null 

mutations exhibit growth retardation, webbed digits (Mark et al., 2006) and defects in the 

chorioallantoic placenta (Sapin et al., 1997). Loss of RXR-β and RXR-γ is not as severe since 

they can be compensated for by RXR-α (Tanaka et al., 2009), which may explain why the 

RXRγ -/- mouse mutants are viable and have no muscular defects even in compound mutant 

combinations (Dolle, 2009). 

Similarly, animals lacking RAR-α or RAR-γ result in postpartum lethality (Lohnes et al., 

1993). In RAR knock-out studies where two RARs are deleted, the mutants display a 

spectrum of defects that resemble vitamin A deficiency syndrome (Lohnes et al., 1993; 

Lufkin et al., 1993) and the function of the residual RAR is highly dependent on RXR-α 

(Ahuja et al., 2003). 
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Even in normal development, the RARs are highly dependent on the RXRs. Homodimer 

formation of RARs is energetically unfavored, because of the limited contact between the 

interfaces. Pairing with RXR creates an extended area of intermolecular contact that 

stabilizes the heterodimer formation. This substantially larger surface area and consequent 

stability, results in the preferential formation of RXR/RAR heterodimers (Bourguet et al., 

2000; Gampe, Jr. et al., 2000a).  

3. Skeletal myogenesis 

Skeletal muscle forms in the embryo from paraxial mesoderm, which segments into somites 

on either side of the neural tube and notochord (Christ and Ordahl, 1995). Extracellular 

signals from surrounding tissues play a significant role in muscle development. These 

signals include members of the Wnt family, specifically Wnt1 and Wnt7a secreted from the 

neural tube and surface ectoderm (Cossu and Borello, 1999), Sonic Hedge Hog (Shh) 

secreted by notochord and floor plate cells and which acts in conjunction with Wnt1 (Cossu 

et al., 1999), bone morphogenetic protein4 (BMP4) secreted by the lateral plate mesoderm 

cells (Borycki et al., 1999; Dietrich et al., 1998; Munsterberg et al., 1995; Pourquie et al., 1996; 

Tajbakhsh et al., 1998), and RA which is under tight regulatory control for its synthesis, 

degradation, and transport (Rohwedel et al., 1999). These act on downstream targets such as 

HOX genes, which controls specification of the body axis (Rohwedel et al., 1999), Brachyury 

T, a protein required for posterior mesoderm and notochord differentiation (Skerjanc, 1999), 

and the myogenic regulatory factors (MRFs) including Myf5, MyoD, myogenin, and Mrf4 

which are required for the commitment and maturation of skeletal muscle (Cossu et al., 1999; 

Rohwedel et al., 1999; Skerjanc, 1999). 

3.1. Myogenic regulatory factors and their cofactors  

The formation of myoblasts from myogenic progenitors and their successive cell cycle arrest 

and differentiation into mature skeletal muscle involves two key families of transcription 

factors. The MyoD family of basic Helix-Loop-Helix (bHLH) proteins which includes the 

four master transcriptional regulators (also referred to as MRFs): Myf5, MyoD, myogenin, 

and Mrf4 (Arnold and Braun, 2000; Braun et al., 1989; Braun et al., 1990; Davis et al., 1987; 

Edmondson and Olson, 1990; Froeschle et al., 1998) and the myocyte enhancer factor 2 

(MEF2) family of MADS-box transcription factors which includes MEF2A, -B, -C, and –D 

(Naya and Olson, 1999).  

Myf5 and MyoD are involved in skeletal muscle specification and commitment and have the 

capacity of remodeling chromatin and opening gene loci that participate in further muscle 

differentiation (Bergstrom and Tapscott, 2001), whereas terminal differentiation is governed 

by myogenin and MRF4. Each MRF is sufficient to dominantly induce myogenesis when 

introduced into a variety of non-muscle cells (Olson, 1990; Weintraub, 1993), and ectopic 

expression of MyoD can inhibit cell cycle before the S phase independently of its DNA 
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binding and the induction of myogenic differentiation (Crescenzi et al., 1990; Sorrentino et 

al., 1990).  

Members of the MEF2 family alone are not sufficient to induce myogenesis, however the 

ability of the MRFs to convert cells is reliant on the function of the MEF2 family. MEF2 

proteins bind as homodimers and heterodimers to the consensus sequence YTA(A/T)4TAR 

found in the promoter region of nearly every known muscle-specific gene (Black and Olson, 

1998), and together with the myogenic bHLH proteins, synergistically activate the 

transcription of myogenic genes. Unlike the MRFs, MEF2 genes are also expressed outside 

the skeletal muscle lineage in tissues such as cardiac and smooth muscle (Black et al., 1998; 

Edmondson et al., 1994; Leifer et al., 1993; Lyons et al., 1995).  

 

Figure 2. Involvement of Myogenic Regulatory Factors in Myogenesis. Myf5 and MyoD are involved 

in specification and commitment of muscle progenitors into skeletal muscle lineage. Mrf4 also plays a 

role as a determination gene in addition to directing terminal differentiation along with myogenin.  

The bHLH domain of the MRFs is responsible for DNA binding and for dimerization with 

the ubiquitously expressed bHLH E protein (Hu et al., 1992; Murre et al., 1989; Parker et al., 

2006). The resulting myogenic bHLH-E heterodimers bind to DNA at the consensus 

sequences known as an E-box (CANNTG), specific DNA motifs present at muscle gene 

enhancers and/or promoters, where they regulate gene expression (Sartorelli and Caretti, 

2005). These genes include cytoskeletal, sarcomeric, metabolic, and cell signaling proteins 

(Angus et al., 2001; Gramolini and Jasmin, 1999; Kraner et al., 1999; Li and Capetanaki, 1993; 

Lin et al., 1991; Marsh et al., 1998; Shield et al., 1996; Simon and Burden, 1993; Wheeler et al., 

1999). A requirement for the MyoD family of transcription factors in this combinatorial 

complex is demonstrated by the fact that the E protein homodimers bind to the same DNA 

sequences as the MyoD-E protein heterodimers, yet only the MyoD-E protein complex can 

cooperate with MEF2 factors (Naya et al., 1999). Furthermore, the MRFs and MEF2 factors 

activate and repress each others transcription in a complex network (Arnold and Winter, 

1998; Bergstrom et al., 2002; Cserjesi and Olson, 1991; Olson and Klein, 1994; Wong et al., 

1994). For example, expression of myogenin requires MEF2, while myogenin activates the 

expression of MEF2 independently of other skeletal gene products (Cserjesi et al., 1991;  

Ridgeway et al., 2000). Similarly, MRFs can positively regulate their own transcription and 
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transcription of each other, creating positive auto- and cross-regulatory loops (Braun et al., 

1989; Thayer et al., 1989) 

3.2. Roles of meox and pax in the specification of myogenic progenitors  

Signals from surrounding tissues activate the premyogenic program, and result in the 

expression of transcription factors such as Pax3, and Meox1/2 that specify cells into the 

skeletal muscle lineage and mediate the induction of the MRFs (McDermott et al., 2005; 

Petropoulos and Skerjanc, 2002; Petropoulos et al., 2004; Ridgeway and Skerjanc, 2001; 

Williams and Ordahl, 1994).  

Pax3, a transcription factor with homeo and paired domain motifs, is thought to be activated 

by Wnt6a (Fan et al., 1997) and is responsible for both delamination and migration of muscle 

progenitors to the limb bud (Tajbakhsh et al., 1997). Pax3 is initially expressed throughout 

the somite before becoming restricted to the dermomyotome and subsequently the 

migratory muscle progenitor cells (Goulding et al., 1994; Williams et al., 1994). The 

importance of Pax3 in the delamination and migration of muscle progenitor cells is 

highlighted by the fact that mice which are Pax3 null have severe muscle loss (Alvares et al., 

2003; Bladt et al., 1995; Dietrich et al., 1999; Epstein et al., 1996; Grifone et al., 2005).  

Pax3 directly regulates the expression of Myf5 through the limb bud enhancer of Myf5 gene 

(Bajard et al., 2006) and acts with Myf5, upstream of MyoD which cannot be properly 

expressed in the Pax3/Myf5 double knockout (Tajbakhsh et al., 1997). It is when the migrating 

cells reach the limb bud that they begin to express Myf5 and MyoD, and it is both before and 

after activation of these genes that the cells undergo extensive proliferation (Buckingham et al., 

2003; Tajbakhsh and Buckingham, 1994). Pax3, along with additional factors such as Myf5, c-

met, Msx1 and the fibroblast growth factor (FGF) family of receptors promote myoblast 

proliferation. Proliferation is arrested by inhibitory signals which promote differentiation by 

inducing cell cycle arrest proteins such as MyoD (Alric et al., 1998). 

Meox1 and Meox2 are closely related homeobox genes with mesoderm and mesenchyme 

specific expression during mouse development (Candia et al., 1992). Meox1 is expressed in 

the dermomyotome whereas after delamination and migration to the limb bud, Meox2 is 

predominantly expressed (Candia et al., 1992; Candia and Wright, 1996). In Meox2 deficient 

limb buds, Pax3 and Myf5 are downregulated and mice homozygous for a null mutation in 

Meox2 have defects in limb muscle differentiation resulting in an overall reduction in 

muscle mass and absence of specific muscles (Mankoo et al., 1999). It is only the compound 

mutant embryos of Meox1-/-; Meox2-/- that display a dramatic phenotype associated with 

disrupted somite development. In these embryos, the axial skeleton fails to develop and 

most skeletal muscles are absent or reduced in size (Mankoo et al., 2003). Interestingly, in 

cell cultures, overexpression of Meox1 does not induce myogenesis and while a dominant 

negative Meox1 has been shown to downregulate Pax3 and Gli2 expression and inhibit 

myogenesis in the P19 stem cells (Petropoulos et al., 2004), Meox1 mutant mice exhibit mild 

defects in sclerotome-derived vertebral and rib bones (Mankoo et al., 2003) rather than 

showing any overt muscle defects. 
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3.3. Roles of histone acetyltransferases in myogenic expression 

Not only are extracellular signals crucial for the proper induction of MRFs, but intracellular 

prompts involving acetyletransferases play a fundamental role as well. CBP and p300 are 

required for growth arrest and apoptosis (Vo and Goodman, 2001), and along with PCAF 

are required for terminal differentiation of myoblasts and transactivation of muscle specific 

promoters such as myosin heavy chain (MHC) and muscle creatine kinase (MCK) (Eckner et 

al., 1996; Polesskaya et al., 2001; Puri et al., 1997a; Puri et al., 1997b; Yuan et al., 1996). 

Embryonic stem cells lacking p300 or its HAT activity are strongly impaired in their ability 

to activate Myf5 and MyoD (Roth et al., 2003). When properly expressed, Myf5 and MyoD, 

in cooperation with MEF2 transcription factors and with p300 and CBP, mediate the 

activation of the secondary MRFs, myogenin and Mrf4. p300 has been shown to bind 

directly to MyoD (Sartorelli et al., 1997; Yuan et al., 1996), and both p300 and PCAF play a 

critical role in the maximal MyoD dependant transactivation; p300 acetylates histones H3 

and H4 and recruits PCAF to the promoter whereas PCAF acetylates MyoD to enhance 

transcription initiation, increase its affinity for DNA binding, and facilitate heterodimer 

formation with E proteins (Dilworth et al., 2004; Puri et al., 1997a; Sartorelli et al., 1999). 

However, MyoD has also been found to be acetylated in proliferating myoblasts where it is 

inactive, therefore further mechanisms besides simply acetylation are required for MyoD 

activation (Polesskaya et al., 2000). 

4. Impact of extracellular cues on MRF expression 

Ligands of RAR and RXR play important roles in the activation of myogenesis and this 

activation is highly dependent on the identity of the ligand. RA is required for proper 

somite formation (Maden et al., 1996; Maden et al., 2000; Niederreither et al., 1999), induction 

of specification genes Meox1, Meox2, and Pax3, and counteracts inhibitory signals such as 

BMP4 (Kennedy et al., 2009). RA signaling intersects with that of BMP4, as BMP4 and RA 

function antagonistically and have the capacity to counteract each other's inhibition of entry 

into skeletal and cardiac muscle lineages (Kennedy et al., 2009). Low concentrations of RA 

can regulate the levels of Myf5 implying the existence of a RARE in the Myf5 regulatory 

region (Carnac et al., 1993). RA also enhances MyoD and myogenin expression (Carnac et al., 

1993), and RA receptors and MyoD have been found to upregulate each other’s 

transcriptional activity; their transcriptional co-activation requires a RA receptor-MyoD 

complex that binds to MyoD DNA binding sites in muscle cells (Froeschle et al., 1998). RA is 

capable of inhibiting proliferation of myoblasts through inducing cell cycle arrest proteins 

(Alric et al., 1998) and in vitamin A deficient embryos, myogenin is downregulated (Maden 

et al., 2000) providing a link between RA and myoblast maturation. 

RA and bexarotene are both capable of inducing skeletal myogenesis in the P19 stem cells, 

however, they do so through differential activation of crucial specification genes (Le May et 

al., 2011). Bexarotene primarily activates Meox1 while RA mainly activates Pax3. 

Nontheless, both ligands are equally capable of inducing later target genes such as MyoD 

and myogenin. Alternatively, only bexarotene is capable of inducing myogenesis in ES cells 
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to a significant level (Le May et al., 2011). Furthermore, treatment of these cells with 

bexarotene gives long, mature, multinucleated myofibers. 

4.1. Stem cell as a model for study of myogenic differentiation 

It is highly advantageous to use stem cell tissue cultures to study the importance of 

specification genes in a controlled environment to understand their relationship with each 

other and their regulation by extracellular signaling molecules. Specification factors exist in 

a very complex relationship and have the ability to autoregulate and cross-regulate one 

another (Petropoulos et al., 2004).  

In P19 stem cell cultures, Pax3 overexpression can induce Meox1 but is unable to activate 

Gli2 and a dominant negative Pax3 mutation does not affect Gli2 levels. Conversely, Gli2, 

which also has the ability to upregulate Meox1, can upregulate Pax3 while the dominant 

negative Gli2 P19 cells downregulate Meox1, Pax3, and MyoD expression and inhibits 

myogenesis. Lastly, Meox1 can activate the expression of Gli2 but overexpression of this 

protein is insufficient to induce Pax3 or skeletal myogenesis (Petropoulos et al., 2004). The 

ability of each of these factors to induce each other, or, in their absence, completely abolish 

myogenesis underlines the importance of these factors in the specification process.  

Wnt signaling via β-catenin is also essential and sufficient for the induction of specification 

factors Pax3, Meox1, and Gli2 and in P19 stem cells, a dominant negative β-catenin inhibits 

Pax3, Gli2, Meox1 and MyoD expression and abolishes myogenesis (Petropoulos et al., 2002). 

This is not surprising since mutations of either Gli2, Meox1, or Pax3 in these cells will 

abrogate myogenesis (Petropoulos et al., 2004). Pax3 expression is essential and sufficient for 

the expression of the transcription factor Six1 and the induction of skeletal myogenesis 

(Ridgeway et al., 2001). Its overexpression induces Myf-5, MyoD, and myogenin expression 

(Maroto et al., 1997) whereas a dominant negative Pax3 in P19 cells results in a loss of MyoD 

and myogenin expression and subsequent myogenesis (Ridgeway et al., 2001). 

4.2. Significance of a separate RXR signaling pathway  

The importance of a separate, rexinoid signaling pathway in skeletal muscle development 

non-overlapping with RA signal transduction is demonstrated by the fact that an RXR 

selective ligand, bexarotene effectively enhances skeletal myogenesis in mouse ES cells that 

respond poorly to RA (Le May et al., 2011). This difference in the two signaling pathways 

stems from differential activation of very early genes involved in crucial lineage 

specification, although both bexarotene and RA are dependent on functional β-catenin 

signaling (Le May et al., 2011). It is intriguing that a cell type such as ES cells, that has thus 

far been relatively resistant to RA-induced skeletal muscle differentiation develops so well 

in the presence of an RXR selective ligand, especially considering these cells do not posse 

the necessary machinery to synthesize 9-cis RA, the purported endogenous ligand (Chen 

and Khillan, 2010). It appears that P19 cells have the ability to differentiate by both retinoid 

and rexinoid signaling instigated pathways while ES cells respond well only to rexinoid 
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mediated pathways. Similarly, RAC65 cells resistant to RA-induced skeletal muscle and 

neuronal conversion (Costa and McBurney, 1996) demonstrate efficient skeletal 

differentiation when treated with RXR selective ligand (Le May et al., 2011). The ability of 

rexinoid to bypass the dominant negative RAR inhibition in RAC65 cells is not unique to 

skeletal muscle and has also been documented for neuronal differentiation as well (Yokota 

and Ohkubo, 1996). Finally, RXR is able to activate target genes involved in RA signaling 

that cannot be induced by RARs as is the case with the response element in the CRBPII 

(Cellular Retinol Binding Protein Type II) gene which contains a DR1, underscoring the 

possibility of RXR/RXR and RXR/RAR independent pathways (Mangelsdorf et al., 1991). 

It remains to be determined which specific co-activators are recruited by RXR in the 

enhancers or promoters of target genes during skeletal myogenesis. RXR homodimers or 

RXR permissive heterodimers might recruit a separate set of co-activators and therefore 

differentially control gene expression. It could be that the unique ability of bexarotene 

versus RA to control the transcription factor’s interactions with co-activators is the method 

by which distinct and even competing signaling pathways can be distinguished. 

4.3. Unsaturated fatty acids activate RXR  

The physiological significance of 9-cis RA signaling is debated due to a lack of consensus on 

its existence in the developing embryo. However, the enzymes that contribute to its 

biosynthesis are well documented (Mertz et al., 1997; Romert et al., 1998) in addition to its 

ability to induce the formation of homodimers that bind to DR1 sequences (Zhang et al., 

1992). The lack of a known ligand is hardly reason to exclude RXR as physiologically 

significant in vivo and a major factor that supports the presence of an active endogenous 

ligand is the fact that RXR tetramers cannot dissociate without agonist binding.  

Studies using RXR ligand-detector mice have identified specific regions of the spinal cord as 

major sites of endogenous rexinoid production and classify naturally occurring poly-

unsaturated fatty acids, including docosahexaenoic acid (DHA) as a major endogenous 

ligand for RXR in the mouse brain (Ahuja et al., 2003; de Urquiza et al., 2000). When 

characterized in the ligand binding domain of RXR-α, DHA has a significantly higher 

number of ligand-protein contacts than 9-cis and certain synthetic ligands and also has the 

ability to activate RXR homodimers as well as synergistically activate the RXR-RAR 

heterodimers in combination with all-trans RA (Lengqvist et al., 2004). It remains to be 

determined if this ligand is functional in all tissues or whether there are other yet 

undiscovered ligands. Presently, additional unsaturated fatty acids, including 

docosapentaenoic, arachidonic, and oleic acids, also have been found to bind and activate 

RXR, suggesting that this ability is not exclusive for DHA. Irrespective of whether an 

endogenous RXR ligand does indeed exist, the ability to control cell growth and 

differentiation through targeting RXR with highly selective ligands confers many therapeutic 

applications to this unique receptor. 
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5. Therapeutic potentials of rexinoids  

It is unknown whether RXR homodimer or RXR permissive heterodimer signaling is the 

main mechanism governing skeletal muscle differentiation. Regardless, controlling cell 

processes using RXR selective ligands underlines the fact that two distinct and possibly 

overlapping pathways exist. Moreover, RAR-independent rexinoid signaling provides 

another route of achieving cell cycle arrest and differentiation when RA signaling is 

aberrant, a situation frequently seen in cancer where differentiation often appears to result 

in loss of a malignant phenotype (Gokhale et al., 2000).  

RXR-α overexpression sensitizes tumors to rexinoid-induced anti-growth effects, cellular 

differentiation, decreased cell proliferation, apoptosis of some type of cancer cells, and 

prevention of angiogenesis and metastasis (Qu and Tang, 2010). Bexarotene, has been 

approved by the FDA for use in the treatment of refractory or persistent cutaneous T-cell 

lymphoma and has the ability to reduce tumor development in several other cancers (Duvic 

et al., 2001; Wu et al., 2002). However, the use of this compound in the treatment of lung and 

breast carcinomas has yielded disappointing results (Tanaka et al., 2009) demonstrating our 

lack of understanding of the molecular mechanisms underlying rexinoid-induced antitumor 

effects and RXR-induced multi-pathway activation.  

One of the reasons rexinoids seem such promising chemotherapeutic compounds compared 

to retinoids, is that retinoids have numerous side effects which severely limit the dosage and 

efficacy while rexinoids display mild toxicity. Furthermore, RXR expression is rarely lost in 

human tumors whereas RAR expression is frequently lost or reduced in various cancers 

(Sun and Lotan, 2002; Umesono et al., 1989). Since p53 abnormalities are reported in more 

than 50% of human cancers, and p21 is rarely mutated (Shiohara et al., 1994; Tanaka et al., 

2007), RXR mediated induction of p21 is a promising therapeutic target for these cancers. 

The study of myogenic differentiation may provide some answers to new target genes as the 

development and progression of cancer involves aberrations in the same mechanisms that 

regulate cell differentiation during embryogenesis. It remains to be revealed which other 

genes can also be targeted by rexinoids and which specific interactions take place that we 

can study and apply to our development of more potent and effective therapeutics. 

Pluripotent stem cells closely simulate embryonic development and present a model system 

with which to dissect signaling pathways of target receptors in controlled environments. 

They hold a tremendous potential for cell-based therapies through their capacity to grow 

and regenerate new tissues. Many diseases including muscular dystrophies, cancer, AIDS, 

and even normal conditions such as aging show prominent muscle loss that would benefit 

enormously from regenerative cell-based therapies. However, our ability to use stem cells in 

muscle-wasting disorders has been limited due to the low rate of myogenic differentiation in 

ES cell cultures and the difficulty in identifying and isolating progenitor cells. To harvest the 

full potential of these cells in therapies, it is imperative that we find small molecule inducers 

capable of efficiently directing stem cells into skeletal muscle lineage. Attempts at using RA 

in ES cell cultures have thus far yielded disappointing results; however, the ability of 
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rexinoids to induce these cells has not yet been fully explored. Understanding the myogenic 

pathway in vivo as well as deciphering differentiation cues to culture pure populations of 

myogenic progenitors will prove a vital tool in the treatment of such devastating diseases. 

6. Conclusion 

RXR selective ligand is an effective inducer of skeletal myogenesis not only in the P19 

pluripotent stem cells, but also in the mouse ES cells which have thus far been relatively 

resistant to RA induction. RXR specific signaling plays an important role in this process 

through a separate RAR-independent mediated pathway. It appears that RA and rexinoid 

enhance skeletal myogenesis through differential activation of early developmental genes. 

Our study demonstrates that activation of RXR causes an increase in the mesodermal Meox1 

gene while RA induces the skeletal specific gene Pax3. It will be interesting to uncover other 

novel genes targeted by rexinoid. Determining the molecular mechanism by which rexinoid 

exerts its effects to enhance skeletal myogenesis is challenging due in part to the complexity 

of the developmental systems in which it exerts its effects as well as the intricate relationship 

of protein complexes and gene regulation. Since ES cells closely recapitulate the properties 

of the developing embryo, elucidating these molecular pathways will be imperative in the 

manipulation of stem cell progenitors and aid in the generation of pure populations of 

skeletal myocytes to use in the treatment of muscle-related diseases.  
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