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1. Introduction 

Composite materials are now common engineering materials used in a wide range of 
applications. They play an important role in the aviation, aerospace and automotive 
industry, and are also used in the construction of ships, submarines, nuclear and chemical 
facilities, etc. 

The meaning of the word damage is quite broad in everyday life. In continuum mechanics 
the term damage is referred to as the reduction of the internal integrity of the material due 
to the generation, spreading and merging of small cracks, cavities and similar defects. 
Damage is called elastic, if the material deforms only elastically (in macroscopic level) before 
the occurrence of damage, as well as during its evolution. This damage model can be used if 
the ability of the material to deform plastically is low. Fiber-reinforced polymer matrix 
composites can be considered as such materials.  

The use of composite materials in the design of constructions is increasing in traditional 
structures such as for example development of airplanes or in the automotive industry. 
Recently this kind of materials is used in development of special technique and rotating systems 
such as propellers, compressor turbine blades etc. Other applications are in electronics, 
electrochemical industry, environmental and biomedical engineering (Chung, 2003).  

The costs for designing of composite structures is possible partially eliminate by numerical 
simulation of solving problem. In this case the simulation is not accepted as universal tool 
for analyzing of systems behaviour but it is an effective alternative to processes of 
experimental sciences. Simulations support development of new theories and suggestion of 
new experiments for testing these theories. Experiments are necessary for obtaining of 
input data into simulation programs and for verification of numerical programs 
and models. 
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Laminated composites have a lot of advantages but in some cases they show different 
limitations that are caused by stress concentrations between layers. Discontinuous change of 
material properties is reason for occurrence of interlaminar stresses that often cause 
delamination failure (Zhang & Wang, 2009). Delamination may originate from 
manufacturing imperfections, cracks produced by fatigue or low velocity impact, stress 
concentration near geometrical/material discontinuity such as joints and free edges, or due 
to high interlaminar stresses (Elmarakbi, 2009)  

Delaminations in layered plates and beams have been analyzed by using both cohesive 
damage models and fracture mechanics. Cohesive elements are widely used, in both forms 
of continuous interface elements and point cohesive elements (Cui, 1993), at the interface 
between solid finite elements to predict and to understand the damage behaviour in the 
interfaces of different layers in composite laminates. In the context of the fracture mechanics 
approach (Sládek, et al. , 2002), it allows us to predict the growth of a preexisting crack or 
defect. In a homogeneous and isotropic body subjected to a general loading condition, a 
crack tends to grow by kinking in a direction such a pure mode I condition at its tip is 
maintained. On the contrary, delaminations in laminated composites are constrained to 
propagate in its own plane because the toughness of the interface is relatively low in 
comparison to that of the adjoining material. Therefore a delamination crack propagates 
with its advancing tip in mixed mode condition and, consequently, requires a fracture 
criterion including all three mode components. 

The theory of crack growth may be developed by using one of two approaches. First, the 
Griffith energetic (or global) approach introduces the concept of energy release rate (ERR) G 
as the energy available for fracture on one hand, and the critical surface energy Gr as the 
energy necessary for fracture on the other hand. Alternatively, the Irwin (local) approach is 
based on the stress intensity factor concept, which represents the energy stress field in the 
neighborhood of the crack tip. These two approaches are equivalent and, therefore, the 
energy criterion may be rewritten in terms of stress intensity factors. 

Microcracking in a material is almost always associated with changes in mechanical 
behavior of the material. The problem of microcracking in fiber-reinforced composites is 
complicated due to the multitude of different microcracking modes which may initiate and 
evolve independently or simultaneously. Continuum Damage Mechanics (CDM) considers 
damaged materials as a continuum, in spite of heterogenity, micro-cavities, and micro-
defects and is based on expressing of stiffness reduction caused by damage, by establishing 
effective damage parameters which represent cumulative degradation of material. There are 
basically two categories of CDM models used for estimating the constitutive behavior of 
composite materials containing microcracks –phenomenological models and 
micromechanics models. 

The phenomenological CDM models employ scalar, second order or fourth order tensors 
using mathematically and thermodynamically consistent formulations of damage 
mechanics. Damage parameters are identified through macroscopic experiments and in 
general, they do not explicitly account for damage mechanism in the microstructure. On the 



 
Finite Element Implementation of Failure and Damage Simulation in Composite Plates 133 

other hand the micromechanics-based approaches conduct micromechanical analysis of 
representative volume element (RVE) with subsequent homogenization to predict evolving 
material damage behavior (Mishnaevsky, 2007). Most damage models do not account for the 
evolution of damage or the effect of loading history (Jain & Ghosh, 2009). Significant error 
can consequently accrue in the solution of problems, especially those that involve 
nonproportional loading. Some of these homogenization studies have overcome this 
shortcoming through the introduction of simultaneous RVE-based microscopic and 
macroscopic analysis in each load step. However, such approaches can be computationally 
very expensive since detailed micro-mechanical analyses need to be conducted in each load 
step at every integration point in elements of the macroscopic structure. 

Jain & Ghosh (2009) have developed a 3D homogenization-based continuum damage 
mechanics (HCDM) model for fiber-reinforced composites undergoing micro-mechanical 
damage. Micromechanical damage in the RVE is explicitly incorporated in the form of fiber-
matrix interfacial debonding. The model uses the evolving principal damage coordinate 
system as its reference in order to represent the anisotropic coefficients, which is necessary 
for retaining accuracy with nonproportional loading. The HCDM model parameters are 
calibrated by using homogenized micromechanical solutions for the RVE for a few strain 
histories.  

There are many works written about damage of composite plates and many models for 
various types of damage, plates or loading have been developed. Shu (2006) 
presented generalized model for laminated composite plates with interfacial damage. This 
model deals with three kinds of interfacial debonding conditions: perfect bonding, weak 
bonding and delamination. Iannucci & Ankersen (2006) described unconventional energy 
based composite damage model for woven and unidirectional composite materials. This 
damage model has been implemented into FE codes for shell elements, with regard to 
tensile, compressive and shear damage failure modes. Riccio & Pietropaoli (2008) dealt with 
modeling damage propagation in composite plates with embedded delamination under 
compressive load. The influence of different failure mechanisms on the compressive 
behavior of delaminated composite plates was assessed, by comparing numerical results 
obtained with models characterized by different degrees of complexity. Tiberkak et al. 
(2008) studied damage prediction in composite plates subjected to low velocity impact. 
Fiber-reinforced composite plates subjected to low velocity impact were studied by use of 
finite element analysis where Mindlin’s plate theory and 9-node Lagrangian element were 
considered. Clegg et al. (2006) worked out interesting study of hypervelocity impact damage 
prediction in composites. This study reports on the development of an extended orthotropic 
continuum material model and associated material characterization techniques for the 
simulation and validation of impacts onto fiber-reinforced composite materials. The model 
allows to predict the extent of damage and residual strength of the fiber-reinforced 
composite material after impact. 

Many studies of an effect of various aspects of damage process on behavior of composite 
plates can be found in the literature (e.g. Gayathri et al. , 2010). Many authors have been 
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dealing with problematic of damage of composite plated under cyclic loading or 
problematic of impact fatigue damage (e.g. Azouaoui et al. , 2010). Composite materials are 
becoming more and more used for important structural elements and structures, so the 
problematic of fatigue damage of composites is becoming more and more actual. Numerical 
implementation of damage is not simple. Finite element method (FEM) is the most utilized 
method for modeling damage. Fast Multipole BEM method or various meshless methods 
are also establishing at the present time.  

Firstly, the goal of this chapter is to present the numerical results of the delamination 
analysis of two laminae with different thickness with two orthotropic material properties 
and subjected to a pair of opposed forces. For this goal we used commercial FEM software 
ANSYS and the mode I, II, and III components of energy release rate (ERR) were calculated. 
Secondly, the goal is to present the numerical results of elastic damage of thin composite 
plates. The analysis was performed by user own software, created in MATLAB 
programming language. This software can perform numerical analysis of elastic damage 
using FEM layered plate finite elements based on the Kirchhoff plate theory.  

This chapter is organized in three sections: Second section is focused on failure modeling in 
laminates by using standard shear deformable elements, whereas interface elements were 
used for the interface model. The delamination propagation is controlled by the critical ERR. 
In third section, in first, a general description of damage is provided, then damage model 
used is examined. Finally, some numerical results obtained for damage of plate are 
presented. 

2. Theoretical background of failure modeling in laminates 

The mechanisms that lead to failure in composite materials are not yet fully understood, 
especially for matrix or fiber compression. Strength-based failure criteria are commonly 
used with the FEM to predict failure events in composite structures. Numerous continuum-
based criteria have been derived to relate internal stresses and experimental measures of 
material strength to the onset of failure (Dávila et al., 2005). In Fig. 1 a laminate contains a 
single in-plane delamination crack of area DΩ with a smooth front DΩ . The laminate 
thickness is denoted by h0. The x-y plane is taken to be the mid-plane of the laminate, and 
the z-axis is taken positive downwards from the mid-plane. 

2.1. Plate finite elements for sublaminate modeling  

Each sublaminate is represented by an assembly of first order shear deformable (FSDT) plate 
elements bonded by zero-thickness interfaces in the transverse direction as shown in Fig. 2. 
The delamination plane separates the delaminated structure into two sublaminates of 
thickness h1, h2 and each sublaminate consist the upper nu plates and the lower nl plates. Each 
plate element is composed from one or few physical fiber-reinforced plies with their 
material axes arbitrarily oriented. Lagrangian multipliers through constraint equations (CE) 
are used for enforcing adhesion between the plates inside each sublaminate. Accordingly, 



 
Finite Element Implementation of Failure and Damage Simulation in Composite Plates 135 

the displacements in the z-th plate element, in terms of a global reference system located at 
the laminate mid-surface, are expressed by (e.g. Carrera 2002; Reddy 1995) 

 

 
Figure 1. Delaminated composite plate 
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Figure 2. Laminate subdivision in plate elements 
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where ui, vi refer to the in-plane displacements, and wi to the transverse displacements 
through the thickness of the i-th plate element, 0 0 0, ,i i iu v w , are the displacements at the mid-
surface of the i-th plate element and  xi yi(x,y), x,y   denote rotations of transverse 
normals about y and x, respectively.  

At the reference surfaces, the membrane strain vector iε , the curvature iκ , and the 
transverse shear strain γi , respectively are defined as 
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The constitutive relations between stress resultants and corresponding strains are given in 
(Reddy & Miravete, 1995; Žmindák, 2010). In these works standard FSDT finite elements 
available in ANSYS software are used (ANSYS, 2007) to join these elements at the interfaces 
inside each sublaminate using CE or rigid links characterized by two nodes and three 
degrees of freedom at each node. 

2.1.1. Interface elements for delamination modeling  

Delamination is defined as the fracture of the plane separating two plies of a laminated 
composite structure (Fenske, et al., 2001). This fracture occurs within the thin resin-rich layer 
that forms between plies during the manufacturing process. Perfect adhesion is assumed in 
the undelaminated region DΩ Ω , whereas sub-laminates are free to deflect along the 
delaminated region DΩ  but not to penetrate each other. A linear interface model, is 
introduced along DΩ Ω  to enforce adhesion. The constitutive equation of the interface 
involves two stiffness parameters, kz,kxy, imposing displacement continuity in the thickness 
and in-plane directions, respectively, by treating them as penalty parameters. The 
relationship between the components of the traction vector σ acting at the lower surface of 
the upper sublaminate, σzx, σzy and σzz, in the out-of-plane (z) and in the in-plane (x and y) 
directions, respectively, and the corresponding components of relative interface 
displacement vector Δ , Δu, Δv and Δw is expressed as 

 σ K Δ  (3) 

Interface elements are implemented using COMBIN14 element. Relative opening and 
sliding displacements are evaluated as the difference between displacements at the interface 
between the lower and the upper sublaminate. 
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2.1.2. Contact formulation for damage interface 

In order to avoid interpenetration between delaminated sublaminates in the delaminated 
region DΩ , a unilateral frictionless contact interface can be introduced, characterized by a 
zero stiffness for opening relative displacements (Δw≥0) and a positive stiffness for closing 
relative displacements (Δw≤0), then the contact stress zzσ  is  

  zz
1σ 1 sign(Δw)) k Δwz2

   (4) 

where kz is the penalty number imposing contact constraint and sign is the signum function. 
A very large value for kz restricts sublaminate overlapping and simulates the contact 
condition. Unilateral contact conditions may be implemented in ANSYS using COMBIN39. 
This element is a unidirectional element with nonlinear constitutive relationships with 
appropriate specialization of the nonlinear constitutive law according to (4). 

If we introduce a scalar damage variable D with the value of 1 for no adhesion and the value 
of 0 for perfect adhesion, we get a single extended interface model with constitutive law 
valid both for undelaminated DΩ Ω and delaminated DΩ  areas. Consequently 

constitutive law can be expressed as 

  σ 1 D Δ  K  (5) 

In this work we use the formulation via FEs, related to plate elements, interface elements 
and Lagrange multipliers. It is worth noting that in commercial FEA packages the 
Lagrange multipliers are represented by either CE or rigid links, whereas interface 
elements are implemented by the analyst using a combination of spring elements 
(COMBIN14) and CE. 

2.1.3. Mixed mode analysis 

In order to predict crack propagation in laminates for general loading conditions, ERR 
distributions along the delamination front are needed. Fracture mechanics assumes that 
delamination propagation is controlled by the critical ERR. Delamination grows on the 
region of the delamination front where the following condition is satisfied and is of the 
form 

 
     

βα
I II III

c c c
I II III

γ
G s G s G s

G G G

    
                 

1  (6) 

where α, β and γ are mixed mode fracture parameters determined by fitting experimental 
test results. 

The critical ERR  c c c
,I II IIIG ,G G  material properties can be evaluated from experimental 

procedures. The closed-form expressions for the ERR are (Barbero, 2008) 
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 (8) 

They are obtained by means of the interface model, using FE code to check whether 
propagation occurs. Once made a global FEA of the laminate, then the calculation of G(s) 
along the delamination front reduces to a simple post-computation. The extent of the 
propagation of the delamination area may be established by releasing the node in which the 
relation (6) is first satisfied, leading to a modification of the delamination front, which in 
turn requires another equilibrium solution. It follows the fact that the delamination growth 
analysis must be accomplished iteratively. For simplicity, only the computation of ERR is 
described here. The study of the propagation for a 3D planar delamination requires the use 
of nonlinear incremental numerical computation. 

The delaminated laminate is represented using two sublaminates (Fig. 2). In this case, the 
model is called a two-layer plate model. Multilayer plate model in each sublaminate is 
necessary to achieve sufficient accuracy when the mode components are needed. 
Sublaminates are modeled using standard shear deformable elements (SHELL181), whereas 
interface elements can be used for the interface model. Available interface elements 
(INTER204) are only compatible with solid elements, therefore interface elements are 
simulated here by coupling CE with spring elements (COMBIN14). Plate and interface 
models must be described by the same in-plane mesh. 

The FE model of the plates adjacent to the delamination plane in proximity of the delamination 
front is illustrated in Fig. 3. Interface elements model the undelaminated region  DΩ Ω up to 
the delamination front. The mesh of interface and plate elements must be sufficiently refined 
in order to capture the high interface stress gradient in the neighborhood of the delamination 
front, which occurs because high values for interface stiffness must be used to simulate perfect 
adhesion. The individual ERR at the general node A of the delamination front are calculated 
using the reactions obtained from spring elements and the relative displacements between the 
nodes already delaminated and located along the normal direction. 

ERRs are computed by using (9), which is a modified version of (8) in order to avoid 
excessive mesh refining at the delamination front. This leads to the following expressions 
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where z
AR  is the reaction in the spring element connecting node A in the z-direction, 

B BΔw   is the relative z-displacement between the nodes B and B'. These are located 
immediately ahead of the delamination front along its normal direction passing through 
A. 

 
Figure 3. Plate assembly in the neighborhood of the delamination front 

Similar definitions apply for reactions and relative displacement related to modes II and III. 
The characteristic mesh sizes in the normal and tangential directions of the delamination 
front are denoted by nΔ  and tΔ . In (9), the same element size is assumed for elements 
ahead of and behind the delamination front. Value of tΔ /2 must be used in (9) instead of 

tΔ  when the node is placed at a free edge. 

In order to simplify the FE modeling procedure, it is possible to introduce spring elements 
only along the delamination front instead of the entire undelaminated region. The perfect 
adhesion along the remaining portion of the undelaminated region can be imposed by CE. 
However, when the delamination propagation must be simulated, it is necessary to 
introduce interface elements in the whole undelaminated region DΩ Ω . 

In the next example, the delamination modeling techniques presented so far are applied to 
analyze typical 3D delamination problems in laminated plates. The ERR distribution along 
the delamination front are computed for different laminates and loading conditions. 

2.2. Finite element modeling and numerical example 

One of the most powerful computational methods for structural analysis of composites is the 
FEM. The starting point would be a “validated” FE model, with a reasonably fine mesh, 
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correct boundary conditions, material properties, etc. (Bathe, 1996). As a minimum 
requirement, the model is expected to produce stress and strains that have reasonable 
accuracy to those of the real structure prior to failure initiation. In spite of the great success of 
the FEM and BEM as effective numerical tools for the solution of boundary-value problems 
on complex domains, there is still a growing interest in the development of new advanced 
methods. Many meshless formulations are becoming popular due to their high adaptivity 
and a low cost to prepare input data for numerical analysis (Guiamatsia et al., 2009). 

The results of the delamination analysis of two laminae with different thickness and material 
are processed in this section. The laminae are fixed on one side and free on the other side. 
Loads are applied on the free side depending on the analyzed type of delamination.  

The upper sublamina has these properties: Ex= 35000 MPa, Ey = Ez = 10500 MPa, Gyz = 10500 
MPa, Gxy = Gxz = 1167 MPa, vxy = vxz = vyz= 0.3. The lower sublamina has these properties: Ex= 
70000 MPa, Ey = Ez = 21000 MPa, Gyz = 2100 MPa, Gxy = Gxz = 2333 MPa, vxy = vxz = vyz= 0.3. The 
pair of forces applied on the laminae is T= 1 N/mm and the dimensions of the laminate are: a 
= 10mm, B = 20 mm , L= 20mm, h1= 0.5 mm, h2= 1mm. 

 
Figure 4. a) Scheme of boundary conditions and laminate dimensions,  
b) scheme of FEM model 

The upper sublaminate is composed by four plates nu= 4 and the lower by two nl = 2. The 
plates are meshed by SHELL181 elements. The zone of mesh refinement has these 
dimensions 5 * 20 mm, it is centered around of the delamination front which is placed in the 
middle of the laminate. The interface between the sublaminates is modeled without stiffness 
for opening displacements and with positive stiffness for closing displacements. The interface 
between sublaminates is modeled by means of CE (Constrain Equation), since it is easier to 
apply than beam elements and delamination propagation is not solved. The delamination 
front is created by spring elements COMBIN 14, in each node of the delamination front by 
three elements. The stiffness of the spring elements binding the laminae is chosen as kz a kxy = 
108 N/mm3. These elements are oriented in different directions, they were created always 
from a pair of nodes placed on the surface of the lower sublamina. One of the pair nodes is 
bounded to the upper plate by means of CE and the second one is bounded to the lower 
plate. ERR is calculated by using deformation along the delamination front.  

Model I 

At model I the ERR for delamination type I is analyzed. Model I is loaded with opening forces 
T of magnitude 1 N/mm, which are parallel to z axis, displayed on Fig. 5a. For the calculation 
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of the ERR the equation (9) was used for the type I. As the biggest ERR is in the middle of the 
model, it is expected that the beginning of the delamination is in the middle of the model. The 
distribution of ERR through the width of the laminate is displayed on the Fig.5b. 

 

 
 

Figure 5. Scheme of FEM Model I: a) Forces applied on the laminate model, b) ERR distribution of IG

for delamination type I 

Model II 

In this model the delamination type II (sliding type)was simulated. The applied forces are 
parallel to the x axis, Fig. 6 a). Two types of ERR were analyzed in this model, IIG in the x 
direction and IIIG in the y direction. ERRs were calculated separately for each direction. The 
reaction of the spring elements are used for the calculation of IIG  and the y reactions are 
used for the calculation of IIIG . Both distributions are displaying the absolute values of 
ERR, at both distributions the values of ERR are smaller then the values of GI. The values of 
GII are in the range of (0.5, 2). 10-4 and the values of GIII are in the range of (0, 4). 10-5  (Fig. 7) 

Model III 

At this model the delamination type III (tearing type) was analyzed. The geometry of model 
I was used, with the mesh and its refinement around the delamination front, boundary 
conditions and the linking between the shell plates, but the direction of the applied forces 
has changed, Fig.8a). Both types of ERR are analyzed here, IIG in the x direction and IIIG  
the y direction. The values of ERR are in these ranges: value of GII in the range of ( 0, 14).10-3 
and the value of GIII in the range of (0, 0.02). It is possible that better results could be 
achieved by increasing of the number of plate elements layers simulating the sublamina. 
These models can be also modeled by solid elements, but there is greater number of 
elements needed for accurately simulating of the stress and ERR gradients. Thereby the 
number of equations and computing time increase. 

(a) (b)
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Figure 6. Scheme of FEM Model II: a) direction of loads for delamination type II, b) distribution of ERR 
for type II delamination of GII 

 
Figure 7. ERR distribution of GIII  for delamination type II 

 
Figure 8. Scheme of FEM Model III: a) definitions of loads for delamination type III, b) distribution of

IIG  for model III 

(a) (b)

(a) (b)
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3. Continuum damage mechanics 

There are many material modeling strategies to predict damage in laminated composites 
subjected to static or impulsive loads. Broadly, they can be classified as (Jain & Ghosh, 
2009): 

 failure criteria approach (Kormaníková, 2011), 
 fracture mechanics approach (based on energy release rates), 
 plasticity or yield surface approach, 
 damage mechanics approach 

We consider a volume of material free of damage if no cracks or cavities can be observed at 
the microscopic scale. The opposite state is the fracture of the volume element. Theory of 
damage describes the phenomena between the virgin state of material and the macroscopic 
onset of crack (Jain & Ghosh, 2009; Tumino et al., 2007). The volume element must be of 
sufficiently large size compared to the inhomogenities of the composite material. In Fig. 9 
this volume is depicted. One section of this element is related to its normal and to its area S. 
Due to the presence of defects, an effective area S for resistance can be found. Total area of 
defects is therefore: 

   DS S S  (10) 

The local damage related to the direction n is defined as: 

  DS
D

S
  (11) 

For isotropic damage, the dependence on the normal n can be neglected, i.e. 

  D D nn  (12) 

We note that damage D is a scalar assuming values between 0 and 1. For D = 0 the material 
is undamaged, for 0<D<1 the material is damaged, for D = 1 complete failure occurs. The 
quantitative evaluation of damage is not a trivial issue, it must be linked to a variable that is 
able to characterize the phenomenon.  

 
Figure 9. Representative volume element for damage mechanics 
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We note that several papers can be found in literature where the constitutive equations of 
the materials are a function of a scalar variable of damage (Barbero, 2008). For the 
formulation of a general multidimensional damage model it is necessary to generalize the 
scalar damage variables. It is therefore necessary to define corresponding tensorial damage 
variables that can be used in general states of deformation and damage (Tumino at al., 2007).  

In this part, we focused on presenting the methodology of numerical solving of elastic 
damage of thin composite plates reinforced by long fibers based on continuum damage 
mechanics by means of the finite element method. 

3.1. Damage model used 

The model for fiber-reinforced lamina mentioned next was presented by Barbero and de 
Vivo (Barbero, 2001) and is suitable for fiber - reinforced composite material with polymer 
matrix. On the lamina level these composites are considered as ideal homogenous and 
transversely isotropic. All parameters of this model can be easily identified from available 
experimental data. It is assumed that damage in principal directions is identical with the 
principal material directions throughout the damage process. Therefore the evolution of 
damage is solved in the lamina coordinate system. The model predicts the evolution of 
damage and its effect on stiffness and subsequent redistribution of stress. 

3.1.1. Damage surface and damage potential 

Damage surface is similar to the Tsai-Wu damage surface and is defined by tensors J and H 

(Barbero, 2008 and it is commonly used for predicting failure of fiber-reinforced lamina with 
respect to experimental material strength values. Damage surface and damage potential 
have the form of (Barbero & de Vivo, 2001)  

    2 2 2 2 2 2
11 1 22 2 33 3 1 1 2 2 3 3g Y,γ J Y J Y J Y H Y H Y H Y γ γ0         (13) 

    22 33 0
2 2 2

11 1 2 3f Y,γ J Y J Y J Y γ γ      (14) 

where the thermodynamic forces Y1, Y2 and Y3 can be calculated by means of relations 

 

2 26611 12
1 1 2 62 4 2 2 2 2

1 1 1 2 1 2

2 26622 12
2 2 1 2 64 2 2 2 2

2 1 2 1 2

3

SS S1
Y σ σ σ σ1 Ω Ω Ω Ω Ω Ω

SS S1
Y σ σ σ σ2 Ω Ω Ω Ω ΩΩ2

    Y 0

 
   
 
 
 
   
 
 

                           

 (15) 

where stresses and components of matrix S  are defined in the lamina coordinate system. 
Matrix S  gives the strain-stress relations in the effective configuration (Barbero, 2007). 
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Equation (13) and (14) can be written for different simple stress states: tension and 
compression in fiber direction, tension in transverse direction, in-plane shear. Tensors J and 
H can be derived in terms of material strength values. 

3.2.1. Hardening parameters 

In the present model for damage isotropic hardening is considered and the hardening  
function was used in the form of 

 1
2

δγ c exp 1
c

  
        

  (16) 

The hardening parameters γ0, c1 and c2 are determined by approximating the experimental 
stress-strain curves for in-plane shear loading. If this curve is not available, we can 
reconstruct it using function 

 6
12

6 6
6

G
σ F tanh γ

F

 
   
 

 (17) 

where F6 is the in-plane shear strength, G12 is the in-plane initial elasticity modulus and γ6 is 
the in-plane shear strain (in the lamina coordinate system). This function represents 
experimental data very well. 

3.1.3. Critical damage level  

The reaching of critical damage level is dependent on stresses in points of lamina. If in a 
point of lamina only normal stresses in the fiber direction or transverse direction (i.e., 
normal stress in lamina coordinate system) occur, then simply comparing the values of 
damaged variables with critical values of damage variables for given material at this 
point is sufficient. The damage has reached critical level if at least one of the values D1, 
D2 in the point of lamina is greater or equal to its critical value. If in a given point of 
lamina also shear stress occurs (in lamina coordinate system), it is additionally necessary 
to compare the value of the product of (1 - D1) (1 - D2) with ks value for given material. If 
the value of this product is less or equal to ks value, the damage has reached a critical 
level. 

3.2. Implementation of numerical method 

The Newton-Raphson method was used for solving the system of nonlinear equations. 
Evolution of damage has been solved using return-mapping algorithm described in (Neto, 
2008). The input values are strains and strain increments in lamina coordinate system, state 
variables D1, D2, and δ in integration point from the start of last performed iteration, C

matrix (gives the stress-strain relations in the effective configuration (Barbero, 2007) and 
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damage parameters related to damage model. The output variables are D1, D2, and δ, 
stresses and strains in lamina coordinate system in this integration point at the end of the 
last performed iteration. Another output is constitutive damage matrix CED in lamina 
coordinate system, which reflects the effect of damage on the behavior of structure. 
Flowchart of this algorithm is described in Fig. 10. 

 
Figure 10. Flowchart of return-mapping algorithm used for solving damage evolution in particular 
integration points 

3.3. Numerical example 

One problem for two different materials was simulated in order to study the damage of 
laminated fiber-reinforced composite plates. The composites are reinforced by carbon fibers 
embedded in epoxy matrix. The simply supported composite plate with laminate stacking 
sequence of [0, 45, -45, 90]S with dimensions of 125×125×2.5 mm was loaded by transverse 



 
Finite Element Implementation of Failure and Damage Simulation in Composite Plates 147 

force F = - 4000 N in the middle of the plate. Own program created in MATLAB language 
was used for this analysis. Four-node layered plate finite elements based on Kirchhoff 
(classical) plate theory were used. 

Material properties, damage parameters and hardening parameters and critical damage 
values are given in Table 1 - Table 3. The parameters J33 and H3 are equal to zero. The 
plate model was divided into 8×8 elements and was analyzed in fifty load substeps. The 
linear static analysis shows that the largest magnitudes of stress are in parallel direction 
with fibers and transverse to fibers and they occur in the outer layers in the middle of the 
plate. 

 

 E1[GPa] E2[GPa] G12[GPa] υ12 

M30/949 167 8.13 4.41 0.27 
M40/948 228 7.99 4.97 0.292 

Table 1. Material properties 

 1J  2J  1H  2H  0γ  1c  2c  

M30/949 0.952.10-3 0.438 25.585.10-3 21.665.10-3 0.6 0.30 0.395 
M40/948 2.208.10-3 0.214 10.503.10-3 8.130.10-3 0.12 0.10 0.395 

Table 2. Damage and hardening parameters 

 cr
1tD  cr

1c
D  cr

2cD  sk  

M30/949 0.105 0.111 0.5 0.944 
M40/948 0.105 0.111 0.5 0.908 

Table 3. Critical values of damage variables 

The largest magnitudes of shear stress occur in the outer layers in the corner nodes. The 
largest magnitudes of stress in layers 2, 3, 6 and 7 occur in the center of the plate. According 
to the results of linear static analysis it can be expected that damage will reach the critical 
level in some of the above points.  

Fig. 11 shows the analysis results of elastic damage of the plate made from material 
M30/949. Fig. 11a shows the evolution of individual stress components in dependence on 
strains (both in lamina coordinate system) in the midsurface of layer 1 (first layer from the 
bottom) in integration point (IP) 1 (in element 1, nearest to the corner). Fig. 11b shows the 
evolution of individual stress components in the midsurface of layer 2 in IP 872 (in element 
28, nearest to the center of the plate). Fig. 12 plots described damage variables evolution in 
these IPs. The analysis results show that reaching the critical level is caused not by normal 
stresses in the lamina coordinate system, but by shear stress (in the lamina coordinate 
system). The analysis results of the plate made from material M30/949 show that for given 
load the critical level of damage was reached in layers 2 and 7 in the center of the plate and 
its vicinity. In IPs that are closest to the center of the plate in these layers, the critical level of 
damage was reached between 13th and 14th load substep. However, it is not postulated that 
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used damage model predicts failure: it only predicts damage evolution and its effect on 
stiffness and consequent stress redistribution (Barbero & de Vivo, 2001). In some cases, 
failure can occur before the critical level of damage is reached. For plate made from material 
M30/949 load F=-1096 N is already critical. 

 
Figure 11. Stress and strain evolution for plate from material M30/949 in (a) IP 1, (b) IP 872 

 

 
Figure 12. Damage variables evolution for plate from material M30/949 in (a) IP 1, (b) IP 872 

Fig. 13 shows the analysis results of elastic damage of the plate made from material 
M40/948. Fig. 13a shows the evolution of individual stress components in dependence on 
strains (both in lamina coordinate system) in the midsurface of layer 1 in IP 868 (in element 
28, nearest to the center of the plate). Fig. 13b shows the evolution of individual stress 
components in the midsurface of layer 2 in IP 872 (in element 28, nearest to the center of the 
plate). The results show that reaching the critical level of damage will be also caused by 
shear stress in lamina coordinate system. However, the critical damage level was reached in 
layers 1 and 7 in the center of plate and its vicinity. The critical level of damage was reached 

(a) (b)

(a) (b)
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between 12th and 13th load substep in the nearest IPs. The critical level of damage would be 
also reached in the center of the plate and its vicinity in layers 2 and 7 (in the nearest IPs it 
would be reached between 16th and 17th load substep) and also in layers 3 and 6 (in the 
nearest IPs it would be reached between 27th and 28th load substep). Fig. 14 shows damage 
variables evolution in IP 868 and IP 872. For plate made from material M40/948 load F = -
990 N is already critical. 

 

 
Figure 13. Stress and strain evolution for plate from material M40/948 in (a) IP 868, (b) IP 872 

 
Figure 14. Damage variables evolution for plate from material M40/948 in (a) IP 868, (b) IP 872 

4. Conclusion 

The methodology of delamination calculation in laminated plates was applied in this 
chapter. The analyses shows that if mixed mode conditions are involved, a double plate 
model is suitable to accurately capture the mode decomposition in region near the midpoint 

(a) (b)

(a) (b)
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of delamination front. The solution converges quickly because a small number of plates is 
needed to obtain a reasonable approximation 

Damage model presented in this chapter has been utilized in this solution. This damage 
model is suitable for elastic damage of fiber-reinforced composite materials with polymer 
matrix. The postulated damage surface reduces to the Tsai-Wu surface in stress space. The 
problem of elastic damage is considered as material nonlinearity, so we get system of 
nonlinear equations. The Newton-Raphson method has been used for solving this system of 
nonlinear equations. Evolution of damage has been solved using the return-mapping 
algorithm. Flowchart of this algorithm was also presented. Numerical example of one 
problem for two different materials was presented next. Own program created in MATLAB 
language was used for this analysis. Four-node layered plate finite elements based on 
Kirchhoff (classical) plate theory were used. The analysis results show that change of 
material as well as the presence and values of shear stress have significant influence on the 
evolution of damage as well as on location of critical damage and load at which the critical 
level of damage will be reached. Critical damage level has not necessary to be reached in 
places with maximum magnitude of equivalent stress, but can be reached in other places. 
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