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1. Introduction

Recently, the wind generation systems are attracting attention as a clean and safe renewable
energy source. Induction machines have many advantageous characteristics such as high ro‐
bustness, reliability and low cost. Therefore, induction machines are used in high-perform‐
ance applications, which require independent torque and flux control. The induction
machines may be used as a motor or a generator. Self-excited induction generators (SEIG)
are good candidates for wind-power electricity generation especially in remote areas, be‐
cause they do not need an external power supplies to produce the excitation magnetic fields
in [1–3]. The excitation can be provided by a capacitor bank connected to the stator wind‐
ings of the induction generator. Magnetizing inductance is the main factor for voltage build-
up of the IG. The minimum and maximum values of capacitance required for self-excitation
have been analyzed previously in [4–7].

The three phase current regulated pulse-width modulation (CRPWM) AC/DC/AC convert‐
ers have been increasingly used for wind energy system applications. Their attractive fea‐
tures include: regulated DC-link voltage, low harmonic distortion of the induction generator
currents and controllable power factor and efficiency in [8–9]. The current regulation of a
SEIG in the synchronous frame has the advantages of fast dynamic current response, good
accuracy, constant switching frequency and less sensitivity to parameter variations. In wind
generation systems, a variable speed generation system is more attractive than a fixed speed
one because of the improvement in the wind energy production. In a variable speed system,
wind turbine can be operated to produce its maximum power at every wind speed by ad‐
justing the shaft speed optimally. In order to achieve the maximum power point tracking
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(MPPT) control, some control schemes have been studied. For example, a search-based or
perturbation-based strategy in [10–11], a fuzzy- logic based control in [12], a wind speed-es‐
timation-based algorithm has been applied. Since the squirrel-cage IGs have robust con‐
struction, lower initial, run-time and maintenance cost, squirrel-cage IGs are suitable for
grid-connected as well as isolated power sources in small hydroelectric and wind-energy
applications. Therefore an IG system using radial basis function network (RBFN) was pro‐
posed to yield maximum power output through the DC-link power control in [13-14].

In the past several years, much research has been carried out in neural network control. It has
proven that an artificial neural network can approximate a wide range of nonlinear functions
to any desired degree of accuracy under certain conditions. In the conventional gradient de‐
scent method of weight adaptation, the sensitivity of the controlled system is required in the
on-line training process. However, it is difficult to acquire sensitivity information for un‐
known or highly non-linear dynamics. Wavelets have been combined with the neural network
to create wavelet–neural–networks (WNNs). It combine the capability of artificial neural net‐
works for learning from process and the capability of wavelet decomposition for identification
and control of dynamic systems. The training algorithms for WNN typically converge in a
smaller number of iterations than the conventional neural networks. Unlike the sigmoid func‐
tions used in the conventional neural networks, the second layer of WNN is a wavelet form, in
which the translation and dilation parameters are included. Thus, WNN has been proved to be
better than the other neural networks in that the structure can provide more potential to enrich
the mapping relationship between inputs and outputs in [15-23].

Particle swarm optimization (PSO),  first  introduced by Kennedy and Eberhart in [24],  is
one of the modern heuristic algorithm. It was developed through simulation of a simpli‐
fied social system and has been found to be robust in solving continuous nonlinear opti‐
mization  problem  in  [25-29].  The  PSO  technique  can  generate  a  high  quality  solution
within shorter calculation time and stable convergence characteristics than other stochas‐
tic methods in [30-34]. Much research is still in progress for proving the potential of the
PSO in solving complex dynamical systems.

The recent evolution of power-electronics technologies has aided the advancement of varia‐
ble-speed wind-turbine generation systems in [35–39]. In spite of the additional cost of pow‐
er electronics and control circuits, the total energy captured in a variable-speed wind-
turbine system is more than the conventional one. Thus, the variable-speed wind-turbine
system has lower life-cycle cost. Moreover, the PWM converters not only can be used as a
variable capacitor but also can supply the needed reactive power to load and to minimize
the harmonic current and imbalance in the generator current. On the other hand, the varia‐
ble speed wind turbine driven SEIG systems display highly resonant, nonlinear, and time-
varying dynamics subject to wind turbulence and operating temperature of the SEIG.
Furthermore, there is an appreciable amount of fluctuation in the magnitude and frequency
of the generator terminal voltage owing to a varying rotor speed governed by the wind ve‐
locity and the pulsating input torque from the wind turbine. The phenomena of fluctuation
are objectionable to some sensitive loads. Therefore, the employment of PWM converters
with advanced control methodologies to control the wind turbine driven SEIG systems is
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necessary in [36–38]. In addition, for the research of wind energy conversion systems, the
developments of wind turbine emulators are also necessary in [43, 44]. However, the fuzzy
logic controller, the sliding-mode controller, and the PI controller adopted in [40–48] may
not guarantee the robustness when parameter variations or external disturbance occurred in
the control system in practical applications due to the lack of online learning ability.

This Chapter is organized as follows. Section 2 presents the variable speed wind generation
system description. In this section the analysis of the wind turbine is carried out and the
maximum power point tracking analysis is also introduced. In Section 3, the dynamic model
of the self-excited induction generator is introduced to analyze all its characteristics. Section
4 provides the indirect field-orientation control (IFOC) dynamics for the IG (torque, slip an‐
gular frequency and voltage commands) which are derived from the dynamic model of
SEIG. The d-q axes current control according to the IG rotor speed gives the maximum me‐
chanical power from the wind turbine and the losses of the IG are minimized. In Section 5,
the dynamic equations of the CRPWM converter in the synchronous reference frame are car‐
ried out based on the IFOC dynamics of the IG. The dynamic equations of the grid-side
CRPWM voltage source inverter connected to the grid are given in Section 6. By using vec‐
tor control technique, the currents of the CRPWM inverter are controlled with very high
bandwidth. The vector control approach is used, with a reference frame oriented along the
grid voltage vector position. This allows independent control of the active and reactive pow‐
er. Section 7 considers the design procedures for the PID voltage controller of the IG-side
CRPWM voltage source converter, the PID active power and reactive power controllers for
the grid-side CRPWM inverter. In Section 8, an intelligent maximization hybrid control sys‐
tem based on the WNN with IPSO is proposed in order to control the DC-link voltage of the
IG-side CRPWM voltage source converter, active power and reactive power of the grid-side
CRPWM voltage source inverter effectively based on the MPPT from the wind driven SEIG
system. Finally, to testify the design of the proposed hybrid control system and MPPT con‐
trol scheme, the variable speed wind generation system is simulated in Section 9. The dy‐
namic performance of the system has been studied under different wind velocities. The
simulation results are provided to demonstrate the effectiveness of the proposed hybrid
control for variable speed wind generation system.

2. Variable Speed Wind Generation System Description

The proposed wind generation system is shown in Figure 1. The wind turbine is coupled to
the shaft of a SEIG. The output of the SEIG is connected to a double-sided CRPWM voltage
source converter connected to a utility grid.

2.1. Double-Sided Converter System

The voltage-fed double-sided converter scheme used in the proposed wind energy conver‐
sion system is shown in Figure 1. The variable frequency variable voltage power genertated
is rectified by a PWM converter. The PWM inverter topology is identical to that of the PWM
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converter and it supplies the generated power to the utility grid. The converter consists of
six switches with their anti-parallel diodes that are switched using space vector pulse width
modulation (SVPWM) pattern. The switching functions of the top and bottom devices are
defined S a, S b and S c; and S a ', S b ' and S c ' respectively. The switching function has a value
of one when the switch is turned on and it is zero when it is turned off. The voltage equa‐
tions for the converter in the stationary reference frame can be expressed in terms of the
switching functions as given by (1-3).

V a =
1
3 Vdc 2Sa−Sb−Sc (1)

V b =
1
3 Vdc −Sa + 2Sb−Sc (2)

V c =
1
3 Vdc −Sa−Sb + 2Sc (3)

2.2. Analysis of Wind Turbine

The wind turbine  driven SEIG system has  the  following parameters.  The Wind turbine
parameters are P  m=1.5 kW at V  ω=16m/s, turbine radius R  T=0.7m and λ  opt=6.5 while the
IG parameters are P e=1.5 kW, V=380 V, I s=4 A, number of poles P=4, f=50 Hz, R s =6.29Ω,
R  r  =  3.59Ω, L  s  =L  r  =480 mH,  L  m  =464 mH and the total moment of inertia of the wind
turbine and the IG J=2 kg. m2.

The wind turbine is characterized by the non-dimensional curve of coefficient of perform‐
ance as a function of tip-speed ratio λ. The mechanical input power P m of a fixed-pitch wind
turbine as a function of the effective wind velocity V ω through the blades, the air density, ρ,
the blades radius R T and the power coefficient C P is given in [9, 12]:

PmT =
1
2 ρπRT

2Vω
3CP(λ) (4)

Considering the rotational speed of the wind turbine ω t and the torque coefficient C T(λ),
the wind turbine mechanical torque is given by:

TmT =
1
2 ρπRT

3Vω
2CT (λ) (5)

CP(λ)=λCT (λ) (6)

where C P(λ) is the turbine power coefficient, C T(λ) is the turbine torque coefficient, V ω is
the wind velocity (in m/s), ρ is the air density (typically 1.25 kg/m3), R T is the blades radius
(in m) and λ is tip-speed ratio and is defined as:
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λ =ωT RT / Vω (7)

where ω T is the wind turbine rotational speed (rad/s).
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Figure 1. Intelligent maximization control of a variable speed wind driven self-excited induction generator system
connected to a utility grid.

The turbine  power coefficient  C  P(λ)  and the  turbine  torque coefficient  C  T(λ)  are  func‐

tions of the tip-speed ratio of the blades if  the pitch angle of the blade is constant.  The

turbine  power  coefficient  is  represented  by  various  approximation  expressions.  In  this

Chapter, C P (λ) and C T(λ) are approximated by a fifth-order polynomial curve fit given

by (8-9) and are shown in Figures (2 and 3). The power and torque versus speed curves

of  wind  turbine  can  be  calculated  by  (4)-(7)  at  various  wind  velocities.  The  optimum

point corresponds to the condition where the power coefficient C P(λ) becomes the maxi‐

mum. The maximum C P is 0.37 when λ=6.7.

CP(λ)=0.0084948 + 0.05186λ −0.022818λ 2

+0.01191λ 3−0.0017641λ 4 + 7.484x10−5λ 5
(8)
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CT (λ)=0.00066294 + 0.0091889λ −0.0026952λ 2

+0.001688λ 3−0.00028374λ 4 + 1.3269x10−5λ 5
(9)

2.3. Maximum Power Point Tracking Analysis

When the tip speed ratio is controlled by the optimum value regardless of the wind speed,
the maximum mechanical power is obtained from the wind turbine. The optimum speed of
the IG for maximum power of the wind turbine is given by (10) and the maximum mechani‐
cal power and the optimal torque are given by (11) and (12).

opt optK V  = (10)

3
max max

V
Tm pP K V = (11)

2V
Tm opt T optT K V = (12)

2
max ,max

1
2

V
p T pK R Crp = (13)

KT −opt
V =

1
2 ρπRT

3Cp,max / λopt (14)

Kω−opt =λopt / RT (15)

K p−max
ω = K p−max

V / (Kω−opt)3 (16)

KT −opt
ω = KT −opt

V / (Kω−opt)2 (17)

PTm−max = K p−max
ω ωopt

3 (18)

TTm−opt = KT −opt
ω ωopt

2 (19)

When the IG speed is always controlled at the optimum speed given in (10), the tip-speed
ratio remains the optimum value and the maximum power point can be achieved. At any
wind speed, we can calculate the optimum rotational speed of the IG from (10), and then the
maximum mechanical power is calculated from (11). The maximum power is used as the
reference power to the CRPWM converter in order to get the maximum load current.
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From (10)-(17), the maximum power and optimal torque as function of the optimum rota‐

tional IG speed are calculated and given by (18)-(19). From Figure 4, it is clear that the maxi‐

mum power can be achieved when the IG torque is controlled on the optimal torque curve

according to the IG rotor speed.

T IG−opt = −KT −opt
ω−IGωr

2 (20)

KT −opt
ω−IG = KT −opt

V / G.(Kω−opt)2 (21)

3. Dynamic Model of the Self-Excited Induction Generator

The dynamic model of the IG is helpful to analyze all its characteristics. The d-q model in the

arbitrary reference frame provides the complete solution for dynamic analysis and control in

[2-4]. The dynamic model is given by (22-24, 25).

0
0
0
0

=

(Rs + L sσ
d
dt ) ωL sσ

L m
L r

d
dt

L m
L r

ω

−ωL sσ (Rs + L sσ
d
dt ) −ω

L m
L r

L m
L r

d
dt

−
L m
L r

Rr 0 (Rr / L r +
d
dt ) (ω −ωr)

0 −
L m
L r

Rr
− (ω −ωr) (Rr / L r +

d
dt )

iqs

ids

λqr

λdr

+

V qs

Vds

V qr

Vdr

(22)

V qs =
1
C ∫iqsdt + V cq |

t=0
(23)

Vds =
1
C ∫idsdt + V cd |

t=0
(24)

Te = −
3
2

P
2

L m
L r

(λdriqs −λqrids) (25)

where, V qs, V ds, i qs, and i ds are the stator voltages and currents, respectively. v qr and v dr are

the rotor voltages. λ qr and λ dr are the rotor fluxes. R s, L s, R r and L r are the resistance and

the self inductance of the stator and the rotor, respectively. L m is the mutual inductance.
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Figure 2. Power coefficient versus tip speed ratio.

Figure 3. Torque coefficient versus tip speed ratio.

The relation between the wind turbine output torque and the electromagnetic torque of the
IG is given by (26).

TTm = J
d
dt ωm + βωm + Te (26)

From (22-26), the state equations of the SEIG and wind turbine can be accomplished as in
(27) and (28).

d
dt ωm =

1
J TTm−

β
J ωm−

1
J Te (27)

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications170



Figure 4. Characteristics of wind turbine at various wind speeds.
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(28)

where ω m, J and β are the mechanical angular speeds of the wind turbine, the effective iner‐
tia of the wind turbine, the induction generator and the friction coefficient, respectively.
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In order to model the induction machine when used for motoring application, it is impor‐
tant to determine the magnetizing inductance at rated voltage. In the SEIG, the variation of
magnetizing inductance L m is the main factor in the dynamics of voltage buildup and stabi‐
lization. In this investigation, the magnetizing inductance is calculated by driving the induc‐
tion machine at synchronous speed and taking measurements when the applied voltage was
varied from zero to 100% of the rated voltage. The magnetizing inductance used in this ex‐
perimental setup is given as shown in Figure 5. The test results are based on the rated fre‐
quency (50 Hz) of the IG while the dots are experimental results and the curve is a fifth-
order curve fit given by

L m = −1.023×10-11V ph
5 + 6.162×10-9V ph

4 −1.25×10-6V ph
3

+8.267×10-5V ph
2 −3.843×10−5V ph + 0.1985

where V ph is the phase voltage.

Figure 5. Magnetic curve of the SEIG.

4. Optimal IFOC of the Induction Generator

The IFOC dynamics for the IG can be derived from (22-25), respectively at λ qr=0, dλ qr /dt=0,
dλ dr /dt=0, and ω=ω e. The torque and slip angular frequency for rotor field orientation are
given in (26-27) while the voltage commands of the IFOC are given by (29-31) in [11, 12].

Te = −Kt .ids
e*iqs

e* = −KT −opt
ω−IGωr

2 (29)
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ωsl =
1
τr

.
iqs

e*

ids
e* (30)

V qs
e*

Vds
e* =

eqs
e

eds
e −

Rs + σL s
d
dt ωeσL s

−ωeσL s Rs + σL s
d
dt

iqs
e

ids
e

(31)

where K t=(3/2)(P/2)(L m)2/L r is the torque constant, e e qs and ee ds are the back EMFs of the IG.
T e, τ r, ω sl, and ω e are the electromagnetic torque, the rotor time constant, the slip angular
frequency, and the angular frequency of the synchronous reference frame, respectively.

eqs
e

eds
e =

ωeλdr
e

L m
L r

0
(32)

In the previous analysis, the IG torque is given by (29) as a function of the rotor speed.
Therefore, the d-axes current becomes a function only of the rotor speed. The optimal d-q
axes currents i ds and i qs can be derived from (22) and (29) and are plotted as given in Figure
6. These plots show the relation of the optimal currents as function of the IG rotor speed and
can be approximated by a third-order polynomials given by (34, 35).

ids
e (ωr)iqs

e (ωr)= (KT −opt
ω / Kt)ωr

2 (33)

ids
e−opt(ωr)= Kd 3ωr

3 + Kd 2ωr
2 + Kd 1ωr + Kd 0 (34)

iqs
e−opt(ωr)= Kq3ωr

3 + Kq2ωr
2 + Kq1ωr + Kq0 (35)

By controlling the d-q axes currents utilizing (34)-(35) according to the IG rotor speed, the max‐
imum mechanical power is obtained from the wind turbine and the losses of the IG are mini‐
mized. Also, from (29), it is clear that the IG torque is proportional to the q-axis current when
the d-axis current is kept constant and thus he IG power is almost proportional to q-axis cur‐
rent. Therefore, the control of generated power becomes possible by adjusting the q-axis cur‐
rent according to the required generated power, where the d-axis current is given by (34).

5. Dynamic Model of the IG-Side CRPWM Voltage Source Converter

The block diagram of the CRPWM voltage source converter control system based on the
IFOC-SEIG is shown in Figure 8. It is well known that the IFOC of induction machines al‐
lows for the independent control of two input variables, stator q-axis current i e qs and stator
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d-axis current i e ds. This suggests that it is possible to control the output voltage and power
factor and/or efficiency by controlling the two components of the stator currents. The dy‐
namic equations of the CRPWM converter are based on the IFOC dynamics of the IG in
[12-14] and are given by (36, 37).

eqs
e −V qs

ec = Rsiqs
ec + σL s

d
dt iqs

ec +  ωeσL sids
ec (36)

eds
e −Vds

ec = Rsids
ec + σL s

d
dt ids

ec −  ωeσL siqs
ec (37)

By considering the converter as an ideal current regulated source, the energy is transferred
between the IG and the DC-link. As a consequence, the instantaneous power of both the
converter’s AC-side and DC-side is the same.

Vdcidc =
3
2 (V qs

e iqs
e + Vds

e ids
e ) (38)

From (38), the relation between the DC-link current i dc and the d-q axis currents i e qs and i e ds

is as follows.

idc =
3
2 ( V qs

e

Vdc
iqs

e +
Vds

e

Vdc
ids

e ) (39)

At FOC V e ds ≅  0, therefore, there is a direct relation between the DC-link current and the q-
axis current of the IG.

iqs
e =

2
3

Vdc

V qs
e idc (40)

The dynamics of the DC-link is given by (41-43).

Cdc
d
dt Vdc + iL = idc (41)

Cdc
d
dt Vdc +

1
RL

Vdc = idc (42)

idc =
3
2

V qs
e

Vdc
iqs

e (43)
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where, C dc is the DC-link capacitor, i L is the load current and i dc is the DC-link current. The
state equations of the CRPWM converter and DC-link are derived from (36-43) and are giv‐
en in (44-45).

d
dt Vdc =

1
Cdc

−
1

RL Cdc

idc

Vdc
(44)

e

e

                  0
1                   0  

           0

      0           0
1                0       

ec ec
qs qss s
ec ec
ds s s ds

s q d
dc dcs dc s dc

s

s

i iR L
d i L R i
dt L

V VL K L K

L

L

 s
 s

s
s s

s

s

é ù é ùé ù
ê ú ê úê ú

= ê ú ê úê ú
ê ú ê úê ú

ë ûê ú ê úë û ë û

+           0
0           0            

e ec
qs qs

e ec
s ds ds

s L

e V

L e V
L i

s
s

é ùé ù ê úê ú ê úê ú ê úê úë û ê úë û

(45)

Figure 6. Optimal d-q axes currents as a function of IG rotor speed.

From (45), the current in q-axis iqs
e  can be estimated as:

iqs
e = An

−1 V̇ dc −BniL −C En qds
e (46)

where, An = Kdc
q + Kdc

d / τr .ωsl  , Bn = −1 / Cdc  , Cn = 1 / Cdc  and Eqds
e = eqs

e*−V qs
e* eds

e*−Vds
e*  .
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At the steady state, the load current i L is approximately equals to the DC-link current i dc.
Therefore, the optimal load current can be approximated by (47). Figure 7 shows the opti‐
mal  load  current  corresponding  to  the  maximum  mechanical  power  obtained  from  the
wind turbine.

iL
opt(ωr)= K L 3ωr

3 + K L 2ωr
2 + K L 1ωr + K L 0 (47)

Figure 7. Optimal load current as a function of IG rotor speed.

6. Dynamic Model of the Grid-Side CRPWM Voltage Source Inverter

The grid-side CRPWM voltage source inverter is connected to the grid through three single-
phase coils (control windings). With this configuration it is possible to operate using boost
mode and have attractive features as constant DC–link voltage, low harmonic distortion of
grid current, bidirectional power flow and adjustable power factor. The aim of the control of
the grid-side CRPWM voltage source converter is to impose a current to the control winding
and to control independently the active and reactive power to be injected to the grid. By us‐
ing vector control technique, the currents of the CRPWM inverter are controlled with very
high bandwidth. The vector control approach is used, with a reference frame oriented along
the grid voltage vector position, such that V qg =V mg and V dg =0. This allows independent
control of the active and reactive power through currents i qg and i dg respectively. Usually,
the reactive power component current is set to zero for unity power factor operation. The
primary aim of this control scheme is to modulate the inverter to regulate the magnitude
and the phase angle of the grid supply current, so that the active and reactive power enter‐
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ing the network can be controlled. The procedure for modeling the CRPWM inverter is
based on the virtual-flux orientation control (VFOC) technique. The grid-side converter con‐
trol, shown in Figure 9, is based on the d–q voltage equations of the grid-reactance-convert‐
er system according to following equations:

V q
eg*

Vd
eg* =

eq
eg

ed
eg +

Rg + L g p ωegL g

−ωegL g Rg + L g p
iq

eg

id
eg

(48)

P
Q =

3
2 .

V q
eg Vd

eg

Vd
eg −V q

eg

iq
eg

id
eg

(49)

The vector control of the grid-side CRPWM inverter is represented in the block diagram il‐
lustrated in Figure 9. The control of the reactive power is realized by acting over the control
winding current, i ds. The reference current is obtained by a PI current controller that adjusts
the reactive power to a desired amount. Similarly, the control of the active power is realized
by acting over the control winding current i qs and the reference current is given by a PI cur‐
rent controller. The possible situation for defining the current references is to track the maxi‐
mum turbine power for each wind speed.

At VFOC, V dg =0. Therefore, there are a direct relations between the active power, P and q–
axis current and the reactive power, Q and d–axis current of the control windings. This al‐
lows independent control of the active and reactive power through currents i qg and i dg re‐
spectively according to following equations:

P
Q =

3
2 .

+V q
eg 0

0 −V q
eg

iq
eg

id
eg

(50)

The d-q current commands of the inverter are expressed as:

iq
eg*

id
eg* =

2
3

 +
P *

V q
eg*

−
Q *

V q
eg*

(51)

where, P * and Q * denote the required maximum active and reactive power. To achieve the
unity power factor operation, Q * must be zero. From (50), it is obvious that the current com‐
mand of the d–axis must be zero for unity power factor operation and the current command
of the q–axis can be evaluated from the required active power. It is seen from (47) that cou‐
pling terms exist in the d-q current control loops. The d–q voltage decouplers are designed
to decouple the current control loops. Suitable feed-forward control components of grid vol‐
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tages are also added to speed up current responses. The d-q current control loops of the
CRPWM inverter in the proposed control system are shown in Figure 9.

7. Design of the PID Controllers for Double-Sided CRPWM AC/DC/AC
Voltage Source Converters

This section considers the design procedures for the PID voltage controller of the IG-Side
CRPWM voltage source converter, the PID active power and reactive power controllers for
the grid-side CRPWM inverter. The design procedures are based on the integral time abso‐
lute error (ITAE) performance index response method to obtain the desired control perform‐
ance in the nominal condition of command tracking.

7.1. PID Voltage Controller Design for IG-Side CRPWM Voltage Source Converter

A systematic design procedure for the PI current controllers capable of satisfying the desired
specifications is given in [12]. The gains of the PI d-q axis current controllers have been de‐
termined using the ITAE performance index response method and are given by (51-52).
From the block diagram shown in Figure 8, a back EMF estimator is adopted to q-axis cur‐
rent loop for voltage feed-forward control. The q-axis stator current of the IG is selected as
the variable to be changed to regulate the DC-link voltage. The voltage control is carried out
through a voltage control loop using a PID voltage controller and is designed to stabilize the
voltage control loop. The gains of the PID controller have been determined using the ITAE
performance index response method. By exercising the decoupling control, the dynamic
model including the CRPWM converter and the IG can be simplified and the closed loop
transfer function is given by (53) from Figure 7.

K i
cq =ωn

2σL s

Kp
cq =(1.4ωnσL s −Rs −Tq)

(52)

K i
cd =ωn

2σL s

Kp
cd =(1.4ωnσL s −Rs −Td )

(53)

Vdc(s)
Vdc

* (s) |
iL =0

=
a3s

3 + a2s
2 + a1s + a0

s 4 + b3s
3 + b2s

2 + b1s + b0

≅
ωn

4

s 4 + 2.1ωns 3 + 3.4ωn
2s 2 + 2.7ωn

3s + ωn
4

(54)

The PID voltage controller parameters are given by (54-56).

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications178



KP
v =

1
Kdc

.
σL s

K i
cq (2.7ωn

3−
Kp

cq

K i
cq .ωn

4) (55)
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1
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cq

K i
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K i

cq

σL s
) (57)

7.2. PID Active Power Controller Design for Grid-Side CRPWM Voltage Source Inverter

A systematic design procedure for the PI current controllers is given in [12]. These control‐
lers are designed based on the control windings dynamic model at VFOC. The gains of the
PI d-q axis current controllers have been determined and are given by (57-58). The q-axis
current of the control winding is selected as the variable to be changed to regulate the active
power, P. The active power control is carried out through a power control loop using a PID
controller and is designed to stabilize the active power control loop. The gains of the PID
controller have been determined using the ITAE method. The block diagram of the active
power control loop is shown in Figure 9. The closed loop transfer function of the active pow‐
er control loop is given by (59).

K i
gq =ωn

2L g

Kp
gq =(1.4ωnL g −Rg)

(58)

K i
gd =ωn

2L g

Kp
gd =(1.4ωnL g −Rg)

(59)

Pq
eg(s)

Pmax
T * (s) |

VFOC
=

c3
Ps 3 + c2

Ps 2 + c1
Ps + c0

P

s 3 + d2
Ps 2 + d1

Ps + d0
P  ≅

ωn
3

s 3 + 1.75ωns 2 + 2.15ωn
2s + ωn

3 (60)

The PID controller parameters are given by (60-62).

Kd
P =

(1.75ωnL g K i
qg −Rg K i

qg −2.15ωn
2L g Kp

qg)
(Kq

P K i
2qg + 2.15ωn

2Kq
P Kp

2qg −1.75ωnKq
P Kp

qg) (61)

Kp
P = ( 2.15ωn

2L g

Kq
P K i

qg )− 1
Kq

P + (2.15ωn
2

Kp
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K i
qg ).Kd

P (62)
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K i
P = ( ωn

3L g

Kq
P K i

qg ) + ( Kp
qg

K i
qg ).Kd

P (63)

7.3. PID Reactive Power Controller Design for Grid-Side CRPWM Voltage Source
Inverter

Similarly, the PID reactive power controller is designed and analyzed. The d-axis current of
the control winding is selected as the variable to be used to regulate the reactive power, Q.
The block diagram of the reactive power control loop is shown in Figure 9. The closed loop
transfer function of the reactive power control loop is given by:

Qd
eg(s)

Qmax
T * (s) |

VOC
=

c3
Qs 3 + c2

Qs 2 + c1
Qs + c0

Q

s 3 + d2
Qs 2 + d1

Qs + d0
Q  ≅

ωn
3

s 3 + 1.75ωns 2 + 2.15ωn
2s + ωn

3 (64)

The PID controller parameters are given by (64-66).

Kd
Q =

(1.75ωnL g K i
dg −Rg K i

dg −2.15ωn
2L g Kp

qg)
(Kq

Q K i
2dg + 2.15ωn

2Kq
Q Kp

2dg −1.75ωnKq
Q Kp
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Kp
Q = ( 2.15ωn

2L g

Kq
Q K i
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Kq

Q + (2.15ωn
2

Kp
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K i
dg ).Kd
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K i
Q = ( ωn

3L g

Kq
Q K i

dg ) + ( Kp
dg

K i
dg ).Kd

Q (67)

8. Intelligent Maximization Control for Double-Sided CRPWM
AC/DC/AC Voltage Source Converters

8.1. Configuration of the Proposed Intelligent Maximization Control System

In order to control the DC-link voltage of the IG-side CRPWM voltage source converter, ac‐
tive power and reactive power of the grid-side CRPWM voltage source inverter effectively,
an intelligent maximization hybrid control system is proposed. The configuration of the pro‐
posed hybrid control system, which combines an on-line trained wavelet-neural-network
controller (WNNC) with IPSO and a PID compensator, for wind turbine generation system
is illustrated in Figures (8 and 9). It basically consists of an PI current controllers in the d-q
axis, a three PID controllers and three on-line trained WNNCs with IPSO in parallel with the
three PID controllers for voltage control of the DC-link side of the CRPWM converter, active
power and reactive power of the grid connected CRPWM inverter. Although the desired
tracking and regulation characteristics for DC-link voltage, active power and reactive power
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can be obtained using the PID controllers with nominal parameters, the performance of the
system is still sensitive to parameter variations. To solve this problem, a hybrid controller
combining the PID controller and the WNNC with IPSO is proposed for the DC-link volt‐
age, active power and reactive power for the double-sided CRPWM AC/DC/AC converters.
The control law and error signals are designed as:

Uqs
* =Uqs

*WNNC + Uqs
*PID (68)

iqs
e* =δiqs

e*WNNC + iqs
e*PID (69)

ids
e* =δids

e*WNNC + ids
e*PID (70)

ev =(Vdc
* −Vdc)

V̇ dc =kvdVdc / dt
(71)

eP =(P *−P)
Ṗ =kPdP / dt

(72)

eQ =(Q *−Q)
Q̇ =kQdQ / dt

(73)

where iqs
e*PID is the q-axis current command generated from the PID controller and δiqs

e*WNNC

is produced by the proposed WNNC with IPSO to automatically compensate for perform‐
ance degradation.
iqs

e*PID = iqs
eg*PID for CRPWM inverter, iqs

e*PID = iqs
e*PID for CRPWM converter, ids

e*PID = ids
eg*PID for

CRPWM inverter, δiqs
e*WNNC =δiqs

eg*WNNC  for CRPWM inverter, δiqs
e*WNNC =δiqs

e*WNNC  for

CRPWM converter, ids
e*WNNC = ids

eg*WNNC  for CRPWM inverter, P * = Pmax
T *  for CRPWM inverter,

Q * =Qmax
T *  for CRPWM inverter.

8.2. Wavelet–Neural–Network Controller with IPSO

Since the squirrel-cage IGs have robust construction and lower initial, run time and mainte‐
nance cost squirrel-cage IGs are suitable for grid-connected in wind-energy applications.
Therefore, a WNNC with IPSO is proposed to control a SEIG system for grid-connected
wind-energy power application. The on-line trained WNNC with IPSO combines the capa‐
bility of artificial neural-network for learning ability and the capability of wavelet decompo‐
sition for identification ability. Three on-line trained WNNCs with IPSO are introduced as
the regulating controllers for both the DC-link voltage of the CRPWM AC/DC converter, ac‐
tive and reactive power of the CRPWM DC/AC grid-connected inverter. In addition, the on-
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line training algorithm based on the backpropagation is derived to train the connective
weights, translations and dilations in the WNNs on-line. Furthermore, an IPSO is adopted to
optimize the learning rates to further improve the on-line learning capability of the WNN
and hence the improvement of the control performance can be obtained.

8.3. Wavelet–Neural–Network Structure

The architecture of the proposed four-layers WNN in [15-23] is shown in Figure 10, which
comprises an input layer (the i layer), a mother wavelet layer (the j layer), a wavelet layer
(the k layer) and an output layer (the o layer), is adopted to implement the WNNC. The sig‐
nal propagation and the basic function in each layer are introduced as follows.

1. Layer 1: Input Layer

The nodes in layer 1 transmit the input signals to the next layer. The input variables are the
error signal, e(t) , and the rate of change of the DC-link voltage, active power and reactive
power. For every node i in the input layer, the input and the output of the WNN can be rep‐
resented as:

neti
1 = xi

1, yi
1 = f i

1(neti
1) =neti

1  i =1, 2 (74)

x1
1 = e(t)and x2

1 =ψ(t) (75)

where e(t)= ev(t)= (Vdc
* −Vdc) for the CRPWM converter, e(t)= eP(t)= (P *−P) ,

e(t)= eQ(t)= (Q *−Q) , ψ(t)= V̇ dc , ψ(t)= Ṗ  , for the CRPWM inverter.

2. Layer 2: Mother Wavelet Layer

A family of wavelets is constructed by translations and dilations performed on the mother
wavelet. In the mother wavelet layer each node performs a wavelet ϕ j that is derived from
its mother wavelet. There are many kind of wavelets that can be used in WNN. In this Chap‐
ter, the first derivative of the Gaussian wavelet function φ(x)= − xexp(− x 2 / 2) , is adopted as
a mother wavelet. For the jth node

netj
2 = − (xi

2−μij) / σij, yj
2 = f j

2(netj
2) =φj(netj

2) j =1, ..., n (76)

where μ ij and σ ij are the translation and dilations in the jth term of the ith input xi
2 to the

node of mother wavelet layer and n is the total number of the wavelets with respect to the
input nodes.

3. Layer 3: Wavelet Layer

Each node k in layer 3 (wavelet layer) is denoted by ∏  , which multiplies the incoming sig‐
nal and outputs the result of the product. For the kth nodes:
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netk
3 =∏

j
ϖ jk

3 xj
3, yk

3 = f k
3(netk

3) =netk
3 k =1, ......., m (77)

Figure 8. Integrated block diagram of the generator-side IFOC CRPWM voltage source converter using WNNC with
IPSO control system.

where xj
3 represents the jth input to the node of the wavelet layer (layer 3), ϖ jk

3  is the

weights between the mother wavelet layer and the wavelet layer. These weights are also as‐
sumed to be unity; and m =(n / i) is the number of wavelets if each input node has the same
mother wavelet nodes.

4. Layer 4: Output Layer

The single node o in the output layer is denoted by ∑  , which computes the overall output

as the summation of all incoming signals to obtain the final results.

neto
4 =∑

k

m
ϖko

4 xk
4, yo

4 = f o
4(neto

4) =neto
4 o =1 (78)

yo
4 =Uqs

*WNNC(t)=δiqs
e*WNNC(t) (79)

where the connecting weight ϖko
4  is the output action strength of the oth output associated with

the kth wavelet and xk
4 represents the kth input to the node of output layer. The control problem

is to design the WNNC to improve the convergence of the tracking error for the wind system.
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Figure 9. Integrated block diagram of the grid-side VFOC CRPWM voltage source inverter intelligent control system.

8.4. On-Line Training Algorithm Signal Analysis for WNNC

The essential part of the learning algorithm for an WNN concerns how to obtain a gradient
vector in which each element in the learning algorithm is defined as the derivative of the
energy function with respect to a parameter of the network using the chain rule. Since the
gradient vector is calculated in the direction opposite to the flow of the output of each node,
the method is generally referred to back-propagation learning rule in [15-23]. To describe
the on-line learning algorithm of the WNNC using the supervised gradient descent method,
the energy function is chosen as:

2(1/ 2)( )E e= (80)

In the output layer (layer 4), the error term to be propagated is calculated as:

Discrete Wavelet Transforms - A Compendium of New Approaches and Recent Applications184



4
4

4 4 4 4 4.  . . .o
o

o o o o o

yE E E e E e
net y net e net e net

yd
y

¶¶ ¶ ¶ ¶ ¶ ¶ ¶
=  =  =  = 

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶
(81)

Figure 10. Four-layer wavelet–neural–network (WNN) structure.

The weight is updated by the amount:

Δϖko
4 = −ηv

∂E
∂ϖko

4  = −ηv
∂E
∂ yo

4 .
∂ yo

4

∂neto
4 .
∂neto

4

∂ϖko
4  =ηvδo

4xk
4 (82)

where η v is the learning rate parameter of the connecting weights of the output layer of the
WNNC and will be optimized by the IPSO.

The weights of the output layer (layer 4) are updated according to the following equation.

ϖko
4 (N + 1)=ϖko

4 (N ) + Δϖko
4 =ϖko

4 (N ) + ηvδo
4xk

4 (83)

where N denotes the number of iterations.
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In wavelet layer (layer 3), only the error term needs to be computed and propagated because
the weights in this layer are unity.

δk
3 = −

∂E
∂netk

3 = (− ∂E
∂ yo

4 .
∂ yo

4

∂neto
4 ).( ∂neto

4

∂ yk
3 .

∂ yk
3

∂netk
3 )=δo

4ϖko
4 (84)

In the mother wavelet layer (layer 2), the multiplication operation is done. The error term is
calculated as follows:

δj
2 = −

∂E
∂netj

2  = (− ∂E
∂ yo

4 .
∂ yo

4

∂neto
4 .
∂neto

4

∂ yk
3 .

∂ yk
3

∂netk
3 ).( ∂netk

3

∂ yj
2 .

∂ yj
2

∂netj
2 )=∑

k
δk

3yk
3 (85)

The update law of μ ij is given by:

Δμij = −ημ
∂Ev
∂μij

 = −ημ
∂E
∂ yj

2 .
∂ yj

2

∂netj
2 .
∂netj

2

∂μij
 =ημδj

2
2(xi

2−μij)2

(σij)2 (86)

The update law of σ ij is given by:

Δσij = −ησ
∂Ev
∂μij

 = −ησ
∂E
∂ yj

2 .
∂ yj

2

∂netj
2 .
∂netj

2

∂σij
 =ησδj

2
2(xi

2−μij)2

(σij)2 (87)

where η μ and η σ are the learning rate parameters of the translation and dilation of the moth‐
er wavelet which will be optimized by the IPSO. The translation and dilation of the mother
wavelet are updated as follows:

μij(N + 1)=μij(N ) + Δμij (88)

σij(N + 1)=σij(N ) + Δσij (89)

To overcome the problem of uncertainties of the wind generation system due to parameter
variations and to increase the on-line learning rate of the network parameters, a control law
is proposed as follows.

δo
4 = e + kψ (90)

Moreover, the selection of the values for the learning rates η v, η μ and η σ has a significant
effect on the network performance. In order to train the WNN effectively, three varied learn‐
ing rates, which guarantee convergence of the tracking error based on the analyses of a dis‐
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crete-type Lyapunov function, are adopted. The convergence analyses of the learning rates
for assuring convergence of the tracking error is similar to [14] and is omitted here.

8.5. Improved Particle Swarm Optimization (IPSO)

In the PSO system, each particle adjusts its position according to its own experience and the
experiences of neighbors, including the current velocity, position, and the best previous po‐
sition experienced by itself and its neighbors. However, the efficiency of the PSO algorithm
is affected by the randomly generated initial state. Therefore, the inertia weight Θ is adopted
in the IPSO to balance between the local search ability and global search ability. Moreover,
the inclusion of the worst experience component in the behavior of the particle in the IPSO
gives additional exploration capacity to the swarm. Since the particle is made to remember
its worst experience, it can explore the search space effectively to identify the promising sol‐
ution region in [24]. Thus, the algorithm of the IPSO is derived as follows:

vi
d (k + 1)=Θvi

d (k ) + c1 × r1 ×(Pbesti
d − xi

d (k ))

+c2 × r2 ×(Gbesti
d − xi

d (k )) + c3 × r3 ×(Pworsti
d − xi

d (k ))
(91)

xi
d (k + 1)= xi

d (k ) + vi
d (k + 1) (92)

where vi
d (k ) is the current velocity of ith particle, i = 1,..., P, in which P is the population size;

the superscript d is the dimension of the particle; Pbesti
d  is the best previous position of the

ith particle; Pworsti
d  is the worst previous position of the ith particle; Gbesti

d  is the best pre‐

vious position among all the particles in the swarm; xi
d (k ) is the current position of the ith

particle; c 1, c 2, and c 3 are the acceleration factors; and r 1, r 2 and r 3 represent the uniform
random numbers between zero and one. In addition, the inertia weight Θ is set according to
the following equation in [27]:

Θ =Θmax−
Θmax−Θmin

kmax
×kn (93)

where k max is the maximum number of iterations and k n is the current number of iteration.
Equation (92) restricts the value Θ to the range [Θmax, Θmin]. In this Chapter, the maximum
and minimum values of the inertia weights are Θmax = 0.7 and Θmin = 0.4, respectively.

8.6. WNN Learning Rates Tuning Using IPSO

To further improve the online learning capability of the proposed WNN, the IPSO algorithm
is adopted in this Chapter to adapt the learning rates ηv

v , ημ
v , ησ

v , ηv
P  , ημ

P  , ησ
P  , ηv

Q , ημ
Q and

ησ
Q in the backpropagation learning methodology of the WNN. Moreover, the procedure of

the IPSO algorithm is shown in Figure 11 and is described as follows.
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Figure 11. Flowchart implementation of the IPSO algorithm.

1) Initialization: Randomly generate the initial trial vectors xi
d (k ) , which indicate the possible

solutions for the learning rates. Moreover, the population size is set to P = 15, and the di‐
mension of the particle is set to d = 9 in this Chapter. This step is accomplished by setting
xi

d = xi
0, xi

1, xi
2, xi

3, xi
4, xi

5, xi
6, xi

7, xi
8  represent the desired values of the learning rates ηv

v ,
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ημ
v , ησ

v , ηv
P  , ημ

P  , ησ
P  , ηv

Q , ημ
Q and ησ

Q , respectively. Furthermore, the elements in vector xi
d

are randomly generated as follows:

xi
d ~U ηmin

d , ηmax
d (94)

where U ηmin
d , ηmax

d  designates the outcome of a uniformly distributed random variable
ranging over the given lower- and upper-bounded values η min and η max of the learning rate.

2) Determination of fitness function: For each trial vector xi
d  , a fitness value should be as‐

signed and evaluated. In this project, a suitable fitness function is selected to calculate the
fitness value and defined as

FFIT =
1

0.1 + abs(Vdc
* −Vdc) + abs(P *−P) + abs(Q *−Q) (95)

where F FIT is the fitness value and abs() is the absolute function; 0.1 is added in the dominant
part to avoid the fitness value approaching infinite when the error of the DC-link voltage
approaches zero.

3) Selection and memorization: Each particle xi
d  memorizes its own fitness value and chooses

the maximum one that is the best so far as Pbesti
d  , and the maximum vector in the popula‐

tion Pbest = Pbset1
d , Pbest2

d , …, Pbestp
d  is obtained. Moreover, each particle xi

d  is set direct‐

ly to Pbesti
d  in the first iteration, and the particle with the best fitness value among Pbest  is

set to be the global best Gbest d  .

4) Modification of velocity and position: The modification of each particle is based on (90, 91).

5) Stopping rule: Repeat steps (1)–(4) until the best fitness value for Gbest  is obviously im‐
proved or a set count of the generation is reached. The solution with the highest fitness val‐
ue is chosen as the best learning rates of the WNN. By using the online tuning learning rates
based on IPSO, the WNNC can regulate the DC-link voltage of the CRPWM AC/DC convert‐
er, active and reactive power of the CRPWM DC/AC inverter effectively.

In the IPSO, since the global best Gbest d  has higher priority than the local best Pbesti
d  and

local worst in the optimal algorithm, the acceleration factors are chosen to be c 1 = c 2 = 0.6
and c 3 = 3.10. Moreover, to achieve better global search ability for the IPSO, larger move‐
ment is required for the particle with the chosen larger inertia weight w in the beginning of
the optimization process. Then, a smaller inertia weight Θ is required to improve the search‐
ing accuracy after several times of optimization. Furthermore, the inertia weight Θ must be
less than one to avoid the divergence of the particle. Therefore, the maximum and minimum
values of the inertia weights are chosen to be Θmax = 0.7 and Θmin = 0.4, respectively.
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9. Numerical Simulation Results

In this section, a computer simulation results for the proposed wind generation system are
provided to demonstrate the effectiveness of the proposed control schemes. The wind tur‐
bine SEIG system simulation is carried out using MATLAB/SIMULINK package. Since this
Chapter is dealing with an isolated wind energy conversion system with maximum power
control, the more realistic approach for an isolated wind power control system is to choose
the DC-link voltage, active power and reactive power as the controlled variables.

Wind Speed
Tip Speed

Ratio λ

Power

Coefficient CP

Reference

Rotor Speed

of WTE

Wind Turbine

Output Power Pm

(W)

IG Output

Power PIG

(W)

DC-Link

Power PDC

(W)

Vw=16 m/sec 6.7 0.37 ≈ 296 rad/sec ≈ 1580 ≈ 1500 ≈ 1400

Vw=14 m/sec 6.7 0.37 ≈ 259 rad/sec ≈ 1086 ≈ 1030 ≈ 965

Vw=12 m/sec 6.7 0.37 ≈ 222 rad/sec ≈ 705 ≈ 670 ≈ 637

Vw=10 m/sec 6.7 0.37 ≈ 185 rad/sec ≈ 422 ≈ 400 ≈ 392

Vw=8 m/sec 6.7 0.37 ≈ 148 rad/sec ≈235 ≈ 223 ≈ 212

Vw=6 m/sec 6.7 0.37 ≈ 111 rad/sec ≈ 110 ≈ 104 ≈ 95

Table 1. Parameters of the wind turbine emulator (WTE) at various wind speeds.

Therefore, the DC-link voltage control, active power control and reactive power control us‐
ing the PID controllers and WNNCs with IPSO are carried out for comparison. The dynamic
performance of the wind generation system using double-sided CRPWM AC/DC/AC power
converter system connected to utility grid subjected to three different wind speed variation
profiles are shown in Figures (12-16). The first wind speed variation profile is the stepwise,
the second is the sinusoidal variation profile and the last is the trapezoidal variation profile
as given in the following section. The performance of the whole system at six operating con‐
ditions of wind speeds 6, 8, 10, 12, 14 and 16 m/sec is studied as shown in Table 1. The corre‐
sponding reference rotor speeds of the IG are 111, 148, 185, 222, 259 and 296 rad/sec,
respectively. The respective wind turbine output power, DC-link power commands and IG
output power are also shown in Table 1.

9.1. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Stepwise Wind Speed Profile

The dynamic response of the wind generation system feeding the double-sided CRPWM
AC/DC/AC power converter connected to utility grid based on the maximum power point
tracking (MPPT) control scheme using stepwise profile for wind speed variations of 10 m/s,
12 m/s, 14 m/s and 16 m/s are shown in Figures 12 and 13 utilizing both PID controller and
WNNC with IPSO. These responses are the wind speed, rotor speed of the IG, the q-axis tor‐
que control current of the IG, the DC-link voltage V dc, the DC-link power P dc and the DC-
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link current i dc, respectively, for the CRPWM converter fed from the SEIG. Furthermore, the
maximum active and reactive power injected to the grid at unity power factor, d-q axis cur‐
rents, the phase voltage and currents, respectively, at the AC side of the CRPWM inverter
connected to the utility grid. The dynamic responses of the wind speed, rotor speed of the
IG, the q-axis torque control current of the IG, the DC-link voltage V dc, the DC-link power P
dc and the DC-link current i dc, respectively, are shown in Figure (12-X) for both PID and
WNNC with IPSO controllers for the CRPWM converter fed from the IG. In this simulation,
the wind speed is changed from 10 m/s to 12 m/s, then changed back from 12 m/s to 10 m/s
and the reference voltage for the DC-link is changed from 0 to 539 V. From the simulation
results shown in Figure 12-Xa, sluggish DC-link voltage tracking response is obtained for
the PID controller owing to the weak robustness of the linear controller. Moreover, approxi‐
mately 2 sec is required for the PID-controlled SEIG system to generate the maximum out‐
put power. In addition, from the simulation results, fast dynamic response for the DC-link
voltage can be obtained for the hybrid control of the SEIG wind generation system owing to
the on-line training of the WNNC with IPSO. Moreover, the robust control performance of
the proposed hybrid control system using the WNNC with IPSO at different operating con‐
ditions is obvious. Furthermore, approximately 1 sec is required for the SEIG to generate the
maximum output power. In addition, the dynamic response of the wind generation system
using the hybrid control scheme with the WNNC using IPSO is much better as shown in
Figure 12-Xb. As a result, comparing the results of PID controller with the WNNC, the pro‐
posed hybrid voltage controller is more suitable to control the DC-link voltage of the
CRPWM converter-based SEIG wind generation system under the possible occurrence of
load disturbance and parameter variations.

The output voltage of the DC-link is fed to the CRPWM inverter connected to the utility
grid. The dynamic response of the CRPWM inverter system feeding the utility grid using
PID controllers and WNNC with IPSO for active and reactive power control at the same
condition of wind speed variations and the DC-link voltage command is shown in Figure
12-Y with MPPT control scheme. These responses are the maximum active and reactive
power, d-q axis currents of the CRPWM inverter, the grid voltages and currents at the AC
side of the CRPWM inverter, respectively. It is obvious that zero reactive power and zero d-
axis current which confirms unity power factor operation at different wind speeds. At the
same time the q-axis current and the active power follow their references to give the MPPT.
From the simulation results shown in Figure 12-Ya, sluggish active power tracking response
is obtained for the PID controller owing to the weak robustness of the linear controller.
Moreover, approximately 1.6 sec is required for the PID-controlled CRPWM inverter system
to track the maximum power. In addition, from the simulation results, fast dynamic re‐
sponse for the active power can be obtained for the hybrid control of the CRPWM inverter
system owing to the on-line training of the WNNC with IPSO. Moreover, the robust control
performance of the proposed hybrid control system using the WNNC with IPSO at different
operating conditions is obvious. Furthermore, approximately 0.8 sec is required for the
CRPWM inverter system to track the maximum power. In addition, the dynamic response of
the CRPWM inverter system connected to the utility grid using the hybrid control scheme
with the WNNC with IPSO is much better as shown in Figure 12-Yb. As a result, comparing
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the results of PID with the WNNC-based IPSO, the proposed hybrid active and reactive
power controllers are more suitable to control the power of the CRPWM converter/inverter
system connected to the utility grid under the possible occurrence of parameter variations.
Additionally, from these figures, it is evident that a unity power factor operation is achieved
at different wind speeds. Furthermore, it is obvious that the proposed control scheme illus‐
trates satisfactory performance and good tracking characteristics.

To confirm the effectiveness of the proposed control schemes, the wind speed is changed
from 14 m/s to 16 m/s, then changed back from 16 m/s to 14 m/s. The dynamic response of
the wind generation system using double-sided CRPWM AC/DC/AC power converters is
shown in Figure 13. As result, comparing the results of PID controllers and the WNNCs
with IPSO, the proposed hybrid controller gives robust performance for both the DC-link
voltage, active and reactive power of the AC/DC/AC CRPWM converter considering the ex‐
istence of parameter variations and load disturbances for the wind generation system.

9.2. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Sinusoidal Wind Speed Profile

In order to investigate the effectiveness of the proposed control schemes, the sinusoidal pro‐
file for wind speed variations. The dynamic response of the wind generation system using
double-sided CRPWM AC/DC/AC power converters using both PID controllers and
WNNCs with IPSO technique for the DC-link voltage, active and reactive power is shown in
Figure 14. It is obvious from Figure 14 that good dynamic performance is achieved and the
DC-link actual voltage, actual active and reactive power follow their references. In addition,
the dynamic performance of the wind generation system using the hybrid control scheme
with the WNNCs utilizing IPSO is much better as shown in Figure 14 and provide robust
performance considering the existence of parameter variations and load disturbances for the
wind generation system.

9.3. Wind Generation System Performance with CRPWM AC/DC/AC Converters Using
Trapezoidal Wind Speed Profile

The wind generation system is re-subjected to trapezoidal profile for the wind speed varia‐
tions to study the effectiveness of the proposed control schemes. The dynamic response of
the wind generation system using double-sided CRPWM AC/DC/AC power converters us‐
ing both PID controllers and WNNCs with IPSO technique for the DC-link voltage, active
and reactive power is shown in Figure 15.

It is obvious that good dynamic performance is achieved and the DC-link actual voltage,
actual active and reactive power follow their references.  The line current and voltage at
the AC side of the CRPWM inverter at different wind speeds showing unity power factor
operation  are  shown in  Figure  16.  As  a  result,  comparing  the  results  of  PID controller
with the hybrid control  scheme with the WNNC-based IPSO, the proposed hybrid con‐
trollers  are  more  suitable  to  control  the  voltage  and  power  of  the  CRPWM  converter/
inverter system connected to the utility grid under the possible occurrence of parameters
variations. Additionally, it is evident that unity power factor operation is achieved at dif‐
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ferent wind speed profiles. It is clear that the proposed control scheme illustrates satisfac‐
tory performance and good tracking characteristics.
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Figure 12. Dynamic performance of the wind generation system using stepwise profile wind speed changed from Vw

=10 m/sec to V w =12 m/sec to V w =10 m/sec. (a) Using PID controller (b) Using WNNC with IPSO.
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Figure 13. Dynamic performance of the wind generation system using stepwise profile wind speed changed from Vw

=14 m/sec to V w =16 m/sec to V w =14 m/sec. (a) Using PID controller (b) Using WNNC with IPSO.
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Figure 14. Dynamic performance of the wind generation system using sinusoidal profile wind speed variations. (a)
Using PID controller (b) Using WNNC with IPSO.
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Figure 15. Dynamic performance of the wind generation system using trapezoidal profile wind speed variations. (a)
Using PID controller (b) Using WNNC with IPSO.
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Figure 16. Line side voltage and current showing unity power factor operation at different wind speeds Vw  =10
m/sec,  V  w  =12 m/sec,  V  w  =14 m/sec and V  w  =16 m/sec from top to bottom (a)  Using PID controller (b)  Using
WNNC with IPSO
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10. Conclusion

This Chapter proposed a hybrid control scheme utilizing WNNCs with IPSO for the voltage
control of DC-link voltage, active power and reactive power of the CRPWM AC/DC/AC
power converter feeding from a wind turbine SEIG system. The double-sided AC/DC/AC
CRPWM converter is connected to the utility grid and operated under IFOC and VFOC
which guarantees the robustness in the presence of parameter uncertainties and load distur‐
bances. The IG is controlled by the maximum power point tracking (MPPT) control techni‐
que below the base speed and the maximum energy can be captured from the wind turbine.
The proposed hybrid controller consists of a three feed-back PID controller in addition to a
three on-line trained WNNC with IPSO. Also, this Chapter successfully demonstrated the
application of the PID control and WNN control systems to control the voltage of the DC-
link, active power and reactive power of the CRPWM AC/DC/AC power converter. There‐
fore, the DC-link voltage tracking response, active power and reactive power can be
controlled to follow the response of the reference commands under a wide range of operat‐
ing conditions. Simulation results have shown that the proposed hybrid control scheme us‐
ing the WNNC with IPSO grants robust tracking response and good regulation
characteristics in the presence of parameter uncertainties and external load disturbances.
Moreover, simulations were carried out at different wind speeds to testify the effectiveness
of the proposed hybrid controller. Finally, the main contributions of this Chapter are the
successful development of the hybrid control system, in which a WNNC with IPSO is utiliz‐
ed to compensate the uncertainty bound in the wind generation system on-line and the suc‐
cessful application of the proposed hybrid control scheme methodology to control the DC-
link voltage, active and reactive power of the AC/DC/AC CRPWM converter considering
the existence of parameters uncertainties and external load disturbances.
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