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1. Introduction 

Many foods are very sensitive for oxygen, which is responsible for the deterioration of many 

products either directly or indirectly. In fact, in many cases food deterioration is caused by 

oxidation reactions or by the presence of spoilage aerobic microorganisms. Therefore, in 

order to preserve these products, oxygen is often excluded. 

Oxygen (O2) presence in food packages is mainly due to failures in the packaging process, 

such as mixture of gases containing oxygen residues, or inefficient vacuum. Vacuum 

packaging has been widely used to eliminate oxygen in the package prior to sealing. 

However, the oxygen that permeates from the outside environment into the package 

through the packaging material cannot be removed by this method (Byun et al., 2011). 

Modified atmosphere packaging (MAP) is often used as an alternative to reduce the O2 

inside food packaging. However, for many foods, the levels of residual oxygen that can be 

achieved by regular (MAP) technologies are too high for maintaining the desired quality 

and for achieving the sought shelf-life (Damaj et al., 2009). The use of oxygen scavenging 

packaging materials means that oxygen dissolved in the food, or present initially in the 

headspace, can potentially be reduced to levels much lower than those achievable by 

modified atmosphere packaging (Zerdin et al., 2003). 

In this context, research and developments in the food packaging area have been conducted, 

aiming to eliminate residual O2. One of the most attractive subjects is the active packaging 

concept. Active packaging includes oxygen and ethylene scavengers, carbon dioxide 

scavengers and emitters, humidity controllers, flavor emitters or absorbers and films 

incorporated with antimicrobial and antioxidant agents (Santiago-Silva et al., 2009).  

The most used active packaging technologies for food are those developed to scavenge 

oxygen and were first commercialized in the late 1970s by Japan’s Mitsubishi Gas Chemical 
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Company (Ageless®). In the case of gas scavengers, reactive compounds are either contained 

in individual sachets or stickers associated to the packaging material or directly 

incorporated into the packaging material (Charles et al., 2006).  

The first patent of an absorber was given in 1938 in Finland. This patent was developed to 

remove the residual oxygen in headspace of metallic packaging. The method of introduction 

of hydrogen gas in the packaging to react with oxygen in palladium presence was 

commercialized in 1960s however this method has never been popularized and well 

accepted because the hydrogen was unstable during manipulation and storage and, 

furthermore, it is expensive and unwholesome (Abe and Kondoh, 1989). Recently, more 

than 400 patents were recorded, mainly in EUA, Japan and Europe, due the great interest by 

absorbers use (Cruz et al., 2005). 

Oxygen scavengers are becoming increasingly attractive to food manufacturers and retailers 

and the growth outlook for the global market is bullish. Pira International Ltd estimated the 

global oxygen scavenger market to be 12 billion units in Japan, 500 million in the USA and 

300 million in Western Europe in 2001. This market was forecast to grow to 14.4 billion in 

Japan, 4.5 billion in the USA and 5.7 billion in Western Europe in 2007 (Anon., 2004). In 

addition, Pira International Ltd. estimated the global value of this market in 2005 to be 

worth $588 million and has forecast this market to be worth $924 million in 2010. The 

increasing popularity of oxygen scavenging polyethylene terephthalate (PET) bottles, bottle 

caps and crowns for beers and other beverages has greatly contributed to this impressive 

growth (Anon., 2005). 

Overall, oxygen absorbing technology is based on oxidation or combination of one of the 

following components: iron powder, ascorbic acid, photosensitive polymers, enzymes, etc. 

These compounds are able to reduce the levels of oxygen to below 0.01%, which is lower 

than the levels typically found (0.3-3%) in the conventional systems of modified atmosphere, 

vacuum or substitution of internal atmosphere for inert gas (Cruz et al., 2007). A summary 

of the most important trademarks of oxygen scavenger systems and their manufacturers is 

shown in Table 1. 

An appropriate oxygen scavenger is chosen depending on the O2-level in the headspace, 

how much oxygen is trapped in the food initially and the amount of oxygen that will be 

transported from the surrounding air into the package during storage. The nature of the 

food (e.g. size, shape, weight), water activity and desired shelf-life are also important factors 

influencing the choice of oxygen absorbents (Vermeiren et al., 2003). 

Oxygen scavengers must satisfy several requirements such as to be harmless to the human 

body, to absorb oxygen at an appropriate rate, to not produce toxic substances or 

unfavorable gas or odor, to be compact in size and are expected to show a constant quality 

and performance, to absorb a large amount of oxygen and to be economically priced 

(Nakamura and Hoshino, 1983; Abe, 1994; Rooney, 1995). 

The most well known oxygen scavengers take the form of small sachets containing various 

iron based powders containing an assortment of catalysts. However, non-metallic oxygen 
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scavengers have also been developed to alleviate the potential for metallic taints being 

imparted to food products and the detection of metal by in-line detectors. Non-metallic 

scavengers include those that use organic reducing agents such as ascorbic acid, ascorbate 

salts or catechol. They also include enzymatic oxygen scavenger systems using either 

glucose oxidase or ethanol oxidase (Day, 2003). 

 

Company Trade Name Type Principle/Active 

substances 

Mitsubishi Gas Chemical Co., 

Ltd. (Japan) 

Ageless Sachets and 

Labels 

Iron based 

Toppan Printing Co., Ltd. (Japan) Fresilizer Sachets Iron based 

Toagosei Chem. Ind. Co. (Japan) Vitalon Sachets Iron based 

Nippon Soda Co., Ltd. (Japan) Seaqul Sachets Iron based 

Finetec Co., Ltd. (Japan) Sanso-cut Sachets Iron based 

Toyo Pulp Co. (Japan) Tomatsu Sachets Catechol 

Toyo Seikan Kaisha Ltd. (Japan) Oxyguard Plastic Trays Iron based 

Dessicare Ltd. (US) O-Buster Sachets Iron based 

Multisorb technologies Inc. (US) FreshMax Labels Iron based 

FreshPax Sachets Iron based 

Amoco Chemicals (US) Amosorb Plastic film Unknown 

Ciba Specialty chemicals 

(Switzerland) 

Shelfplus O2 Plastic film Iron based 

W.R. Grace and Co. (US) PureSeal Bottle crowns Ascorbate/metallic salts 

Darex Bottle crowns, 

bottle 

Ascorbate/sulphite 

CSIRO/Southcorp Packaging 

(Australia) 

Zero2 Plastic film Photosensitive 

dye/organic compound 

Cryovac Sealed Air Co. (US) OS1000 Plastic film Light activated 

scavenger 

CMB Technologies (UK) Oxbar Plastic bottle Cobalt catalyst/nylon 

polymer 

Standa Industrie (France) ATCO Sachets Iron based 

Oxycap Bottle crowns Iron based 

ATCO Lables Iron based 

Bioka Ltd. (Finland) Bioka Sachets Enzyme based 

Table 1. Some manufacturers and trade names of oxygen scavengers (Ahvenainen and Hurme, 1997; 

Day, 1998; Vermeiren et al., 1999) 

Structurally, the oxygen scavenging component of a package can take the form of a sachet, 

label, film (incorporation of scavenging agent into packaging film) (Figure 1), card, closure 

liner or concentrate (Suppakul et al., 2003). 
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Figure 1. Oxygen scavengers: (A) O-Buster® sachet, (B) OMAC® film and (C) FreshMax™ SLD label. 

Although the performance of oxygen-absorbing sachets was quite satisfactory for a wide 

range of food storage conditions, a number of limitations to their use in practice were 

recognized. The esthetics of inserts, coupled with a concern about possible ingestion or 

rupture, as well as their unsuitability for use with liquid foods, drove researchers to seek 

package-based solutions (Rooney, 2005). The incorporation of scavengers in packaging films 

is a better way of resolving sachet-related problems. Scavengers may either be imbedded 

into a solid, dispersed in the plastic, or introduced into various layers of the package, 

including adhesive, lacquer, or enamel layers (Ozdemir and Floros, 2004). In general, the 

speed and capacity of oxygen-scavenging systems incorporated in the packaging materials 

are considerably lower than those of (iron-based) oxygen scavenger sachets and labels 

(Kruijf et al., 2002). 

For an oxygen scavenger sachet to be effective, some conditions have to be fulfilled 

(Nakamura and Hoshino, 1983; Abe, 1994; Smith, 1996). First of all, packaging containers or 

films with a high oxygen barrier must be used, otherwise the scavenger will rapidly become 

saturated and lose its ability to trap O2. Films with an oxygen permeability not exceeding 20 

ml/m2.d.atm are recommended for packages in which an oxygen scavenger will be used. 

Secondly, for flexible packaging heat sealing should be complete so that no air invades the 

package through the sealed part. Finally, an oxygen scavenger of the appropriate type and 

size must be selected. The appropriate size of the scavenger can be calculated using the 

following formulae (Roussel, 1999; ATCO® technical information, 2002). The volume of 

oxygen present at the time of packaging (A) can be calculated using the formula: 

A = ሺV − Pሻ	x	ሾOଶሿ100  

where V is the volume of the finished pack determined by submission in water and 

expressed in ml, P is the weight of the finished pack in g and [O2] is the initial O2 

concentration in package (= 21% if air). 

In addition, it is necessary to calculate the volume of oxygen likely to permeate through the 

packaging during the shelf-life of the product (B). This quantity in ml may be calculated as 

follows: 

(a) (b) (c) 
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B = S	x	P	x	D 

where S is the surface area of the pack in m2, P is the permeability of the packaging in 

ml/m2/24h/atm and D is the shelf-life of the product in days. 

The volume of oxygen to be absorbed is obtained by adding A and B. Based on these 

calculations, the size of the scavenger and the number of sachets can be determined. 

According Cruz et al. (2005), the scavengers may be used alone or combined with modified 

atmosphere. This association requires the equipments to apply the modified atmosphere 

and decreases the filling velocity. However, this technique is generally used in the market to 

reduce the oxygen to desirable levels. 

Oxygen scavengers have attracted interest of food researchers, and then in this chapter we 

will discuss the principles involved in scavenge of O2, as well the main applications and 

researches in this field of active food packaging. 

2. Oxygen scavengers systems 

Nowadays, there are many systems of oxygen scavengers based on metallic and non-

metallic coumpounds. The mechanism of each system is described below. 

2.1. Iron powder oxidation 

The commercially oxygen scavengers available are in form of small sachets containing 

metallic reducing agents, such as powder iron oxide, ferrous carbonate and metallic 

platinum. The majority of these scavengers are based on the principle of iron oxidation in 

water presence. A self-reacting type contains moisture in the sachet and as soon as the 

sachet is exposed to air, the reaction starts. In moisture-dependent types, oxygen scavenging 

takes place only after moisture has been taken up from the food. These sachets are stable in 

open air before use because they do not react immediately upon exposure to air therefore 

they are easy to handle if kept dry (Vermeiren et al., 1999; Cruz et al., 2005). The action 

mechanism of oxygen scavenger based on iron oxidation is very complicated and is 

described by the following reactions.  Fe	 → 	Feଶା + 	2	eି 12	Oଶ + HଶO + 2	eି 	→ 	2	OHି Feଶା + 	2	OHି 	→ FeሺOHሻଶ FeሺOHሻଶ + 14	Oଶ + 12	HଶO	 → FeሺOHሻଷ 

According Shorter (1982), if the oxidation rate of the food product and the oxygen 

permeability of the packaging were known, it is possible to calculate the required iron 

amount to maintain the desirable oxygen level during the storage time. A rule of thumb is 
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that 1 g of iron will react with 300 ml of O2 (Labuza, 1987; Nielsen, 1997; Vermeiren et al., 

1999). The LD50 (lethal dose that kills 50% of the population) for iron is 16 g/kg body weight. 

The largest commercially available sachet contains 7 grams of iron so this would amount to 

only 0.1 g/kg for a person of 70 kg, or 160 times less than the lethal dose (Labuza and Breene, 

1989). 

Cruz et al. (2007) evaluate the efficiency of O-Buster® oxygen - absorbing sachets at relative 

humidity of 75%, 80% and 85% and different temperatures, 10 ± 2 ºC and 25 ± 2 ºC. They 

observed that oxygen absorption by the sachet increased as the relative humidity increased 

for both temperature. Therefore the oxygen - absorbing sachets were most active under 25 ± 

2 ºC and 85 % relative humidity. At ambient condition (25 ± 2 ºC/75 % RH) the rate of 

oxygen absorbed was 50 ml/day and 18.5 ml/day for 10 ± 2ºC. 

Some important iron-based O2 absorbent sachets are Ageless® (Mitsubishi Gas Chemical Co., 

Japan), ATCO® O2 scavenger (Standa Industrie, France), Freshilizer® Series (Toppan 

Printing Co., Japan), Vitalon (Toagosei Chem. Industry Co., Japan), Sanso-cut (Finetec Co., 

Japan), Seaqul (Nippon Soda Co., Japan), FreshPax® (Multisorb technologies Inc., USA) and 

O-Buster® (Dessicare Ltd., USA). 

2.2. Ascorbic acid oxidation 

The ascorbic acid is another oxygen scavenger component which action based on ascorbate 

oxidation to dehydroascorbic acid. Most of these reactions is slow and can be accelerated by 

light or a transition metal which will work as catalyst, e.g., the copper (Cruz et al, 2005).  

The ascorbic acid reduce the Cu2+ to Cu+ to form the dehydroascorbic acid (Equation I). The 

cuprous ions (Cu+) form a complex with the O2 originating the cupric ion (Cu2+) and the 

superoxide anionic radical (Equation II). In copper presence, the radical leads to formation 

of O2 and H2O2 (Equation III). The copper-ascorbate complex quickly reduces the H2O2 to 

H2O (Equation IV) without the OH- formation, a highly reactive oxidant. The following 

reactions show the process of oxygen absorber by ascorbic acid. 

 AA + 2	Cuଶା 	→ DHAA + 2	Cuା + 2	Hା  (1) 

 2	Cuା + 2	Oଶ 	→ 	2	Cuଶା + 2	Oଶି   (2) 

 2	Oଶି + 	2	Hା + Cuଶା 	→ 	Oଶ + HଶOଶ + Cuଶା  (3) 

 HଶOଶ + Cuଶା + AA	 → 	Cuଶା + DHAA + 2	HଶO	 (4) 

These equations can be summarized as described below: AA + ଵଶOଶ → DHAA + HଶO, 

where AA is the ascorbic acid and DHAA is the dehydroascorbic acid.  

The total capacity of the O2 absorption is determined by the amount of ascorbic acid. The 

complete reducing of 1 mol of O2 requires 2 moles of ascorbic acid (Cruz et al., 2005). 
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Ascorbic acid and ascorbate salts are being used in the design of scavengers in both sachet 

and film technologies. A patent from Pillsbury describes the oxygen-reducing properties of 

these substances. The active film may contain a catalyst, commonly a transition metal (Cu, 

Co), and it is activated by water; therefore, this technology is specially indicated for aqueous 

food products, or when the packaged product is sterilized because the water vapor inside 

the autoclave is capable of triggering the scavenging process (Brody et al., 2001a). 

2.3. Enzymatic oxidation (e.g., glucose oxidase and alcohol oxidase) 

Some O2-scavengers use a combination of two enzymes, glucose oxidase and catalase, that 

would react with some substrate to scavenge incoming O2. The glucose oxidase transfers 

two hydrogens from the -CHOH group of glucose, that can be originally present or added to 

the product, to O2 with the formation of glucono-delta-lactone and H2O2. The lactone then 

spontaneously reacts with water to form gluconic acid (Labuza and Breene, 1989; Nielsen, 

1997). A negative factor of this process is the catalase presence, a natural contaminant found 

in the glucose oxidase preparation, since the catalase reacts with the H2O2 forming H2O and 

O2 and, therefore, decreasing the system efficiency. However, the glucose oxidase 

production without catalase is so expensive. The reactions can be expressed as follows: 2	glucose + 2	Oଶ + 2	HଶO → 	2	gluconic	acid + 2	HଶOଶ 

where glucose is the substrate. 

Since H2O2 is an objectionable end product, catalase is introduced to break down the 

peroxide (Brody and Budny, 1995): 2	HଶOଶ + 	catalase	 → 2		HଶO +	Oଶ 

According the reaction, 1 mol of glucose oxidade reacts with 1 mol of O2. So, in an 

impermeable packaging with 500 ml of headspace only 0.0043 mol of glucose (0.78 g) is 

necessary to obtain 0 % of O2. The enzymatic efficiency depends on the enzymatic reaction 

velocity, the substrate amount and the oxygen permeability of the packaging. 

Coupled enzyme systems are very sensitive to changes in pH, aw, salt content, temperature 

and various other factors. Additionally, they require the addition of water and, therefore, 

cannot be effectively used for low-water foodstuffs (Graff, 1994). One application for glucose 

oxidase is the elimination of O2 from bottled beer or wine. The enzymes can either be part of 

the packaging structure or put in an independent sachet. The immobilization occurs by 

different process, such as, adsorption and encapsulation. Both polypropylene (PP) and 

polyethylene (PE) are good substrates for immobilizing enzymes (Labuza and Breene, 1989). 

A commercially available O2-removing sachet based on reactions catalyzed by food-grade 

enzymes is the Bioka O2-absorber (Bioka, Finland). It is claimed that all components of the 

reactive powder and the generated reaction products are food-grade substances safe for 

both the user and the environment (Bioka technical information, 1999). The oxygen 

scavenger eliminates the oxygen in the headspace of a package and in the actual product in 

12–48 hours at 20 ºC and in 24–96 hours at 2–6 ºC. With certain restrictions, the scavenger 
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can also be used in various frozen products. When introducing the sachet into a package, 

temperature may not exceed 60ºC because of the heat sensitivity of the enzymes (Bioka 

technical information, 1999). An advantage is that it contains no iron powder, so it presents 

no problems for microwave applications and for metal detectors in the production line. 

Besides glucose oxidase, other enzymes have potential for O2-scavenging, including ethanol 

oxidase which oxidises ethanol to acetaldehyde. It could be used for food products in a wide 

aw range since it does not require water to operate. If a lot of oxygen has to be absorbed 

from the package, a great amount of ethanol would be required, which could cause an off-

odour in the package. In addition, considerable aldehyde would be produced which could 

give the food a yoghurt-like odour (Labuza and Breene, 1989). 

2.4. Unsaturated hydrocarbon oxidation 

The oxidation of polyunsaturated fatty acids (PUFAs) is another technique to scavenge 

oxygen. It is an excellent oxygen scavenger for dry foods. Most known oxygen scavengers 

have a serious disadvantage: when water is absent, their oxygen scavenging reaction does 

not progress. In the presence of an oxygen scavenging system, the quality of the dry food 

products may decline rapidly because of the migration of water from the oxygen scavenger 

into the food. Mitsubishi Gas Chemical Co. holds a patent that uses PUFAs as a reactive 

agent. The PUFAs, preferably oleic, linoleic or linolenic, are contained in carrier oil such as 

soybean, sesame or cottonseed oil. The oil and/or PUFA are compounded with a transition 

metal catalyst and a carrier substance (for example calcium carbonate) to solidify the oxygen 

scavenger composition. In this way the scavenger can be made into a granule or powder and 

can be packaged in sachets (Floros et al., 1997). 

In many patent applications (Ackerley et al., 1998; Akkapeddi and Tsai, 2002; Barski et al., 

2002; Cahill and Chen, 2000; Goodrich et al., 2003; Kulzick et al., 2000; Mize et al., 1996; 

Morgan et al., 1992; Roberts et al., 1996; Speer and Roberts, 1994; Speer et al., 2002), it was 

disclosed that ethylenic-unsaturated hydrocarbons, such as squalene, fatty acids, or 

polybutadiene, had sufficient commercial oxygen scavenging capacity to extend the shelf-

life of oxygen-sensitive products. These unsaturated hydrocarbons, after being functionally 

terminated with a chemical group to make them compatible with the packaging materials, 

can be added during conventional mixing processes to thermoplastics such as polyesters, 

polyethylene, polypropylene, or polystyrene, and the films can be obtained using most 

conventional techniques for the plastic processing such as coinjection or coextrusion. 1,2-

Polybutadiene is specially preferred because it exhibits transparency, mechanical properties, 

and processing characteristics similar to those of polyethylene. In addition, this polymer is 

found to retain its transparency and mechanical integrity, and exhibits a high oxygen-

scavenging capacity (Roberts et al., 1996). Transition metal catalysts, such as cobalt II 

neodecanoate or octoate (Barski et al., 2002; Mize et al., 1996; Speer et al., 2002), are also 

included in the oxygen scavenger layer in order to accelerate the scavenging rate. 

Photoinitiators can also be added to further facilitate and control the initiation of the 

scavenging process. Adding a photoinitiator or a blend of photoinitiators to the oxygen-
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scavenging composition is a common practice, especially where antioxidants were added to 

prevent premature oxidation of the composition during processing and storage. 

The main problem of this technology is that during the reaction between these 

polyunsaturated molecules and oxygen, by-products such as organic acids, aldehydes, or 

ketones can be generated that affect the sensory quality of the food or raise food regulatory 

issues (Brody et al., 2001a). Indeed, some of these compounds are used to determine the 

quality and shelf-life of fatty foodstuffs because they are intrinsically related to rancidity (Jo 

et al., 2002; Van Ruth et al., 2001). This problem can be minimized by the use of functional 

barriers that impede migration of undesirable oxidation products. This functional layer must 

provide a high barrier to organic compounds, but allow oxygen to migrate, and it has to be 

inserted between the food product and the scavenger layer. Another solution comes from the 

use of adsorber materials. Some polymers present inherent organic compound-scavenging 

properties. Others incorporate adsorbers within the polymer structure (i.e., silica gel, zeolites, 

etc). It has also been found that when the ethylenic unsaturation is contained within a cyclic 

group, substantially fewer by-products are produced upon oxidation as compared with 

analogous noncyclic materials. The Oxygen Scavenging Polymer developed by Chevron 

Chemical is an example of this kind of technology. This system is reported to scavenge oxygen 

without degrading into smaller, undesirable compounds. Ten percent of the polymer is a 

concentrate that contains a photoinitiator plus a transition metal catalyst that maintains the 

polymer in a nonscavenging state until triggered by ultraviolet (UV) radiation (Rooney, 1995). 

OxbarTM is a system developed by Carnaud-Metal Box (now Crown Cork and Seal) that 

involves cobalt-catalyzed oxidation of a MXD6 nylon that is blended into another polymer. 

This system is used especially in the manufacturing of rigid PET bottles for packaging of 

wine, beer, flavored alcoholic beverages, and malt-based drinks (Brody et al., 2001b). 

Another O2 scavenging technology involves using directly the closure lining. Darex® 

Container Products (now a unit of Grace Performance Chemicals) has announced an 

ethylene vinyl alcohol with a proprietary oxygen scavenger developed in conjunction with 

Kararay Co. Ltd. In dry forms, pellets containing unsaturated hydrocarbon polymers with a 

cobalt catalyst are used as oxygen scavengers in mechanical closures, plastic and metal caps, 

and steel crowns (both PVC and non-PVC lined). They reportedly can prolong the shelf life 

of beer by 25% (Brody et al., 2001b). 

2.5. Immobilization of microorganisms in solid holders 

At least two patents from the 1980s and 1990s describe the use of yeast to remove oxygen 

from the headspace of hermetically sealed packages. One patent, from enzyme 

manufacturer Gist Brocades, focused on the incorporation of immobilized yeast into the 

liner of a bottle closure (Edens et al., 1992). The other patent used the yeast in a pouch 

within the package (Nezat, 1985). The concept of the patents was that, when moistened, the 

yeast is activated and respires, consuming oxygen and producing carbon dioxide plus 

alcohol. In the bottleclosure application, any carbon dioxide and alcohol produced would 

enter the contents, in this case beer, without causing measurable changes in the product. 
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Other researchers proposed an alternative approach: the use of entrapped aerobic 

microorganisms, capable of consuming oxygen (Tramper et al., 1983; Doran and Bailey, 

1986; Gosmann and Rehem, 1986 and Gosmann & Rehem 1988). Natural and biological 

oxygen scavengers, based on the use of microorganisms entrapped in a polymeric matrix, 

effective in preserving foods, safe to use, agreeable to consumer, inexpensive, environment 

friendly, could be a very interesting concept to modern food technology. In fact, the 

possibility to create a new package, having many desirable characteristics, is very promising, 

also taking into account the new consumers’ demand for mildly preserved convenience 

foods, having fresh-like qualities and being environmental friendly. In the field of 

biotechnology, immobilization of whole cells is gaining increasing importance (Gosmann and 

Rehem, 1988). Alginate, agar, and gelatin (Tramper et al., 1983; Doran and Bailey, 1986; 

Gosmann and Rehem, 1986 and Gosmann and Rehem, 1988) have been successfully used. 

Unfortunately, the above study cannot be used for the development of a biological 

oxygenscavenger. In fact, the cycle life of a biological oxygen-scavenger film includes the 

entrapment of the microorganisms in an appropriate polymeric matrix (film manufacturing), 

the maintenance of the desiccated film till its use (film storage and distribution), and the re-

hydration (film usage, obtained by putting the film in contact with the food). 

Altiere et al. (2004) develop an environmental friendly oxygen-scavenger film using 

microorganisms as the active component. In particular, hydroxyethyl cellulose (HEC) and 

polyvinyl alcohol (PVOH) were used to entrap two different kinds of microorganisms: 

Kocuria varians and Pichia subpelliculosa. In this work a new method is proposed to produce 

oxygen-scavenger films using aerobic microorganisms as the “active compound”. The 

manufacturing cycle of the investigated oxygen-scavenger film was optimized both to 

prolong the microorganisms viability during storage and to improve the efficiency of the 

film to remove oxygen from the package headspace. It was found that it is possible to store 

the desiccated film over a period of 20 days without monitoring any appreciable decrease of 

microorganism viability. It was also pointed out that the highest respiratory efficiency of the 

proposed active film is obtained by entrapping the microorganisms into polyvinyl alcohol, 

and by using the active film as a coating for a high humidity food. 

2.6. Photosensitive dye oxidation 

Another technique of oxygen absorption is a photosensitive dye impregnated onto a 

polymeric film. When the film is irradiated by ultraviolet (UV) light, the dye activates the O2 

to its singlet state, making the oxygen-removing reaction much faster (Ohlsson and 

Bengtsson, 2002). 

Australian researchers have reported that reaction of iron with ground state O2 is too slow 

for shelf-life extension. The singletexcited state of oxygen, which is obtained by dye 

sensitisation of ground state oxygen using near infra-red, visible or ultraviolet radiation, is 

highly reactive and so its chemical reaction with scavengers is rapid. The technique involves 

sealing of a small coil of ethyl cellulose film, containing a dissolved photosensitising dye 

and a singlet oxygen acceptor, in the headspace of a transparent package. When the film is 
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illuminated with light of the appropriate wavelength, excited dye molecules sensitise 

oxygen molecules, which have diffused into the polymer, to the singlet state. These singlet 

oxygen molecules react with acceptor molecules and are thereby consumed. The 

photochemical reaction can be presented as follows (Vermeiren et al., 2003, Cruz et al., 

2005). photon + dye	 → dye∗ dye∗ + Oଶ → dye + Oଶ∗  Oଶ∗ + acceptor	 → acceptor	oxide 
This scavenging technique does not require water as an activator, so it is effective for wet 

and dry products. Its scavenging action is initiated on the processor’s packaging line by an 

illumination-triggering process (Vermeiren et al., 2003).  

Cryovac® 0S2000TM polymer based oxygen scavenging film has been developed by Cryovac 

Div., Sealed Air Corporation, USA. This UV light-activated oxygen scavenging film (Figure 

2), composed of an oxygen scavenger layer extruded into a multilayer film, can reduce 

headspace oxygen levels from 1% to ppm levels in 4–10 days and is comparable in 

effectiveness with oxygen scavenging sachets. The OS2000TM scavenging films have 

applications in a variety of food products including dried or smoked meat products and 

processed meats (Butler, 2002).  

 

Figure 2. Light-activated oxygen scavenging films Cryovac® OS Films (Cryovac Food Packaging, Sealed 

Air Corporation, USA). 

A similar UV light-activated oxygen scavenging polymer ZERO2®, developed by CSIRO, 

Division of Food Science Australia in collaboration with Visy Pak Food Packaging, Visy 

Industries, Australia, forms a layer in a multilayer package structure and can be used to 

reduce discoloration of sliced meats. The active ingredient of the ZERO2® is integrated into 

the polymer backbones of such common packaging materials as PET, polyethylene, 

polypropylene and EVA. The active ingredient is nonmetallic and is activated by UV light 

once it is incorporated into packaging material (Graff, 1998). 
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Another successful commercial example for use with meat is the OSPTM system (Chevron 

Philips Chemical Company, USA). The active substances of OSPTM systems are ethylene 

methacrylate and cyclohexene methacrylate, which need to be blended with a catalyst or 

photoinitiator in order to activate the oxygen scavenging mechanism. 

2.7. Others 

Sulphites have also been proposed as active substances for use, not only in sachets, but also 

in plastic gasket liners of bottle closures, as liquid trapped between sheets of flexible 

packaging material, or directly incorporated into plastic film structures to pack products 

such as wine or ketchup. For example, potassium sulfite is cited as an O2 scavenger that can 

be readily triggered by the moist high temperature of the retorting process, and it also has 

enough thermal stability to pass unchanged through thermoplastic processes. However, any 

oxygen scavenger producing an end-product compound such as sulfur dioxide is viewed 

with concern because these by-products can exert a sensory change, or even an allergic 

effect on a susceptible consumer (Brody et al., 2001a). 

Antioxidants, incorporated into flexible and thermoformable plastic packaging materials, 

are intended to reduce oxygen passage through the plastic structure or to remove oxygen 

from packages containing dry food products such as breakfast cereals (Floros et al., 1997). 

Butylated hydroxytoluene (BHT), a commonly used plastic antioxidant, has been proven to 

prolong the shelf-life of packed oat flakes (Miltz et al., 1989), but there is some concern 

related to the physiological effects of consuming it because it seems that BHT tends to 

accumulate in the adipose tissue (Wessling et al., 1998).  

Nowadays, tendencies lead toward natural products and, therefore, natural antioxidants are 

being explored. There are a number of naturally occurring compounds that have antioxidant 

properties, including tocopherols, lecithin, organic acids and rosemary extracts. Among 

them, there is a growing interest in the use of vitamin E (also known as a-tocopherol) and 

vitamin C to be incorporated into polymers. Vitamin E has been marketed as a food-grade 

odor remover in packaging materials. For example, Laermer et al. (1996) showed that 

addition of vitamin E to high density polyethylene (HDPE)-ethylene/vinyl acetate (EVA)-

HDPE flexible packaging system could reduce the ‘‘plastic’’ taste and preserve the fresh 

taste of breakfast cereals. Ho et al. (1994) showed that vitamin E was effective in reducing 

off-flavor compounds released from HDPE bottles. Vitamin E has somehow superior 

antioxidant behavior than BHT related to the off-flavor generation, stability and solubility, 

in polyolefins. The incorporation of vitamins E or C into the plastic material presents 

another advantage when compared with the addition of synthetic antioxidants because the 

possible migration of these compounds into the food not only does not produce adverse 

effects, but also improves the nutritional characteristics of the food product. However, being 

a bigger molecule than BHT, it is less mobile (Wessling et al., 1998). The amount of 

antioxidant added to the polymer must be controlled, as high levels of antioxidant 

incorporated into films can alter the polymer properties. Oxygen permeability of the film 

would increase and somemechanical properties of the film would change (Wessling, 2000). 
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Many patents have been issued for UV light activated oxygen scavengers, however, these 

UV activation steps reduces packaging line speeds and resulting in reduced profitability. In 

addition, there is a significant cost increases for oxygen scavenging films due to the high 

cost of photoinitiators and the operation and maintenance costs of the UV machine. 

Therefore the development of new oxygen scavenging systems that don’t require a UV 

activation step should be valuable to the food packaging industry. 

Oxygen scavenging systems that utilise natural compounds as the basis for the oxygen 

scavenger may provide added benefit. One such potential compound is α-tocopherol which 

is a natural free radical scavenger with a positive consumer perception (Hamilton et al., 

1997). It has been incorporated into the polymer materials as a stabilizer (Al-Malaika et al., 

1999) and as an antioxidant in controlled release packaging to reduce the oxidation in food 

products (Byun et al., 2010, Lacoste et al., 2005, Siro et al., 2006 and Wessling et al., 2000). 

The oxygen scavenging principle for the use of α-tocopherol was that oxygen free radicals can 

be produced by a transition metal. Oxygen free radicals are derived from the non-enzymatic 

reactions of oxygen along with transition metals (Bagchi and Puri, 1998). The transition metal 

activates oxygen to the singlet electron state oxygen. Then, this activated oxygen undergoes 

subsequent reduction to reactive oxygen species (ROS), which is an oxygen free radical. α-

Tocopherol is a strong free radical scavenger which can also react irreversibly with singlet 

oxygen and produce tocopherol hydroperoxydienone, tocopherylquinone, and quinine 

epoxide (Choe and Min, 2006). α-Tocopherol can donate its electrons to scavenge the oxygen 

free radical. When the free radical gains the electron from α-tocopherol, it returns to its 

ground state and the free radical is eliminated.  

There are two chemical reaction steps in this oxygen scavenging reaction as follow. In first 

step, oxygen free radicals are produced in the presence of a transition metal. In the second 

step, the oxygen free radicals are eliminated by receiving electrons from α-tocopherol 

(Smirnoff, 2005). Therefore, the presence of both the transition metal and α-tocopherol are 

essential conditions for the oxygen scavenging system. Furthermore, thermal processing can 

accelerate oxygen scavenging reaction. 

Initiation step: Oxygen + transition	metal	 ∆→ oxygen	free	radical 
Scavenging step: α − tocopherol + oxygen	free	radical → dimer	or	tocopherylquinone 

3. Practical application and researches 

Oxygen scavengers have been studied for many researchers. There are many different types 

of oxygen scavengers that have been successfully applied to reducing food spoilage. In this 

section, we will discuss about the main and recent studies involving this technology. 

Acid ascorbic is degraded to dehidroascorbic acid in the presence of oxygen, and the rate at 

which dehydroascorbic acid is formed is approximately first order with respect to the 

concentrations of ascorbic acid, oxygen, and metal catalysts. To evaluate the ascorbic acid 

loss in orange juice due to oxygen presence, the product was packed in oxygen scavenging 
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film and oxygen barrier film. The initial concentration of ascorbic acid in the orange juice 

was 374 mg/l and this decreased by 74 and 104 mg/l after 3 days of storage at 25 ºC in the O2 

scavenger film and O2 barrier film, respectively. The rapid loss in ascorbic acid was related 

to the high oxygen content initially present in the headspace and that dissolved in the juice. 

This content of oxygen could not be eliminated by O2 barrier film. The authors concluded 

that the rapid removal of oxygen is an important factor to maintain the ascorbic acid content 

in orange juice over long storage times (Zerdin et al., 2003). 

Altieri et al. (2004) purposed a new method to produce oxygen-scavenger film based on 

aerobic microorganisms (Kocuria varians and Pichia subpelliculosa). These microorganisms 

were entrapped into hydroxyethyl cellulose and polyvinyl alcohol and maintained their 

viability over 20 days. Both films were able to reduce oxygen content present into vials, 

however the highest respiratory efficient was obtained by entrapping the microorganism 

into polyvinyl alcohol. 

Mohan et al. (2009) studied the effect of commercial oxygen scavenger in reducing the 

formation of biogenic amines during chilled storage of fish. It was observed that the O2 

scavenger was able to reducing the oxygen content of the pack up to 99.95% within 24 h and 

it extended the fish shelf-life up to 20 days compared to only 12 days for air packs. The 

biogenic amine content was significantly higher in air packs compared to the O2 scavenger 

packs. Inhibition of enzymatic activity of food or bacterial decarboxylase activity and 

prevention of bacterial growth are essential to control the production of biogenic amine. The 

authors verified that the use of oxygen scavengers associated to chilled storage temperature 

helps in reducing the formation of biogenic amines in fish. In conclusion, the authors believe 

that by using O2 scavengers, use of vacuum packing machine can be avoided. 

The health benefits of the Mediterranean diet are often related to the consumption of olive 

oil. The container material has been related to influence the oi quality and sensorial 

characteristics. Glass is the most used material, however the use of polyethylene 

terephthalate (PET) bottle have increased, since it is transparent, recyclable, unbreakable, 

inexpensive and it has demonstrated the ability to preserve the characteristics of olive oil 

during its shelf-life. In the other hand, the permeability of the PET bottle to gases and 

vapour, such as oxygen limits the use of these containers to olive oil, since rancidity is the 

main cause of oil spoilage. In this context, Cecchi et al. (2010) evaluated the quality of extra-

virgin olive oil packed into PET bottles containing or not commercial oxygen scavenger. 

Results of the 13-months experimental study indicate that the presence of the O2 scavenger 

in the plastic matrix was able to better maintain the quality and authenticity attributes of the 

oil. A reduced flux of oxygen through the PET bottle keeps the level of primary and 

secondary oxidation products lower than that obtained in simple PET bottles stored under 

the same conditions. The active barrier reduces the olive oil antioxidant activity decline 

during storage. The chlorophylls content decay can only be prevented via the storage of the 

sample in the dark, while the active barrier is able to diminish the carotenes loss at the end 

of the shelf-life. On the whole, the performance of the tested innovative packageing proved 

to better preserve the extra virgin characteristics of the oil during its shelf-life. 
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A variety of oxygen scavengers have been commercialised for use in the food packaging 

industry. These oxygen scavenging system are used in various forms such as; sachets, 

plastic films, labels, plastic trays, and bottle crowns. The most used O2 scavengers are based 

on the principle of iron oxidation.  

Cruz et al. (2006) evaluated an O2 absorbent system on the inhibition of microorganisms 

growth in fresh lasagna pasta during storage at 10 ± 2ºC. Fresh lasagna pasta was produced 

with and without potassium sorbate and acondicionated in high O2 barrier bags containing 

an O2-absorber sachet in the headspace. Three treatments were obtained: pasta with 

potassium sorbate, pasta without potassium sorbate packed with sachet and pasta without 

potassium sorbate packed without sachet (Figure 3). Oxygen absorbers were efficient in 

controlling the growth of filamentous fungi and yeasts, Staphylococus spp, total coliforms 

and E. coli in lasagna type fresh pasta without the addition of potassium sorbate, vacuum-

packed in O2-absorbent sachets, stored at 10 ± 2 °C. Therefore, the O2-absorber sachet can be 

used as a hurdle technology, associated with vacuum packaging and applying the good 

manufacturing practices, to preserve lasagna pasta without additives. 

 

Figure 3. Fresh lasagna pasta vacuum-packed with potassium sorbate (A), without potassium sorbate 

and with oxygen scavenger (B) and without potassium sorbate. 

However, nowadays, many consumers have a negative view of the term ‘‘iron-based.” 

Therefore, Byun et al. (2011) studied the development of na oxygen scavenger using a 

natural compound: α-tocopherol. A natural free radical scavenger, α-tocopherol, and a 

transition metal in an oxygen scavenging system were evaluated as a possible oxygen 

scavenger. An initial, cup headspace oxygen content (%) of 20.9% was decreased to 18.0% 

after thermal processing and 60 days of storage at room temperature when the oxygen 

scavenging system containing α-tocopherol (500 mg) and transition metal (100 mg) was 

utilised. The oxygen content (%) decreased further to 17.1% when the amount of transition 

metal increased from 100 to 150 mg. The authors concluded that α-tocopherol (500 mg) and 

transition metal (150 mg) had an oxygen scavenging capacity of 6.72 ml O2/g and an oxygen 

scavenging rate of 0.11 ml O2/g�day.  
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Others authors also research alternative systems able to scavenging oxygem. Anthierens et 

al. (2011) developed an O2 scavenger using an endospore-forming bacteria genus Bacillus 

amyloliquefaciens as the “active ingredient”. Spores were incorporated in poly(ethylene 

terephthalate, 1,4-cyclohexane dimethanol) (PETG), na amorphous PET copolymer having a 

considerable lower processing temperature and higher moisture absorption compared to 

PET (Figure 4). The work showed that endospores were able to survive incorporation in 

PETG at 210 ºC, and the spores could consume oxygen for minimum 15 days, after na 

activation period of 1-2 days at 30 ºC under high moisture conditions. According to the 

authors, the usse of viable spores as oxygen scavengers could have advantages towards 

consumer perception, recyclability, safety, material compatibility and production costs 

compared to currently available chemical oxygen scavengers. 

 

Figure 4. Schematic representation of a multilayer PET bottle consisting of a PETG middle layer 

containing bacterial spores surrounded by two outer PET layers. The inside of the bottle is in contact 

with the product, allowing moisture uptake of the bottle needed for spore germination. The system 

allows scavenging of residual oxygen from the in-bottle environment and scavenging from atmospheric 

oxygen permeating through the bottle wall (Anthierens et al., 2011) 

An ascorbyl palmitate-β-cyclodextrin inclusion complex was produced and used as oxygen 

scavenger by Byun and Whiteside (2012). Cyclodextrin inclusion complex is one 

microencapsulation technique that has a significant potential for oxygen scavenging 

technology. Cyclodextrins (CDs) are cyclic oligosaccharides with a hydrophilic exterior and 

a hydrophobic central cavity. Its molecular dimensions allow total or partial inclusion of 

guest compounds. Among conventional microencapsulation methods, β–cyclodextrin 

inclusion is the most effective for protecting flavors. Production of off-flavors is a common 

problem of conventional oxygen scavenging sachets and films. Therefore, eliminating or 

reducing these potential off-flavors is a major concern for developing new oxygen 

scavenger. Cyclodextrin has other advantages, such as its thermal and chemical stability. 

The new O2 scavenger based on ascorbyl palmitate-β-cyclodextrin inclusion complex was 
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able to reduce oxygen content under 4 and 23 ºC more than iron powder based sachet. In 

addition, the effect of thermal processing on oxygen scavenging capability was also 

investigated, and the O2 scavenger developed maintained good oxygen scavenging 

capability after thermal processing. The results indicated that ascorbyl palmitate-β-

cyclodextrin inclusion complex is an effective O2 scavenger. 

Gibis and Rieblinger (2011) incorporate the oxygen scavenger into the packaging material 

aiming to achieve better quality preservation and longer shelf-life of the chilled food. First 

investigations concentrated on defining the influence of temperature to the oxygen 

consumption of an oxygen scavenger film. Reducing the temperature from 23 °C to 5 °C 

caused a decrease (factor 3.0) in the oxygen consumption rate of the oxygen scavenger 

multilayer film PE /AL(SP2400; PE) within the first four days (RH 100 %; 0.5 % initial 

headspace-oxygen). Moreover the influence of using a polymer with a higher oxygen 

permeation rate than PP (commonly used) to the oxygen consumption of the scavenger film 

was investigated. Thus the masterbatch SP2500 was mixed with EVA that shows higher 

oxygen permeability than PP (by factor 2.3). Consequently the oxygen scavenger multilayer 

film PE/AL(SP2500; EVA) showed a faster oxygen consumption than the film PE/AL(SP2500; 

PP) (by factor 2.3). Finally the oxygen concentration in measuring cells with scavenger film 

PE/AL(SP2500; EVA) and with sausage were compared at 5 °C (initial oxygen concentration 

in headspace: 0.5 %). The combination (calculated) with oxygen scavenger film showed a 

faster oxygen decrease in the headspace of the measuring cell than the sausage alone. This 

leads to the assumption of a certain protection of the sausage against oxygen deterioration. 

Better protection of the sausages might be achieved by storing the food sample in 

combination with the scavenger film in darkness for the first few days. This would allow the 

scavenger to absorb the oxygen much faster than the sausage because the fast photo-

oxidation processes in the food do not appear without light-exposure.  

Absorption kinetics of two commercial O2 and CO2 scavengers (ATCO® LH-100 and ATCO® 

CO-450, respectively) commonly used in active modified atmosphere packaging (MAP), 

were studied. Individual scavenger sachets were placed in polyvinylidene chloride pouches 

filled with air or modified atmosphere at 0% or 100% relative humidity and at 5, 20 and 35 

°C. The headspace gas composition was measured as a function of time. Absorption kinetics 

were described by a first-order reaction with an Arrhenius type behaviour. The absorption 

capacity, absorption rate constant, energy of activation, Arrhenius constant and variation of 

all these parameters were evaluated This study illustrated the importance to take into 

account the temperature effect and the variation of the scavenger absorption kinetics to 

understand gas kinetics inside pouches, as well as to predict the product quality in modified 

atmosphere packaging (Charles et al., 2006). 

Rodrigues et al. (2012) evaluated the antioxidant capacities of gum arabic and maltodextrin 

microcapsules containing antioxidant molecules (trolox, α-tocopherol, β-carotene, apo-8’-

carotenal and apo-12’-carotenal) against reactive oxygen and nitrogen species. The scavenging 

capacities were influenced by the wall material, the reactive species, namely 

ROO�,H2O2,HO�, HOCl and ONOO-, and the antioxidant molecule. In general, a more 

pronounced enhancement of the antioxidant capacity due to incorporation of antioxidant 
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molecules was observed in gum arabic microcapsules. The empty microcapsules showed 

capacity to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS), being 

gum arabic a more potent antioxidant than maltodextrin. Apo-8’-carotenal incorporation 

promoted the highest increase in the scavenging capacities among the evaluated antioxidants, 

varying from 50% to 132% and from 39% to 85% for gum arabic and maltodextrin 

microcapsules, respectively, suggesting that this carotenoid presented the best balance between 

the molecule localization inside the microcapsules and the reactivity against the specific reactive 

species. These results contribute to the development of multi-functional microcapsules that are 

able to scavenge a broad range of reactive species of biological relevance, serving as a dietary 

supplement or as antioxidants for food products, and can also be used as colourants in 

hydrophilic matrices, such as foods and drugs, without raising the fat content. 

Zeolites (mostly faujasites) with adsorbed terpenes ((R)-(+)-limonene or D-pinene) or phenol 

derivatives (thymol, resorcin, pyrocatechol) have been applied as effective oxygen 

scavengers of oxygen in packing bags. Their efficiency depends on type of zeolite and on 

cation modification. Na- and Cu-forms of zeolites X and Y accelerate the oxidation of 

terpenes greatly, whereas the H-forms retard the reaction with oxygen. The reactivity of 

phenol derivatives with oxygen is also affected by the zeolite support markedly. Although 

the reactivity of phenols does not increase after adsorption on zeolites, the oxidation 

products remain adsorbed and do not affect the packing system (Frydrych et al., 2007). 

An oxygen scavenging system (OSS), composed of oxygen scavenging nanoparticles α-

tocopherol and iron chloride (II), was incorporated into warm-water fish gelatin film and their 

oxygenvscavenging capability was investigated. The initial oxygen content (%) in the cup 

headspace, 20.90%, was decreased to 4.56% after 50 days of storage. The oxygen scavenging fish 

gelatin (OSFG) film had good oxygen scavenging capacity,1969.08 cc O2/m2/mil, and moisture 

was used as the activator to trigger the oxygen scavenging reaction (Byun et al., 2012). 

The researches briefly presented above show that there is an increasing interest in the 

oxygen scavengers field, and that the role of packaging in food preservation is more active, 

contributing for extending food shelf-life. 
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