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1. Introduction 

Novel materials and processing routes provide opportunities for the production of 

advanced high performance structures for different applications. Ceramic matrix composites 

are one of these promising materials. Engineering ceramics such as Al2O3, Si3N4, SiC and 

ZrO2 produced by conventional manufacturing technology have high stiffness, excellent 

thermostability and relatively low density, but extreme brittle nature restricted them from 

many structural applications (Mukerji, 1993). Considerable attention has been adopted to 

improve the fracture toughness. An approach has been paid to the development of 

nanocrystalline ceramics with improved fracture properties. Decreasing the grain size of 

ceramics to the sub- and nano-meter scale leads to a marked increase in fracture strength 

(Miyahara et al., 1994). However, fracture toughness of nanocrystalline ceramics generally 

displays modest improvement or even deterioration (Miyahara et al., 1994; Rice, 1996; Yao et 

al., 2011). As one possible approach, incorporation of particulates, flakes and short/long 

fibers into ceramics matrix, as a second phase, to produce tougher ceramic materials is an 

eminent practice for decades (Evans, 1990). Recently, researchers have focused on the carbon 

nanomaterials, in particular carbon nanotubes (CNTs), which are nanometer-sized tubes of 

single- (SWCNTs) or multi- layer graphene (MWCNTs) with outstanding mechanical, 

chemical and electrical properties (Dai et al., 1996; Ebbesen et al., 1996; Treacy et al., 1996; 

Huang et al., 2006; Peng et al., 2008), motivating their use in ceramic composite materials as 

a fibrous reinforcing agent. 

It is well recognized that some difficulties appear to be the major cause for the limited 

improvement in CNT/ceramic composites prepared to date. The first is the inhomogeneous 

dispersion of CNTs in the ceramic matrix. Pristine CNTs are well known for poor 

solubilization, which leads to phase segregation in the composite owing to the van der 

Waals attractive force (Chen et al., 1998). Such clustering produces a negative effect on the 
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physical and mechanical properties of the resultant composites (Yamamoto et al., 2008). The 

second is the difficulty in controlling connectivity between CNTs and the ceramics matrix, 

which leads to a limited stress transfer capability from the matrix to the CNTs (Peigney, 

2003; Sheldon & Curtin, 2004; Chen et al., 2011). The strengthening and toughening 

mechanisms of composites by fibers are now well established (Evans, 1990; Hull & Clyne, 

1996); central to an understanding is the concept of interaction between the matrix and 

reinforcing phase during the fracture of the composite. The fracture properties of such 

composites are dominated by the fiber bridging force resulting from debonding and sliding 

resistance, which dictates the major contribution to the strength and toughness. Thus, the 

adequate connectivity with the matrix, and uniform distribution within the matrix are 

essential structural requirements for the stronger and tougher CNT/ceramic composites. To 

overcome these obstacles, various efforts, such as surface modification (De Andrade et al., 

2008; Yamamoto et al., 2008; Kita et al., 2010; Gonzalez-Julian et al., 2011), heterocoagulation 

(Fan et al., 2006a, 2006b), extrusion (Peigney et al., 2002), and their combination, have been 

made to effectively achieve good dispersion of CNTs in ceramic matrix. Until now, however, 

most results for strengthening and toughening have been disappointing, and only little or 

no improvement have been reported in CNT/ceramic composite materials, presumably 

owing to the difficulties in homogeneous dispersion of CNTs in the matrix and in formation 

of adequate interfacial connectivity between two phases. 

This chapter presents that novel processing approach based on the precursor method. The 

MWCNTs used in this study are modified with an acid treatment. Combined with a 

mechanical interlock induced by the chemically modified MWCNTs, this approach leads to 

improved mechanical properties. Mechanical measurements on the composites revealed that 

only 0.9 vol.% acid-treated MWCNT addition results in 37% and 36% simultaneous 

increases in bending strength (689.6 ± 29.1 MPa) and fracture toughness (5.90 ± 0.27 

MPa·m1/2), respectively, compared with a MWCNT-free alumina sample prepared under 

similar processing conditions. Structure-property relationship of present composites will be 

explained on the basis of the detailed nano/microstructure and fractographic analysis. We 

also explain why previous reports indicated only modest improvements in the fracture 

properties of MWCNT based ceramic composites. Here, the failure mechanism of the 

MWCNTs during crack opening in a MWCNT/alumina composite is investigated through 

transmission electron microscope (TEM) observations and single nanotube pullout tests. 

Achieving tougher ceramic composites with MWCNTs is discussed based on these results. 

2. A novel approach for preparation of MWCNT/alumina composites 

To disperse the MWCNTs homogeneously in the matrix and improve the connectivity 

between MWCNTs and matrix, we developed a novel approach with combination of a 

precursor method for synthesis of an alumina matrix, an acid treatment of MWCNTs and a 

spark plasma sintering method. The improvement on the bending strength and fracture 

toughness was confirmed by the fracture tests. 
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2.1. Materials and specimen preparation 

2.1.1. Starting materials 

The MWCNT material (Nano Carbon Technologies) used in this research was synthesized 

by a catalytic chemical vapor deposition method followed by high temperature annealing at 

2600˚C. The purity was claimed to be 99.5% by the producer. Fig. 1 shows scanning electron 

microscope (SEM, Hitachi S-4300) and TEM (Hitachi HF-2000) images of the pristine 

MWCNTs. It can be seen from Fig. 1b that the pristine MWCNTs have a highly crystalline 

multi-walled structure with a narrow central channel. The corresponding geometrical and 

mechanical properties of the pristine MWCNT are listed in Table 1. The estimated diameter 

and length of the pristine MWCNTs from SEM and TEM measurements ranged from 33 to 

124 nm (average: 70 nm) and 1.1 to 22.5 μm (average: 8.7 μm), respectively. Tensile-loading 

experiments with individual MWCNTs using a nanomanipulator tool operated inside SEM 

revealed that the tensile strengths of 10 pristine MWCNTs ranged from ∼2 to ∼48 GPa 

(average: 20 GPa) and the Young's modulus ranged from ∼50 to ∼1360 GPa (average: 790 

GPa) (Yamamoto et al., 2010). It seems that the average tensile strength of the pristine 

MWCNT used in this research were somewhat lower than that of the arc-discharge grown 

MWCNTs (Yu et al., 2000). 

 

Figure 1. (a) SEM and (b) TEM image of pristine MWCNTs used in this research. 

 

ID 

(nm) 

OD

(nm)

l

(μm)


(Mg/m3)

 f 

(GPa)

E

(GPa)

I

(nm4)

EI 

(N·nm2) 

7 

(3~12) 

70 

(33~124)

8.7

(1.1~22.5)
2.1 

20

(2~48)

790

(50~1360)
1.2×106 9310×10-4 

Table 1. Measured geometrical and mechanical properties of pristine MWCNTs. Shown are the 

nanotube inner diameter (ID), outer diameter (OD), length (l), density (), tensile strength ( f), Young’s 

modulus (E), moment of inertia of cross sectional area (I) and flexural rigidity (EI), respectively. 

2.1.2. Acid treatment of MWCNTs 

The rationale behind the acid treatment is to introduce nanoscale defects and adsorb 

negatively charged functional groups at the MWCNT ends and along their lengths. The 
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pristine MWCNTs were refluxed in 3:1 (volume ratio) concentrated H2SO4:HNO3 mixture at 

a temperature of 70˚C for 1 hour, 2 hours and 4 hours, washed thoroughly with distilled 

water to be acid-free, and then finally dried in an air oven at 60˚C. Fig. 2 shows the typical 

TEM images of a series of the acid-treated MWCNTs and the corresponding distribution of 

nanodefect depths treated with the various conditions. It is demonstrated that with the acid 

treatment of the pristine MWCNTs, we have deliberately introduced nanoscale defects on 

the surface of the MWCNTs. The depth of the nanodefects is on the nanoscale and the 

average size is in the range of 4.4~7.0 nm for the acid treatment used in this study. We can 

see that the nanodefects density, i.e., the number of nanodefects per unit of a MWCNT 

surface area increases with the increasing treatment time. Hereafter, the number of the 

nanodefects per unit of the MWCNT surface area is referred to as the nanodefect density. 

In addition to the nanodefects density, the average size of the nanodefect depths appears to 

vary with respect to the treatment time. When the treatment time increases from 1 hour to 2 

hours, the average size of nanodefect depths increases from 4.4 nm to 6.5 nm. Furthermore, 

when the treatment time further increases to 4 hours, it increases to 7.0 nm. The aspect ratio 

() of the nanodefects on the MWCNT surface were estimated using the equation  = 

Lwidth/Ldepth, where Lwidth is the average size of nanodefect widths on the MWCNT surface, 

and Ldepth is the average size of nanodefect depths. For the acid treated products with 

treatment time of 1 hour, 2 hours and 4 hours was 4.4, 4.9 and 3.9, respectively. The 

experimental results demonstrate that the present method, which uses the acid treatment, 

may provide an effective route for preparation of the nanodefects on the MWCNT surface, 

and it may be possible to adjust and control the average size and nanodefect density by 

varying the treatment time. According to the current TEM observations, peel-off of a few 

layers in the MWCNT structure was frequently observed for the MWCNT powders acid-

treated for 4 hours. Thus, reduction of may be due to the decrease in the MWCNT 

diameter by the peel-off of a few layers in the MWCNT structure and imply that the 

excessive acid treatment of the MWCNT resulted in degradation of the quality and 

mechanical properties of MWCNTs (Yamamoto et al., 2010). As previously reported (Liu et 

al., 1998), SWCNTs can be cut into shorter segments by acid treatment of 3:1 (volume ratio) 

concentrated H2SO4:HNO3 mixture. In this study, however, when the acid treatment times 

are 1 hour and 2 hours, no such change in the length has been found in the acid-treated 

MWCNTs. The average lengths of the acid-treated MWCNTs were 8.7 μm and 8.3 μm, 

respectively. In contrast, average length was decreased slightly with a further increase in the 

treatment time up to 4 hours, and reached about 7.2 μm. 

The zeta potential values of the pristine MWCNTs and the acid-treated MWCNTs at 

different pH values are shown in Fig. 3a. Here, the changes in zeta potentials were 

measured in 1.0 mM KCl aqueous solution of varying pH using a zeta potential analyzer 

(ZEECOM ZC2000, Microtec). The pH value of the aqueous solution was adjusted with HCl 

and NaOH. Zeta potential values were calculated using the Smoluchowski equation. The 

isoelectric point (pHiep) for the pristine MWCNTs is located at about 3.0, whereas the acid 



 
Carbon Nanotube Reinforced Alumina Composite Materials 487 

treatment process makes the surface more negatively charged at tested pH values. The 

change in the zeta potential may be mainly due to the introduction of more functional 

groups after the acid treatment (Esumi et al., 1996; Liu et al., 1998). These functional groups 

make them easily dispersed in polar solvents, such as water and ethanol. Fig. 3b shows a 

photograph of the pristine MWCNTs and acid-treated MWCNTs suspensions at pH 6, 

respectively. It is clear that the pristine MWCNTs are not dispersed at pH 6. In contrast, the 

dispersion of the acid-treated MWCNTs is seen to improve dramatically. Furthermore, it can 

be expected that the larger electrical repulsive force between the acid-treated MWCNTs will 

facilitate their dispersion and prevent them from tangling and agglomeration. The zeta 

potential of the aluminum hydroxide, which is used as the starting material for synthesis of 

the alumina matrix, exhibited positive values over a wide pH range (pH = 3~9), while that of 

the acid-treated MWCNTs was negative in this pH range. On these two colloidal 

suspensions are mixed, particles of the aluminum hydroxide will bind onto the acid-treated 

MWCNTs because of the strong electrostatic attractive force between them, and this results 

in a homogeneous MWCNTs and aluminum hydroxide solution. 

2.2. Preparation of MWCNT/alumina composites 

A typical synthesis procedure for the composite preparation is as follows. The 50 mg 

MWCNTs acid-treated for 2 hours or pristine MWCNTs were dispersed in 400 ml ethanol 

with aid of ultrasonic agitation. 15.2 g aluminum hydroxide (Wako Pure Chemical 

Industries) was added to this solution and ultrasonically agitated. 73 mg magnesium 

hydroxide (Wako Pure Chemical Industries) was added to prevent excessive crystal growth. 

Here, the weight loss of the hydroxides caused by the dehydration process was accounted 

for in the calculation of the composite composition. The weight loss of the aluminum 

hydroxide and the magnesium hydroxide was 34.7% and 31.9%, respectively. The resultant 

suspension was filtered and dried in an air oven at 60˚C. Finally, the product obtained in the 

previous step was put into a half-quartz tube and was dehydrated at 600˚C for 15 min in 

argon atmosphere. The composites were prepared by spark plasma sintering (SPS, SPS-1050 

Sumitomo Coal Mining) (Omori, 2000) in a graphite die with an inner diameter of 30 mm at 

a temperature of 1500˚C under a pressure of 20 MPa in vacuum for 10 min. For comparison, 

similar preparation processes were applied while using the pristine MWCNTs as the 

starting material. Fig. 4 shows X-ray diffraction patterns (M21Mac Science) of the (a) 

aluminum hydroxide–MWCNT mixture, (b) dehydrated product and (c) sintered body, 

respectively. It is difficult to distinguish the MWCNT peaks from all XRD patterns, probably 

due to the small quantity of MWCNTs. The diffraction peaks corresponding to the 

aluminum hydroxide and the intermediate were observed in the aluminum hydroxide–

MWCNT mixture. However, the diffraction peaks corresponding to the aluminum 

hydroxide and the intermediate disappeared completely in the sintered body, suggesting 

the phase transformation of the aluminum hydroxide to form -alumina via an amorphous 

phase (b). These results clearly indicate that alumina was successfully synthesized by SPS at 

1500˚C under 20 MPa in vacuum. 
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Figure 2. Typical low-magnification TEM images of acid-treated MWCNTs treated with the various 

conditions of (a) 1 hour, (c) 2 hours and (e) 4 hours. The insets show the high magnification images. (b), 

(d), (f) Corresponding depth distribution of the nanodefects in the sample (a), (c) and (e), respectively. 

The solid lines in (b), (d), (f) represent the Gaussian fitting curves. The observation was made for 

approximately 200 defects. 
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Figure 3. (a) Zeta potential values of MWCNTs and acid-treated MWCNTs at different pH. (b) 

Undistributed one-day old aqueous suspensions of (left) pristine MWCNTs and (right) acid-treated 

MWCNTs. 

 

Figure 4. XRD patterns of the (a) aluminum hydroxide–MWCNT mixture, (b) dehydrated product and 

(c) sintered body, respectively. 

2.3. Micro- and nanostructures of MWCNT/alumina composites 

We now discuss the micro- and nanostructures of the acid-treated MWCNT/alumina 

composites using SEM and TEM analysis. An interesting geometric structure was observed 

between the individual MWCNT and the alumina matrix, as shown in Fig. 5. It is revealed 

that a nanodefect on the acid-treated MWCNT is filled up with alumina crystal, which may 

be intruding into the nanodefect during grain growth. This nanostructure is novel in that its 

structure resembles a nanoscale anchor with an alumina crystal spiking the surface of the 

MWCNT. 
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From the SEM observations on the fracture surface, the following features can be noted. 

First, numerous individual MWCNTs protrude from the fracture surface, and the pullout of 

the MWCNTs can be clearly observed (Fig. 6a), which had not been obtained until now for 

conventional CNT/ceramic composites. Most of MWCNTs are located in the intergranular 

phase and their lengths are in the range 0~10 μm. The alumina grains have sizes in the micron 

range, around 1.5 μm (The grain size of the composite was obtained using SEM images, and 

the observation was made for 224 grains.). No clear difference in the grain size is observed 

between the acid-treated MWCNT/alumina composites and the pristine MWCNT/alumina 

composites, even though the incorporation of MWCNTs seems to suppress the grain growth of 

the alumina. Second, in the case of the smaller amount of the acid-treated MWCNTs, no severe 

phase segregation was observed, whereas the composites made with the pristine MWCNTs 

revealed an inhomogeneous structure even for MWCNT addition as low as 0.9 vol.%. In 

addition to the above features, some MWCNTs on the fracture surface showed a ″clean break″ 
near the crack plane, and that the diameter of MWCNT drastically slenderized toward their 

tip, as illustrated in Figs. 6b and 6c, respectively. As SEM cannot clearly resolve the thickness 

of a single MWCNT, TEM was used to determine if the fracture phenomenon of MWCNTs 

was indeed occurring during crack opening. 

 

Figure 5. MWCNT morphology in the composites. (a) It is demonstrated that a nanodefect on the acid-

treated MWCNT is filled up with alumina crystal. (b) Enlarged TEM image, taken from the square area. 

(c) Schematic description of MWCNT morphology in the composites. 

TEM observations on the fracture surface demonstrated that a diameter change in the 

MWCNT structure was evidently observed for a certain percentage of the MWCNTs (Fig. 

7a). At least, 25% MWCNT appear to have an apparent diameter change (The observation 

was made for 281 MWCNTs.). As shown in Fig. 7b, the high magnification TEM image 

clearly showed a change in diameter, and this morphology is quite similar to a ″sword-in-

sheath″-type failure (Yu et al., 2000; Peng et al., 2008; Yamamoto et al., 2010). Key features 

are illustrated in enlarged TEM image, taken from the square area in Fig. 7b. The inset showed 
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that outer-walls having approximately 10 shells were observed to break up at the location 

where the MWCNT undergo failure, and that the edges of the broken outer shells were 

observed to be perpendicular to the cylinder axis. Since no apparent variation in the diameter 

of the MWCNTs has been observed along the axis in the as-received MWCNTs, these results 

imply that some MWCNTs underwent failure in the sword-in-sheath manner prior to pullout 

from the matrix. Note that MWCNT failure was also observed in fracture surfaces of alumina 

composites made with arc-discharge-grown and chemical vapor deposition-grown MWCNTs 

prepared under the same processing conditions (Yamamoto et al., 2011). 

 

Figure 6. Fracture surface of acid-treated MWCNT/alumina composites. (a) Numerous individual 

MWCNTs protrude from the fracture surface. (b,c) Some MWCNTs have broken in the multi-wall failure. 

 

Figure 7. TEM images of the fracture surface of the composite acquired (a) low and (b) high 

magnification images. 
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2.4. Physical and mechanical properties of MWCNT/alumina composites 

The bending strength of the composites was measured by the three-point bending method 

under ambient conditions, in which the size of the test specimens was 2.0 mm (width) × 3.0 

mm (thickness) × 24.0 mm (length). The span length and crosshead speed for the strength 

tests were 20.0 mm and 0.83 μm/s, respectively. The fracture toughness was measured by 

the single-edge notched beam (SENB) method (Japanese Industrial Standards, 1995) under 

ambient conditions, in which the size of test specimens was 2.0 mm (width) × 3.0 mm 

(thickness) × 15.0 mm (length). A notch with depth and width of 0.3 mm and 0.1 mm was 

cut in the center part of the test specimens. A span length of 12.0 mm and crosshead speed 

of 0.83 μm/s were applied for the toughness test. The bending strength (σb) and fracture 

toughness (KIc) are given by the following equations: 

 
23 / 2b bP L bh   (1) 

  2 1/23 / 2c bK P L bh a Y     (2) 

where Pb is the maximum load, L is the span length, b is the specimen width, h is the 

specimen thickness, a is the notch depth and Y is the dimensional factor. All surfaces of the 

specimens were finely ground on a diamond wheel, and the edges were chamfered. The 

indentation tests were done on a hardness tester (AVK-A, Akashi) with a diamond Vickers 

indenter under ambient conditions. The 0.9 vol.% acid-treated MWCNT/alumina composite 

with surface roughness of 0.1 μm (Ra) was indented using a Vickers diamond pyramid with 

a load of 98.1 N (P) applied on the surface for 15 s. The diagonal (d) and the radial crack 

length (C) were measured by the SEM. The hardness (Hv) and indentation toughness values 

(KIc) were calculated by the following equations: 

 
20.1891 /Hv P d   (3) 

    1/2 3/20.016 / /c vK E H P C    (4) 

where E is the Young’s modulus of the composite (E = 362.8 GPa) measured by a pulse-echo 

method. 

It was found that surface modification of the MWCNTs is effective in improvement of 

bending strength and fracture toughness of the MWCNT/alumina composites. Figs. 8a and 

8b show the dependence of the bending strength and the fracture toughness on MWCNT 

content in the composites. There are few papers which report significant improvement in 

the mechanical properties such as toughness (Zhan et al., 2003), and the improvement by 

MWCNT addition has been limited so far in previous studies (Ma et al., 1998; Sun et al., 

2002; Wang et al., 2004; Sun et al., 2005; Cho et al., 2009). In our composites, however, the 

bending strength and the fracture toughness simultaneously increased with the addition of 
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a small amount of the acid-treated MWCNTs. The bending strength and the fracture 

toughness of the 0.9 vol.% acid-treated MWCNT/alumina composite reached 689.6 ± 29.1 

MPa and 5.90 ± 0.27 MPa·m1/2,respectively. At the same time, the bending strength and the 

fracture toughness of the acid-treated MWCNT/alumina composites were always higher 

than those of the pristine MWCNT/alumina composites with identical MWCNT content, 

indicating enhanced stress transfer capability from the alumina to the acid-treated 

MWCNTs. The Vickers indentation toughness calculated by using the Eq. (4) was 6.64 MPa·

m1/2, which is a slightly larger value than that measured by using SENB method (5.90 MPa·

m1/2). These observations revealed that the high structural homogeneity and enhanced 

frictional resistance of the structural components led to a simultaneous increase in the 

strength and the toughness of the acid-treated MWCNT/alumina composites. In contrast, for 

the larger amount of the MWCNTs, the degradation of mechanical properties of both the 

composites may be primarily attributed to the severe phase segregation. Because a bundle of 

segregated CNTs has poor load-carrying ability, the effect of this kind of CNT aggregate in 

the matrix may be similar to that of pores (Yamamoto et al., 2008a, 2008b). 

 

Figure 8. (a) Bending strength and (b) fracture toughness as a function of MWCNT content. 

3. Evaluation of crack bridging characteristics 

Ceramic-CNT interfacial behavior is another key factor in controlling the mechanical and 

physical properties of fiber reinforced composite materials (Evans, 1990; Hull & Clyne, 

1996; Chen et al., 2011). In general, strong interfacial connectivity facilitates effective load 

transfer effect, but it prevents CNT pull-out toughening from occurring. Weak interfacial 

connectivity favors CNTs pull-out but fails to toughen the ceramic matrix. Thus, a balance 

must be maintained between CNT pull-out and toughening mechanics. It is well 

recognized that improved toughness of fiber-reinforced ceramic composites is obtained 

under moderate fiber-ceramic interfacial connectivity. In this regard, suitable (neither too 

strong nor too weak) ceramic-CNT interfacial connectivity is needed to ensure effective 

load transfer, and to enhance the toughness and strength of ceramic-CNT composites. 
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Here, the failure mechanism of the MWCNTs during crack opening in a MWCNT/alumina 

composite is investigated through TEM observations and single nanotube pullout tests. 

Achieving tougher ceramic composites with MWCNTs is discussed based on these 

results. 

3.1. Pullout experiment sample preparation 

The MWCNT failure during crack opening motivated our research of the crack bridging 

characteristics through the single nanotube pullout tests. The single nanotube pullout 

experiments were carried out using an in-situ SEM (Quanta 600 FEG; FEI) method with a 

nanomanipulator system (Yu et al., 2000; Yamamoto et al., 2010). An atomic force 

microscope (AFM) cantilever (PPP-ZEILR, nominal force constant 1.6 N/m; 

NANOSENSORS) was mounted at the end of a piezoelectric bender (ceramic plate bender 

CMBP01; Noliac) on an X–Y linear motion stage, and the composite with fracture surface 

(that was coated with platinum) was mounted on an opposing Z linear motion stage. The 

piezoelectric bender was used to measure the resonant frequency of each cantilever in 

vacuum. A single MWCNT on the fracture surface was clamped onto a cantilever tip by 

local electron-beam-induced deposition (EBID) of a carbonaceous material (Ding et al., 

2005). As a precursor source for the EBID, we used n-docosane (C22H46, Alfa Aesar), which 

was dissolved in toluene to make a 3 mass% solution. A small amount of the solution was 

dropped on a cut-in-half copper TEM grid. After the solution evaporated, the TEM grid with 

paraffin source was mounted on the AFM chip, as shown in Fig. 9. The deposition rate of the 

EBID depends on several factors (Ding et al., 2005). Thus, the amount of the paraffin source, 

deposition time, and distance between the paraffin source and the cantilever tip were 

experimentally-optimized. The cantilevers serve as force-sensing elements and the spring 

constants of each were calculated in-situ prior to the pullout test using the resonance method 

(Sader et al., 1999). In brief, for the case of a rectangular cantilever, the force constant (k) is 

given by following equation, 

 2
e c vack M bhL    (5) 

where ωvac is the fundamental radial resonant frequency of the cantilever in vacuum, h, b, 

and L are the thickness, width, and length of the cantilever, respectively, ρc is the density of 

the cantilever (= 2.33 Mg/m3), and Me is the normalized effective mass which takes the value 

Me = 0.2427 for L/b > 5 (Sader et al., 1995). We measured ωvac, h, b and L of each cantilever in 

the SEM and used the measured, not the nominal provided, values to calculate k. The h, b 

and L are determined by counting the number of pixels in the acquired SEM images. The 

applied force is calculated from the angle of deflection at the cantilever tip in the acquired 

SEM images (Ding et al., 2006). The deflection (δ) and angle of deflection (θ) at the cantilever 

tip are given by 

 3 / 3PL EI    (6) 
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Figure 9. SEM image showing the experimental setup for pullout experiments. 

 
2 / 2PL EI    (7) 

where P is the load applied at the cantilever tip, L is the cantilever length, E is the elastic 

modulus and I is the moment of inertia of the cantilever (Ding et al., 2006). Thus, the 

deflection at the cantilever tip can be represented by the angle of deflection with the 

following relationship (Ding et al., 2006): 

 2 / 3L    (8) 

A crosshead speed – i.e., movement rate of the cantilever – of about 100 nm/s was applied 

for the pullout tests. 

We fractured a composite specimen by conducting the fracture tests, which caused single 

MWCNT to project from the crack plane, as exemplified in Fig. 6a. This allows single 

MWCNT ″pickup″ with cantilever tip for subsequent tensile loading using the 

nanomanipulator. As mentioned above, however, the MWCNTs crossing the crack planes 

were strained during crack opening and possibly underwent failure, as shown in Figs. 6b, 6c 

and 7. Therefore, by observing the fracture surface on the composites, MWCNTs with no 

apparent damages were selected for the pullout tests. The physical and mechanical 

properties, and electrical conductivity of the composite used for the pullout testes are shown 

in Table 2. 

 

Relative 

density 

(%) 

Grain 

size 

(μm) 

Bending 

strength 

(MPa) 

Fracture 

toughness 

(MPa·m1/2) 

Hardness 

(GPa) 

Young’s

modulus 

(GPa) 

Poisson’s 

ratio 

98.9 1.43±0.31 543.8±60.9 4.74±0.12 17.0 ± 0.4 358.0 0.20 

Table 2. The properties of the composite with 0.9 vol.% pristine MWCNTs. The Young’s modulus and 

Poisson’s ratio were measured by the ultrasonic pulse echo method. 
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3.2. Nanotube fracture during the failure of MWCNT/alumina composites 

Results obtained from the pullout experiments revealed that strong load transfer was 

demonstrated, and no pullout behavior was observed for all 15 MWCNTs tested in this 

present research. Eight of these MWCNTs fractured at the composite surface and the 

remaining 7 MWCNTs underwent failure in the region between the fixed point on the 

cantilever and the crack plane, as illustrated in Fig. 10. 

 

Figure 10. Fracture location of single MWCNTs under pullout loading. Of the 15 MWCNTs tested here, 

8 MWCNTs fractured on the composite surface (sample numbers: 3, 4, 7, 8, 11–14) and remaining 7 

MWCNTs fractured in the middle (sample numbers: 1, 2, 5, 6, 9, 10, and 15). 

Two series of SEM and TEM images for each of two individual MWCNTs, captured before 

and after their breaking, are shown in Figs. 11 and 12. In the first series (Fig. 11; sample 

number 14), a MWCNT projecting 5.72 ± 0.01 μm from the fracture surface (Fig. 11a) 

was ″welded″ to a cantilever tip by local EBID, and then loaded in increments until failure. 

The resulting fragment attached on the cantilever tip was at least 10.9 μm long (Fig. 11b), 

whereas the other fragment remained lodged in a grain boundary of the alumina matrix 

(Fig. 11c), suggesting that MWCNT underwent failure in a sword-in-sheath manner. TEM 

images show a change in diameter at the location where the MWCNT underwent failure, 

and that the inner core protruding from the outer shells has a multi-walled closed-end 

structure, as shown in Figs. 11d and 11e, respectively. Given that uniformity of the interwall 

spacing of 0.34-nm-thick cylinder structure, approximately 11 shells underwent failure. 

There results strongly suggest that the MWCNTs broke in the outer shells and the inner core 

was then completely pulled away, leaving the companion fragment of the outer shells in the 
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matrix. The sword-in-sheath failure did not always occur. Instead a few MWCNT failed 

leaving either a very short sword-in-sheath failure or a clean break. As for one example (Fig. 

12; sample number 10), a MWCNT projecting 5.34 ± 0.01 μm from the crack plane (Fig. 12a) 

underwent failure on the composite fracture surface. The resulting fragment attached on the 

cantilever tip was at least 5.7 μm long (Fig. 12b), and no fragment was observed at the 

original position on the crack plane, suggesting that in this case the MWCNT failed by 

breaking inside the matrix, and did not pull out. Fig. 12c shows the TEM image of the tip of 

the same MWCNT which underwent very short sword-in-sheath failure or clean break 

during crack opening. 

 

 
 

Figure 11. SEM images show (a) a free-standing MWCNT having a 5.72 ± 0.01 μm-long on the fracture 

surface of the composite. (b) After breaking, one fragment of the same MWCNT attached on the 

cantilever tip had a length ~10.9 μm. (c) The other fragment remained in the matrix. (d,e) TEM images 

show a change in diameter at the location where the MWCNT underwent multi-wall failure, and that it 

clearly has a multi-walled closed-end structure. 
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Figure 12. In the second series, (a) a tensile-loaded MWCNT with a length of 4.46 ± 0.01 μm fractured 

on the crack plane. (b) The resulting fragment on the cantilever tip had a length ~5.7 μm. (c) TEM image 

shows the MWCNT which underwent the very short sword-in-sheath failure or clean break. 

 

Figure 13. Schematic description of possible fracture mechanisms of the MWCNT (sample number 14). 

(a) Initial state of a MWCNT. (b) Tensile stresses lead to matrix crack and partial debonding formation. 

(c,d) As displacement increases, the MWCNTs, rather than pulling out from the alumina matrix, 

undergo failure in the outer shells and the inner core is pulled away, leaving the fragment of the outer 

shells in the matrix. 

Next, we schematically describe possible processes and mechanics, explaining the MWCNT 

failure during crack opening (Fig. 13). As for one example, considering the sample number 

14 (Fig. 11), the initial state of the MWCNT in an ideal case is a completely impregnated and 

isolated embedded in the matrix (Fig. 13a). Tensile stresses parallel to the axis of MWCNT 

length lead to matrix crack formation. Subsequently, interfacial debonding between two 

phases may occur (Fig. 13b), perhaps over a limited distance (but this is unlikely to make a 

major contribution to the fracture energy.). Since there is variability in the MWCNT strength 

in the debonded region on either side of the crack plane, and it is possible for the MWCNT 

to break at a certain position, when the stress in the MWCNT reaches a critical value. As 
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displacement increases, the MWCNTs, rather than pulling out from the alumina matrix, 

undergo failure in the outer shells and the inner core is pulled away, leaving the fragments 

of the outer shells in the matrix (Figs. 13c and 13d). 

4. Conclusion 

Creating tough, fracture-resistant ceramics has been a central focus of MWCNT/ceramic 

composites research. In this research, the MWCNT/alumina composite with enhanced 

mechanical properties of 689.6 ± 29.1 MPa for bending strength and 5.90 ± 0.27 MPa·m1/2 for 

fracture toughness have been successfully prepared by a novel processing method. A 

combination of the precursor method for synthesis of the alumina matrix, the acid treatment 

of the pristine MWCNTs and the spark plasma sintering method can diminish the phase 

segregation of MWCNTs, and render MWCNT/alumina composites highly homogeneous. 

The universality of the method developed here will be applicable to a wide range of 

functional materials such as tribomaterials, electromagnetic wave absorption materials, 

electrostrictive materials, and so on. Our present work may give a promising future for the 

application of MWCNTs in reinforcing structural ceramic components and other materials 

systems such as polymer- and metal-based composites. 

We have also shown from TEM observations and single nanotube pullout experiments on 

the MWCNT/alumina composites that strong load transfer was revealed, and no MWCNT 

pullout behavior was observed. It is well recognized the fracture properties of fiber-

reinforced composites are dominated by the fiber bridging force resulting from debonding 

and sliding resistance, which dictates the major contribution to the strength and toughness 

(Evans, 1990; Hull & Clyne, 1996). The results reported here suggest that modest 

improvements in toughness reported previously may be due to the way MWCNT’s fail 

during crack opening in the MWCNT/ceramic composites. Our finding suggests important 

implications for the design of tougher ceramic composites with MWCNTs. The important 

factor for such tougher ceramic composites will thus be the use of MWCNT having a much 

higher load carrying capacity (as well as a good dispersion in the matrix). 
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