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1. Introduction 

There are about 10 million vehicles run on natural gas in the world. There are about 1.7 

million low-pressure LPG vehicles [1], and 17,000 high-pressure CNG vehicles running in 

Korea and the number is increasing.[2] 

Generally for CNG vehicles, type II vessel, where the increase in used pressure and lighter 

weight are achieved through fiber-reinforced composite material, which is wrapped in hoop-

direction on the steel liner is used. Since 1984, the U.S. experienced more than 80 cases of 

vehicle fuel tank-related accidents [3] and Korea also experienced 8 cases in which the CNG 

tank exploded; thus, there is a need for the development of inspection technology for high-

pressure fuel tanks. In the case of the U.S., the inspection technology of high-pressure fuel 

tanks were developed by DOD and NASA as an inspection technology for missile fuel tanks[4] 

but as the use of high-pressure fuel tanks for transport increased DOT executed a research on 

inspection technology for vehicles based on the research results of NASA and reported that 

among several NDT technology, Acoustic Emission(AE) has a possibility of being used as an 

inspection technology for vehicles[5,6]. The gas vessel, which is made of fiber-reinforced 

composite material, is unlike vessel made of only steel materials in that when the damage 

increases the acoustic generation activity increases but when the degree of damage increases 

even more, the acoustic generation activity rather decreases [7]. A study of defect detection and 

failure analysis for composite Materials using acoustic emission is progressing steadily [9-11,14]. 

2. Experiment  

2.1. Experimental vessel 

Experiment vessel used in this research is a 64 Liter CNG fuel tank used in vehicles. The 

thickness of the liner in the shell is about 6 mm and was made using the DDI (Deep 

Drawing Ironing) method[12,13] using 34CrMo4 steel plate, and is a type-II vessel in which 

glass fiber is hoop-wrapped on the shell of the liner.  
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Figure 1. Schematic diagram of experimental vessel 

C Mn Si P S Cr Mo 

Max 

Min 

0.38 

0.25 

1.00 

0.40 

0.40 

0.10 

0.015 

- 

0.010 

- 

1.20 

0.80 

0.40 

0.15 

P+S ≤0.020 

Table 1. Chemical composition of vessel liner (unit : wt.%) 

2.2. Method of experiment 

For the test, the acoustic emission sensor is R15I (PAC) with the resonance frequency of 150 

kHz and cable of RG58A/U (10m) is put on the middle of shell using the vacuum grease. 

The detected AE signal is put into the DiSP-52 Acoustic emission workstation (PAC) for 

processing. In addition, the water was used as medium for burst test. The threshold value of 

test was set at 45dB. The source of simulated sound was the destruction of the 2H Pentel 

pencil lead. The average sensitivity of sensor was 98dB within 1 inch from sensor. 
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Figure 2. Diagram of Experimentation : (a) Burst and (b) fatigue test of the composite vessel 

The burst pressure was estimated to be 600 bar under the pressured conditions. By raising 

the pressure to 30%, 50%, 60%, 70%, 80% and 90% of estimated burst pressure and keeping 

each pressure stage for 10 minutes as in Figure 3(a), we acquired the AE signal from each 

stage. As can be seen in the figure, pressure was put on the vessel with a pump to control 

the pressure and acoustic emission signals were detected using acoustic emission sensors 

attached to the vessel. And the signal were processed and analyzed after fed into AE 

equipment. The fatigue test repeated 20000 cycles between 0 and 207 bar, afterwards which 

has a used pressure of 0 and afterwards, the pressure was continuously increased and the 

burst test was carried out. Figure 3(b) shows the conditions for pressurization. 

3. Result and research 

3.1. Burst test 

3.1.1. Damage mechanism of composite vessel 

First, the composite materials wrapped in the metal liner were separated due to the matrix 

crack and then each layer was separated from each other. Then, some section of the fuel tank 

was weakened due to the cutting of some reinforced fiber, causing the destruction of metal 

liner of that part and finally destroying the vessel.  

(a) 

(b) 
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Figure 3. Loading sequence : (a) Burst and (b) fatigue test  

 

Figure 4. Composite vessel after burst test 

3.1.2. AE signal generated during burst test 

In this test, considering the flow noise during the initial pressure, I excluded the signal 

during the first two minutes from the data but included the remaining 8 minutes data for 

evaluation. Generally, for the evaluation of the soundness of vessel, a tester imposes 
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pressure on the vessel and keeps the pressure for some time until some sound emits from it. 

This is called the analysis of creep effect. The values in Figure 5 show that the pressure up to 

360 bar, or 60% of the expected burst press is weak, showing that the vessel is not likely to 

receive significant damages. But after 70% of the expected pressure, the signals of 60dB or 

more are often shown, which may mean that there is a lot of creep effect and that the 

significant damages have been done to the vessel. 

 
(e) (f)

(a) (b)

(c) (d)
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Figure 5. Amplitude vs Time plot during load holding : (a)30% (b)50% (c)60% (d)70% (e)80% (f)90% 

and (g)fractured 

The pressure rise to the 80 % and 90 % of the expected burst pressure shows a lot of signals 

with high amplitudes. At the pressure stage of 540 bar or higher, where the burst is likely to 

occur, the signals with the amplitude of 80-100 dB continue to occur while giving the 

continuous leak signal from 1352 seconds to 1361 seconds. The burst occured when the 

pressure rapidly went down to 400 bar. Figure 6 shows the total hits from 2 minutes after 

the start of each load. There is a rapid increase in the number of hits when the load pressure 

goes over 70 % of the expected burst pressure where the significant damage is likely to 

happen. In the final destruction, the number of total hits is low because the time to 

destruction was short, considering the felicity ratio and the pressure rising up to the 

fracture. 

 

Figure 6. Total hits during load holding 

Figure 7 and 8 show that the average rise time and duration for the signals occurred during 

the holding time of each load. The rise time and duration become shorter up to loads up to 

70 % while those from time of 80 % to the time of burst get longer, during which the damage 

is likely to be greater. 

(g)
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Figure 7. Mean rise time during load holding 

 

Figure 8. Mean duration during load holding 

Unlike the metal vessel, the pressure vessel that is made with composite materials has 

various damage mechanisms including the matrix crack, crack growth, separation between 

layers, cutting of fiber, and destruction of metal liner. Figure 9 shows that at the load of 30 % 

stage, the amplitude of signal rises due to the increased sound emission from matrix crack of 

composite materials. It also shows that at the load of 50-60 % of the estimated burst 

pressure, the sound emission is weakened and thus the amplitude of the signal is also 

reduced. At the load of 70 % pressure, the interlayer separation and the cut of reinforced 

fiber start and the amplitude of the signal increases again. Then, more reinforcement fibers 

become severed and the metal liner begins to burst, showing a little increase in amplitude.   

As shown below, the composite material pressure vessel has many damage mechanisms in 

it. The initial damage mechanism contains the matrix crack due to the stress as well as the 

crack grown. As shown in Figure 10 (a), the rise time appears at the range of 10 μs and 100 

μs. This shows the creation of matrix crack and the growth of this crack. The signal from 

around 10 μs is related to the creation of cracks while the signals from 100 μs look to be 

related to the growth of the cracks. 
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Figure 9. Mean amplitude during load holding 

AE signals at the load of 50% and 60% show that the matrix crack and growth occur in this 

range instead of the additional causes for damages. At the load of 70%, a lot of the rise time of 

AE signals come from 500 μs appear. It is likely to indicate that the new damage elements such 

as cut of reinforcement fiber appear. The rapid increase in AE signals around 10 μs shows that 

the growth of matrix cracks such as growth of existing cracks and interlayer separation occur at 

a fast pace. Then, at the load of 80~90%, it is estimated that rapid damages such as growth of the 

previous matrix cracks and the cutting of reinforcement fiber occur, making much sound from 

cutting of reinforcement fiber. The 800 μs of rise time at this stage is likely to be caused by the 

cutting of several lines of reinforcement fibers. Then, at 100% load, a composite of damage 

mechanisms occur, increasing the damage of vessel and then destroying the last metal liner. 

Figure 11 shows the total count of sound emission signals which occur during the 2 minutes 

of holding time. These variables are better indications than mean rise time in Figure 7, mean 

duration of Figure 8 or mean amplitude of Figure 9. It was discovered that it was difficult to 

assess the damage against the vessel with variables such as mean amplitude, total hit, mean 

rise time, or mean duration but the total count and the total signal strength of the sound 

emitted when the load is pressed on, activation and vessel’s damage were better indications 

for damages on the vessel.  

 
(a) (b)
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Figure 10. Rise time vs amplitude plot during load holding : (a)30% (b)50% (c)60% (d)70% (e)80% 

(f)90% and (g)fractured 

(f)

(c) (d)

(e)

(g)
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Figure 11. Total count during load holding 

 

Figure 12. Total signal strength during load holding 

3.1.3. Distribution of AE signal during the holding time 

I did not use the signals during the initial 2 minutes among the 10 minutes to minimize the 

flow noise which often includes the initial stages of pressing in the pressure test. After that, I 

observed the number of hits and creep effect of the sound emission signals which occur 

during the holding time. Even though there were creation and growth of cracks on substrate 

under the load of 60 % of the estimated burst pressure, they did not cause much damage to 

the vessel. But it was found that at the load of 70 % pressure, the vessel was quickly 

destroyed.[4] Figure 13 shows the distribution of amplitude of signals occurring after 2 

minutes of the pressure holding at each load. At the load of 60 % or less, there were not a lot 

of signals of 60 dB or higher but less than 7 0dB. At this time, I could estimate that at the 

initial stage of the vessel damage, the composite material substrate wrapping around the 

vessel were showing some cracks and their growth. I could observe the cracks with my own 

eyes at the 2000th cycle of fatigue test when the pressure was at 207 bar. The used pressure 

was more than 30 % of the estimated burst pressure (180 bar). During the burst test, at the 
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load of 30 % to 60 %, even though there was increase in the number of signals, there was not 

a big increase in amplitude. Accordingly, we now that up to 60 %, there is not much of a 

creep affect but just the low amplitude of signals. I think that this is mainly caused by the 

creation and growth of cracks of substrate. After pressing, there were the creep effects, 

which show the significant increase in AE signal and the signals with the amplitude of 85 

dB. In addition, as the distribution of amplitude appears different from the previous one, I 

think that the damages on the vessel are significant. It seems that there are more creations 

and growths of cracks in the composite materials and the cutting of reinforcement fiber and 

peeling of substrate cause the damage mechanism. In addition, the slope of the distribution 

of amplitude is known to be related to the mechanism of the signals[8], In the load of 70 % 

or higher, the slop looks similar, meaning that the damage is caused by the similar damage 

mechanism. 

 

Figure 13. Amplitude distribution during load holding 

 

Figure 14. Count distribution during load holding 
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Figure 14 shows the distribution of counts of AE signals coming from each load of pressure. 

When the signal with counts of 500 or less occurred under the load of 60 %, the damage was 

caused by the creation of growth of substrate crack under the load of 60 % pressure. At the 

pressure of 80-90 % where the significant damage is done to vessel, the number of counts 

was 1000 or more. At the burst stage the number of counts was 2,500 or more. 

Figure 15 shows that the duration of signal occurs with the range of 500 μs at the load of up 

to 70 % and that the signal of over 10000 μs started to appear at the load of 80 % or higher. 

At the load of 90 %, the 20000 μs appears during the final burst stage where the signals of 

25000 ~ 50000 μs appeared. 

 

Figure 15. Duration distribution during load holding 

Figure 16 shows the rise time of 100 μs or less and the signal of 100-200 μs at the load of up to 

the initial 30 %. As we understand the distribution of the amplitude from the fatigue test of 

20,000 cycles, there may be no mechanism other than the creation and growth of cracks at the 

load of 30 % pressure. It means that the signal of 200 μs or less is caused by the creation and 

growth of cracks of the vessel materials. Even though there were 1 and 4 signals of 300 μs or 

higher at the load of 50-60 %, they are negligible considering the total number of signals. It 

seems that the damage was mainly caused by creation and growth of cracks on composite 

materials rather than by new damage mechanisms. At the load of 70 % pressure, the signal of 

250-450 μs, which is longer than at previous load stage appeared, meaning that there may be 

new damage mechanism. It seems that it was caused by the additional damage mechanism 

such as the cutting of reinforcement fibers and interlayer peeling due to the increase in 

internal pressures. At the load of 80-90 %, the rise time of 500 μs or more is observed. It may 

be affected by the composite damage mechanism such as the growth of existing cracks, 

cutting of reinforcement fiber and inter-layer separation happening at the neighboring 

location. This trend is true of the distribution of counts and durations as specified above. The 

observation of the sound emission signals coming out of the neighboring location through the 

composite damage mechanism would be a good tool to assess the vessel. 
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Figure 16. Rise time distribution during load holding 

3.1.4. Mean frequency of AE signal during the holding time 

To estimate the damage with the sound emission signal, the signal of 60 dB or higher is 

used. Figure 17 shows the distribution of amplitude for hits of 60 dB or higher for each load 

of pressure. AE time becomes lower until the pressure of 70 % but at 80 %, it becomes faster. 

As the pressure rises at constant pace during the test, at 70 % pressure, there is no AE signal 

until 60 % pressures, showing the Kaiser effect. Accordingly, up to 60 % pressure, it looks 

like that there was no significant damage to the vessel. As the pressure rises up to 70 % that 

may have damaged the vessel, it looks like that AE happened due to the Felicity effect when 

the pressure goes up to 80 % as the vessel was damaged during the rise up to 80 %. At the 90 

and 100 % pressure, there is the Felicity effect. Particularly, in the pressure range of up to 

100 %, which experienced the load of 90 % or higher, there is AE signals of 60 dB or more 

from the beginning, showing that the damage is significant. In the actual burst test, the 

damage mechanism of Type II vessel, or the matrix crack in the direction of initial hoop 

occurs and then the creation of cracks and its growth and the interlayer separation (which 

belongs to matrix crack but has different damage mode) occur [4]. At the load of 60 %, the 

matrix crack in the direction of hoop was shown. But, the matrix crack in the direction of 

hoop did not affect the burst pressure of the vessel [8]. 

Figure 18 shows the count of hits where sound exceeds 60 dB at each stage of burst test. The 

rate decreases from 7 % to 1 % during the pressure of 30 % to 60 %. Then, the signals of 60 

dB or higher rapidly go up to 2 0% at the load of 70 %. The rate goes up to 30 % at the load 

of 100 %. The signals of 60 dB or higher at an early stage may be caused by the creation of 

matrix crack on the composite materials. The reduction thereafter may be caused by the low 

amplitude (60 dB or less) rather than the creation of crack. At the load of 70 % or higher, 

there are not only the matrix cracks but also the damages by the new damage mechanism 

such as the cut of fibers, increasing the signals of 60 dB or higher. The measurement of the 

count of hits which are 60 dB or higher is a good tool to assess the damage. 
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Figure 17. Amplitude distribution during loading at each loading stage (over 60 dB) 

 

Figure 18. Ratio of hits over 60 dB / total hits during each loading stage 

Figure 19-21 show the mean initial, reverberation and average frequency of AE signal at 

each load stage. The frequency is obtained not from the analysis of wave form but from the 

duration and counts. The frequency shows the difference between above and below 70 % 

load. As for the initial frequency, it did not show a big change at the load of up to 60 % or 

100 kHz but it goes up at the load of 70 % until going down a little. This is likely to be 
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related to the source mechanism. It shows the creation and growth of matrix crack at the 

load of up to 60 % and the additional damage mechanism such as the cut of fiber at the load 

of 70 % or higher. The reverberation frequency shows a little difference between below and 

above 70% but is constant in most stages while the average frequency was also constant 

with a little rise at the load of initial 30 % pressure. 

 

Figure 19. Mean initial frequency during each loading stage 

 

Figure 20. Mean reverberation frequency during each loading stage 

 

Figure 21. Mean average frequency during each loading stage  

20 30 40 50 60 70 80 90 100 110
0

50

100

150

200
in

it
ia

l 
fr

e
q

u
e

n
c
y

(k
H

z
)

load stage (%)

20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

re
v

e
rb

ra
ti

o
n

 f
re

q
u

e
n

c
y

(k
H

z
)

load stage (%)

20 30 40 50 60 70 80 90 100 110
0

50

100

150

200

a
v

e
ra

g
e
 f

rq
u

e
n

c
y

(k
H

z
)

load stage (%)



 
Composites and Their Applications 76 

3.2. Fatigue test 

3.2.1. Identification and Verification of Acoustic Emission Location 

Figure 22 shows the results of measuring the elastic wave speed of the artificial acoustic 

emission source for the acoustic emission location on the fiber-wrapped composite material. 

As shown on the picture, the speed of longitudinal elastic wave was 4512 m/sec and the 

elastic wave speed of the wrapped direction was 5689 m/sec showing the characteristic of 

anisotropy. Thus, the location was identified using anisotropic vessel source location that 

uses the difference of time for the acoustic emission signal is to be reached. 

 

Figure 22. The elastic wave velocity with degree between propagation and wrapping direction 

Figure 23 is the location of the sensor and the result of the identification test of the location 

using the artificial acoustic emission source. The four sensors were attached in staggered 

locations in channel 5, 6, 7, 8 and channel 7 refers to the backside of 8. The acoustic emission 

source is located diagonally in equal intervals between channel 5 and 8 and between 

channel 6 and 8. 

 

Figure 23. Confirm of Source location 

3.2.2. Fatigue Test and Location of Artificial Defect 

Figure 24 shows the size of the artificial defect realized on the composite material which is 

wrapped and the length is 50 mm, width 3 mm, and the depth is 3 mm which is 50 % of the 



 
Acoustic Emission of Composite Vessel 77 

thickness of the wrapping composite material. The direction of the realized defect was 

longitudinal and transverse, two types of artificial defects. 

 

Figure 24. Schematic diagram of artificial defect 

Figure 25 shows the average number of hit per sensor during the fatigue test of vessel. The 

vessel with the artificial defect has more number of hits compared to the sound vessel and 

when you see the tendency in increase and decrease, the number of hits for transverse defect 

vessel and sound vessel decreases as the number of cycle increases; however, the number of 

hits for longitudinal defect vessel decreases in 4000 cycle and then increases and then 

decreases in 8000 and 12000 cycles. 

The reason the number of hit in the early stages is big is related to the initiation and growth 

of the matrix rupture in the comparatively weak areas within the vessel. The number of hits 

decrease and the initiation and growth of ruptures are comparatively slowed until sufficient 

amount of resilience is stored to bring about new initiation and growth. 

In the case of longitudinal defects vessel, the amount of resilience needed to bring about 

progress in the defect (growth of rupture) is comparatively smaller than other vessel, so in 

the 8000th and 12000th fatigue test, the number of hits is bigger than in other vessel and 

because there is a need for another accumulation of resilience, the number of hits decrease 

afterwards. Such phenomena are clearly distinct in the composite material as mentioned in 

the introduction and in the early stages of damage, resilience increases like the number of hits 

and when there are some increases in damage, the resilience afterwards is comparatively low. 

 

Figure 25. The number of hits per channel during fatigue test for artificial defect and sound vessel 

Figure 26 shows the number of events extracted during the fatigue test on longitudinal 

defect and transverse defect vessel. An event shows the number of sources calculating the 
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location of the acoustic emission source within vessel using the acoustic emission signal that 

hit the sensor and in the case transverse defect vessel which includes a transverse defect, the 

number of events is noticeably decreased as the number of cycle increases, but in the case of 

longitudinal defect vessel which has longitudinal defect, the number of events increases a 

lot in 8000th cycle and does not change much as the number of cycle increases.  

 

Figure 26. The number of events during fatigue test for artificial defect vessel 

Figure 27 compares the number of hit per sensor and the number of events using Figure 25 

and 26 and shows the event/hit ratio according to the increase in the number of cycle. This is 

a figure that shows the % of the number of hits that can precisely show the source among 

the total number of hits. In the case of longitudinal defect vessel, it was 41.8 % in the 4000th 

cycle, 55.7 % in the 8000th cycle. An event can be calculated using the difference in time that 

the resilience from the source (acoustic emission signal) sent through the walls of the vessel 

reaches the sensor and has to be extracted from at least 3 sensors. Hits that do not go by 

such standards cannot be used to calculate events and if the location was identified by 

simulation or if the signal is weak or is static, it cannot be recorded as an event. In the case of 

longitudinal defect vessel, the number of hits is small in the 4000th and 8000th cycle but the 

growth of the rupture is relatively easy and it sends hits to at least 3 sensors with signals 

with sufficient amplitude so the number of event/hit rate increases. 

Figure 28 is the result of the location due to the acoustic emission test performed during the 

fatigue test on longitudinal defect vessel. Figure 28 (a) shows the location of 25 events 

during the first 3 fatigue test cycles. It does not show the location of artificial defects but 

shows the overall looks on the whole vessel. Such results are not shown in pictures but also 

in transverse defects vessel, 49 events in Figure 26 shows looks like a) on the whole vessel 

and it seems that signals were created on the weakest areas of the whole vessel when the 

first pressure was put. In the case of b), after the 4,000th cycle, in the 3rd fatigue test, 23 events 

were shown to be clustered around the artificial defect. As for the vessel with transverse 

defects, after the 4,000th fatigue test cycle, in the 3rd fatigue test, 12 events were created but 

they were all over the whole vessel so we could not show the location of the artificial defect.  
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Figure 27. The ratio of events/ hits per sensor during fatigue test for artificial defect vessel 

In the case of c), in the 8000th fatigue cycle, 108 events were clustered around the artificial 

defect and as mentioned in the explanation in Figure 27 more than 50% of the occurred hits 

were signals related to the artificial defect. Afterwards, events that occurred in d) ~f) were 

those that mostly occurred near the artificial defect so we can acknowledge that the damage 

on the composite material is progressed around the artificial defect. Figure 29 shows the 

surroundings of the longitudinal artificial defect after the 20000th cycle and shows that at the 

end of the defect, there is a matrix rupture progressing in a hoop-direction and although not 

clear in the picture, at the end of the depth in the artificial defect, delaminating was 

observed on the overall defect. In the case of vessel with transverse defects, after the 8,000th 

fatigue test, less than 1 event was created and the location of the artificial defect could not be 

shown clearly.  

On the other hand, after the 20000th fatigue test, in the burst test, the location of the burst is 

marked in c) of Figure 28 and events are also observed in a), d), e), and f). The source of the 

acoustic emission signal is assumed to be the fatigue rupture in the weak areas of the steel 

liner rather than in the composite material. The final burst in the case of the longitudinal 

defect accompanies matrix rupture and delaminating as mentioned above during the fatigue 

test and burst test so the whole vessel area, which is the length of the defect, is thinner in 

terms of thickness like the depth of the defect and thus is weaker than other areas and it is 

thought that it burst at the final burst location in which the fatigue rupture occurred in the 

steel liner. 

3.2.3. AE parameters during fatigue test 

Figure 30 shows the relationship between the amplitude of the signal occurring during the 

early three cycles and the rise time, and can be clearly distinguished as around 10 μs and 

over 100 μs and the grey mark shows the rise time while holding the load during the three 

cycles and also at 90 %, which is the highest, has a rise time of about 10 μs. Generally while 

load holding, it can be inferred that there is likely to be growth of an existent crack rather  
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Figure 28. The result of source location with cycle for longitudinal defect : a)0, b)4000, c)8000, d)12000, 

e)16000, f)20000 

 

Figure 29. Longitudinal defect and matrix crack after 20000 cycle fatigue test 

than initiation of a new matrix crack and thus can be said that it is a growth of crack around 

10 μs. And the rise time of AE signal which occurs during the initiation of a matrix crack can 

be said to be more than 100μs. This accord to the result that the rise time of the AE signal 

occurring during the initiation of matrix crack during the burst test is around 100 μs and 

that the rise time of the AE signal occurring during the growth of the crack is around 10 μs. 

[4]   
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and the frequency is calculated by rise time, duration, and count. Frequency by calculation was 

used and analyzed in this research because resonant sensors were used for the source location. 

 

Figure 31. The rise time distribution of hits connected with event during fatigue cycle for longitudinal 

defect vessel: a) 0, b) 4000, c) 8000, d) 12000, e) 16000, f) 20000 cycles 

(e) (f)

(a) (b)

(c) (d)
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Figure 32 shows the distribution of initial frequency versus the amplitude with fatigue cycle 

but it is dispersed around 100-200 kHz, which is unrelated to the fatigue cycle. It is in accord 

with the result that the average frequency of signal which is generated due to initiation and 

growth of matrix crack is around 100 kHz in the burst test using resonant type sensors [7]. 

 

Figure 32. The initial frequency distribution of hits connected with event during fatigue cycle for 

longitudinal defect vessel: a) 0, b) 4000, c) 8000, d) 12000, e) 16000, f) 20000 cycles 

(e) (f)

(a) (b)

(c) (d)
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Figure 33. The reverberation frequency distribution of hits connected with event during fatigue cycle 

for longitudinal defect vessel: a) 0, b) 4000, c) 8000, d) 12000, e) 16000, f) 20000 cycles 

Figure 33 shows the distribution of reverberation frequency on amplitude according to the 

number of fatigue tests but besides the oval area in Figure 33 c) which is the result of the 

8000th fatigue test, most are dispersed below 150 kHz. The average reverberation frequency 
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on signals relating to all events of Figure 33 c) was 73 kHz and these accords to the fact that 

the average reverberation frequency is between 50 - 75 kHz in all stage of burst which 

includes the damage mechanism of composite materials in the cast of burst test.[7] On the 

other hand, the reverberation frequency during the burst test of the same vessel was known 

to occur in all stage of the burst test in the range of 150 - 350 kHz[8], and in such case, 

because it includes the mechanism of all damage, it is hard to differentiate damage 

mechanism as a frequency. There were 23 event signals that had a reverberation frequency 

in the 150 - 350 kHz area in Figure 33 c) and 16 of them, which are 70 %, occurred in the 

matrix crack area of Figure 29, which is an observation of artificial defects after the 20000th 

fatigue test. More than 90 % of the related 44 hits(150 - 350 kHz) were signals with rise time 

lower than 100 μs and average rise time of 31 μs. As mentioned in 3.2.1, it is assumed that it 

is due to the growth of matrix crack. 

3.2.4. Amplitude distribution slop during fatigue test 

Figure 34 shows the amplitude distribution of accumulated hits according to the number 

of fatigue test and its slope has two types of shapes. Generally, the slope in the amplitude 

distribution of accumulated hit is known to be related to the mechanism of the source [8] 

and in vessel with defects as used in the experiment, as mentioned in the previous 

chapter, it includes mechanisms such as the initiation of matrix crack, growth of the 

created cracks (including delaminating), and the initiation and growth of liner fatigue 

cracks.  

Initiation and growth of liner fatigue crack will be mentioned in the following chapter 

and in the view of the estimated result of the damage mechanism according to the 

number of fatigue explained in the previous chapter, the case of the initiation of matrix 

cracks is estimated to have a slope of ①(0.04) and the growth of cracks, a slope of ②(0.12). 

In order to analyze the characteristics of acoustic emission signals that occurred in the 

final burst position, event signals observed around the final burst location within 200 

mm hoop direction in terms of length as marked in Figure 29 were analyzed. 18 events 

were occurred during the 20000th fatigue cycle and the number of related hits was 59. 

Figure 35 shows accumulated amplitude distribution and there are only 3 that are over 

60 dB and 49 of them are below 50 dB. You can see the slope as ③ but if you observe 

closely, it is possible to observe that the same slope exists as ① in Figure 34 and also that 

it include the initiation of matrix crack. Seeing it as showing the slope of ③, as a signal 

according to a sole damage mechanism, it is estimated to be related to liner damage and 

the size is 0.06 

Figure 36 shows the distribution of rise time on the amplitude of the signals occurred in the 

final burst location. There is almost no rise time above 100 μs and is dispersed around 10 μs. 

It can be thought that the rise time which occurs during the growth of steel liner fatigue 

crack is similar to that during the growth of matrix crack. 
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Figure 34. The amplitude distribution of accumulated hits connected with event during fatigue cycle 

for longitudinal defect vessel: a) 0, b) 4000, c) 8000, d) 12000, e) 16000, f) 20000 cycles 
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Figure 35. The amplitude distribution of accumulated hits connected with event during fatigue cycle 

for longitudinal defect vessel 

 
Figure 36. Distribution of rise time on the amplitude of the signals 

3.2.5. Burst test after 20000 cycles fatigue test 

We burst the vessel with two types of artificial defect after carrying out 20000 cycles fatigue 

test on a sound vessel and continuously increasing the pressure where the burst pressure is 

590~615 bar with the difference in the pressure of the vessel were within 5 % and thus was 

irrelevant to the existence of defects.  

Generally, 20000 cycles of fatigue is equivalent to a vessel used for more than 50 years if you 

are to put pressure on the vessel once a day although, of course, in the case of a real gas 

vessel, gas is used as a pressure medium so it may be different from the case in which 

machine oil is used as a pressure medium, but if the vessel with artificial defects and sound 

vessel were tested in the same conditions, the burst pressure is shown to be almost the same. 

Thus, in the case of the size of artificial defect used in this research, the direction of defect is 

shown to have almost no effect on the life of the vessel. 

�

�
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Figure 37 is a picture that shows the burst location in the vessel with the artificial defect. As 

shown in the picture, we can see that in the case of a vessel with a transverse defect, the final 

burst location is in the general burst location (cylinder and head area) for a well-constructed 

type II vessel. However, in the case of a vessel with a longitudinal defect, in both vessels, the 

final burst location was within the transverse vessel in which the defect was located. We 

think that this is because in the case of the longitudinal defect, the wrapped fiber is cut in 3 

mm depth and in 50 mm length so the effect in which the thickness of the composite 

material is big, but in the case of the transverse defect, the fiber is cut only in 3 mm depth 

and in 3 mm length so the effect is small.  

In this research, we cannot precisely know how much the depth of the defect has to be in 

order for the final burst pressure to change; however, the direction of the defect and the final 

burst location do have a correlation and we can infer that the longitudinal defect has a 

bigger effect on the final burst location. 

 

Figure 37. Position of artificial defect and burst location : a) longitudinal, b) transverse 

4. Conclusion 

4.1. Burst test 

By increasing the loading of pressure up to the expected burst pressure, I obtained the 

sound emission signal during 10 minutes holding time after loading. Considering that there 

would be flow noises during the initial 2 minutes, I obtained data for the remaining 8 

minutes except the initial 2 minutes to analyze the AE variables. 

1. Up to 360 bar, or 60 % of the estimated burst pressure, which is equivalent to 1.8 times 

of the usage pressure, it seems that there is little creep effect as there is little damage to 

Defect position 
Defect position 

 (back side) 

a b
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the vessel. If the pressure is over 420 bar, or 70 % of the estimated burst pressure, the 

damage to the vessel becomes greater, meaning that the creep effect becomes larger. 

2. The sound emission signal variables such as mean amplitude, mean rise time, means 

duration, and rise time amplitude correlation can be obtained when the vessel is 

damaged at each stage of pressure load. Though the variables were not enough to 

evaluate but were effective to estimate the damage mechanism. 

3. It was discovered that the total count, and total signal strength at the pressure holding 

stage were the sound emission variables, which represent the degree of damages on the 

vessel. 

4. The rate of number of hits with 60dB or higher in amplitudes in the number of total hits 

is likely to indicate a damage of vessel. 

5. We can estimate the damage mechanism through mean rise time, mean amplitude and 

frequency analysis. 

4.2. Fatigue test 

After manufacturing a sound vessel and a vessel with artificial defect for the composite 

vessel, we executed acoustic emission test during fatigue test and came up with the 

following conclusion.  

1. Vessel with two types of artificial defects (longitudinal and transverse) and a sound 

vessel was put in 20000 fatigue test and the pressure was continuously increased and 

then was burst, the burst pressure was 590~615 bar and the differences in pressure on 

the vessel were less than 5 % and was not relevant to the existence of defects. 

2. There is a correlation between the direction of defect and the final burst location and the 

longitudinal defect had a greater effect on the final burst location of the vessel rather 

than the transverse defect. 

3. Acoustic Emission Signal, which occurs during the fatigue test, occurred more in vessel 

with defects rather than in sound vessel, and as the number of fatigue test accumulated, 

the number of hits increased more in vessel with longitudinal defects than in those with 

transverse defects. 

4. In the case of vessel with longitudinal defects, events were clustered around the 

artificial defect and more than 50 % of the occurred hits were signals that were related 

to artificial defects and the source location was precisely found on the defect location 

but in the case of vessel with transverse defect, events rarely occurred and even if they 

occurred, the source location relevant to a defect did not match. 

5. Longitudinal defect of the vessel created matrix rupture and delaminating of the 

composite material during the fatigue test and the burst test and the thickness of the 

whole vessel area became thinner like the length of the defect and thus was weaker 

than other areas of the vessel. And the final burst was at the location in which the 

fatigue rupture of the steel liner occurred. 

6. The position of the longitudinal defect was shown well using the identification of acoustic 

emission location during the fatigue test and the average rise time of acoustic emission 

signal related to events occurring here was about 30-90 μs and signals with a shorter rise 

time can be observed more in the growth rather than in the initiation of matrix cracks.  
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7. The initial frequency is distributed around 100-200 kHz and signals with reverberation 

frequency higher than 150 kHz are related to the growth of matrix cracks. 

8. The slope of accumulated amplitude distribution is about 0.04 during the initiation of 

matrix cracks and is about 0.12 during the growth. However, signals estimated to be 

liner fatigue crack growth have a slope of 0.06 and a rise time similar to that of during 

the growth of matrix cracks. 
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