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1. Introduction 

1.1. The pulse as window into the heart 

The beating heart has attracted attention since antiquity and probably before recorded 

history [1]. Some cultures have centered the human soul within the heart because of its 

vivacious and incessant actions. Careful reading of the Hebraic Psalms, for example, 

attributes thinking, feeling and soulish behaviors to this remarkable organ. Consider King 

David’s anguish: “I am benumbed and badly crushed; / I groan because of the agitation of 

my heart. / Lord, all my desire is before You;/ And my sighing is not hidden from You. / My 

heart throbs, my strength fails me; / And the light of my eyes, even that has gone from me” 

[2]. Since time immemorial the cardiac pulse has been viewed as a window into the heart [1]. 

To the modern observer, the vigorous motions of the heart are a strong reminder that living 

physiological systems are dynamical in nature. Over the last century the dynamics of the heart 

have been refined and redefined by analogy to naturally rhythmical systems of nature 

extending to mathematical modeling and simulations. Indeed, the whole concept of 

homeostasis, a foundational so-called law of physiology, is even under revision. If homeostasis 

implies that a system is static with no motion, maybe the prime exemplar of homeostasis is the 

cadaver state! Possibly a simplistic but meaningful redefinition of physiology is “If it wiggles, 

it’s physiology; if it stops wiggling it’s anatomy” [3]. In this sense and beyond homeostasis, 

homeodynamics is being promoted as a better descriptor of living systems [4]. In terms of the 

heart, there are a variety of pressures fluctuations and heart rates that are permitted and even 

necessitated by the extant dynamical state (sleeping, sitting, running, etc.). 

2. The sinusoidal cardiac pulse 

The ubiquitous sine wave holds a unique position in the history of linear motions from sea-

wave patterns to planetary revolutions around the solar mass. As shown in Figure 1, the 

sine wave may be considered a good first approximation to the waxing and waning of 
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ventricular and aortic pressure traces, both of which are attributed to alternations between 

ventricular muscle contractions (active phase) and relaxations (quiescent phase). The heart 

beats through the lifespan of the individual, but this does not infer that the heart gets no 

rest. It is good to remember that the “wake/sleep” cycle of this automatic organ is measured 

in terms of milliseconds, not hours or days. Rest in this context means that the myocardium 

is electrically silent, but the heart still continues to consume energy throughout both systolic 

and diastolic phases. 

On closer inspection, however, the mechanical motions of the heart are highly complex and 

ventricular pressure waves and arterial pressure pulses are not well-fit by the simple sine 

wave. A single sine wave has a characteristic amplitude and period that repeats forever 

(infinite series), and knowing the details of one wave allows one to accurately extrapolate 

into the future with mathematical confidence. But the heart is not like this. Each beat and 

each period of the heart is different, unique to the moment and suited for the current 

environmental challenge. Besides this, the heart is a noisy system (noisy dynamic) simply 

because it resides within a noisy world. There is dynamical noise arising from within the 

organ itself, the heart is jostled by breathing and stepping motions, neuronal reflexes are 

constantly modulating cardiac function, and external noise from the environment shape and  

 

Figure 1. The famous Wiggers diagram displaying the time variations in cardiac electrical and 

mechanical functions as recorded by a polygraph. Note that the shape of the ventricular and aortic 

pressure traces can, on first pass, be mimicked by a simple sine wave. (from Wikepedia: 

http://en.wikipedia.org/wiki/Wiggers_diagram) 
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mold the activity of the heart. Thus, not only is the heart dynamic in nature, it is also very 

flexible, perfectly suited to the world in which we live. 

3. Electrical underpinnings of the cardiac pulse 

Cardiac dynamics go way beyond mechanical pressure generation (which can be sensed by 

arterial vessel palpitation), but also depends upon electrical activities inherent within the 

myocardium (which are insensible, save by electronic amplification and display). The heart 

remains mechanically silent until it is electrically activated. But activation depends upon 

electro-mechanical coupling which is calcium dependent in cardiac myocytes. The 

physiological principle (cause  effect) as shown in Figure 2 is this: electrical activity (phase 

0)  calcium induced calcium release (CICR of phase 2)  mechanical contraction of atrial 

and ventricular muscle cells [5]. In one study, the median left ventricular electromechanical 

delay (EMD) of 103 control subjects was 17 ms, with calcium release preceding mechanical 

force generation [6]. The summation of electrical depolarizations of ventricular action 

potentials (phase 0 in Fig. 2) are registered as the QRS waves in the ECG (electrocardiogram 

in Fig 1). Likewise, the summation of electrical repolarizations of ventricular action (Phase 3 

in Fig. 2) are registered as T waves in the ECG (electrocardiogram in Fig 1). Note that 

because of the long phase 2 plateau of the ventricular action potential, there is an 

isopotential phase between the Q and T waves, the QT interval. 

 

Figure 2. The five phases of the ventricular muscle action potential. (from Wikepedia: 

http://en.wikipedia.org/wiki/Cardiac_action_potential) 

What all this means is that there are different levels or different dimensions of cardiac 

rhythmicity. One could study cardiac mechanics and blood pressures, one could examine 

electrocardiological signals of the whole organ or isolated cardiac myocytes, or one might 



 
Current Issues and Recent Advances in Pacemaker Therapy 236 

delve into the dynamics of calcium fluxes within single heart cells. Dynamical details 

abound for the clever investigator to mine, interpret and hopefully apply to cardiac patients 

with abnormal dynamics for a myriad of different, sometimes subtle, reasons. But before 

one can discuss abnormalities in cardiac functioning, normal rhythms, beatings and cyclings 

of the heart must first be comprehended as best as possible. What is normal in this respect 

must cover a wide territory or legal (healthy) dynamical possibilities (homeodynamics). 

Because so many demands are placed on the heart, the normal heart must be flexible enough 

to survive environmental challenges and heavy workloads. It is. 

4. The rate of the heart 

Starting off most simply, cardiac dynamics can be captured in the variable heart rate. As an 

aside, some reports in the literature erroneously label as adjustable fixed parameters those 

observables which are in reality fluctuating physiological variables [7]. Heart rate can be 

detected manually by palpitation of the radial systolic pulse or automatically measured 

from an intravascular catheter (beats per minute). Heart rate of a different flavor can be 

recorded from surface electrocardiograms or cardiac muscle electrograms (electrical pulses 

per minute). These two heart rates are similar but not identical. Notably, in some diseased 

hearts it is possible for the developed ventricular pressure to be so weak that cardiac 

ejections occur only on every other contraction cycle. In this case the radial pulse rate would 

be half that of the ECG rate. Since artificial pacemakers take their cues not from 

hemodynamic feedbacks, but from non-physiological indicators, their clinical effectiveness 

can be compromised in certain situations. 

However measured, the fundamental problem with heart rate is that it represents an 

average over several beats in which case beat-to-beat periods (instantaneous rates) are not 

identical. Here the variability of the dynamic can be captured in the standard deviation. 

Still, this is not a fool-proof definition of variability since these deviations from the mean 

may not be normally distributed (non-Gaussian). To the extent that these physiology-math 

mismatches are real, attempting to capture natural variability in terms of homestatic and 

Gaussian statistics is a huge error both conceptually and practically [8]. Means and standard 

deviations are linear descriptors fully appropriate for linear systems. But what if, in fact, 

cardiac dynamics are actually non-linear? The truth is that it is now widely recognized that 

the functions and fluctuations of the heart are highly nonlinear [9]. Might it be concluded 

that as the sine wave is to the arterial pressure pulse, so are the mean and standard 

deviation to cardiac dynamics? 

As second point to grasp is that taking the mean filters out and minimizes (morphs, contorts 

or even destroys) dynamical details. Worse yet, taking means create fictive realities that do 

not exist in nature. For example, it is well known that the heart accelerates as one starts 

exercising. And even when the heart rate levels off at some plateau correlated to the work 

load of the exercise regime, it is proper to stay the system is in some kind of “steady-state?” 

What does steady-state really mean anyway? Again, in the spirit of homeodynamics [4], 

maybe such states are better comprehended as quasi-steady states or simply dynamic states 
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within a corralled boarder consistent with the status of the individual. And over time, the 

dynamic state can move in time and space either by following deterministic rules within a 

narrow regime or by allowing for some stochastic expansion of the perimeter border in 

which multiple motions are permitted and encouraged. 

5. The cardiac period 

If the cardiomyocyte is the functional unit of the myocardium, the cardiac period is the 

fundamental time signature of the heart cycle. This cardiac period can be measured in 

different ways and yielding different values, yet time intervals are superior to rates since no 

ratios are encountered. The absolute interval (neither relative nor ratio) could span the time 

from one systolic beat to another between aortic pressure pulses, or it could be the time 

lapse from one R wave to the next in the ECG (see Fig. 1). RR intervals must be understood 

as discrete events weather or not they form random point processes or are connected entities 

with deterministic structures. Quantitative analyses can distinguish the two possibilities, but 

the discrete RR interval remains the fundamental marker of cardiac timings. 

The second marker of cardiac timing represents the smooth flow of events occurring 

between beats. In this case (see Fig. 1) the variable could be the continuous ventricular or 

aortic pressure trace, the simple ECG presented as a time series, or even a cardiac 

electrogram measured with electrodes embedded in the heart. In either case, mechanical or 

electrical, the variable of interest is a single continuous function, one that is not discretized 

into intervals (e.g. analogous to a sine wave). Many models of cardiac function, mechanical 

or electrical, can take the form of continuous differential equations that are parameterized to 

captures the contours of the wave being mimicked. High digitization rates are, of course, 

required to faithfully capture accurate waveforms. 

Sequences of discrete cardiac intervals and continuous heart variables can be studied in the 

time domain (functions of time) as displayed on polygraph recordings. However, another 

perspective on discrete and continuous events is to transpose the signals into the frequency 

domain. For example, if one computed the frequency spectra of the ECG, the resultant 

spectrum would consist of the power of the signal at different frequency bands (not shown). 

One of the most useful techniques, however, has been computing the frequency spectra of 

sequenced cardiac periods using the Fast Fourier transform [10]. Three typical peaks emerge 

from such an approach as shown in Figure 3. High frequency oscillations (HFO. 0.15-0.40 

Hz) are typically attributed to ventilation effects on the cardiac cycle due to the waxing 

(inspiration) and waning (expiration) of vagal efferent inputs to the sinoatrial node. This is 

known as the classic respiratory sinus arrhythmia (SA) [12]. The HFO peak (hatched area) 

near 0.3 Hz represents a breathing frequency of 18 breaths per minute. Low frequency 

oscillations (LFO, 0.04-0.15 Hz) are associated with sympathetic activity with some 

parasympathetic contamination as it were. Nevertheless, the LFO/HFO ratio is commonly 

computed as a measure of autonomic imbalance with high ratios favoring sympathetic tone 

and low ratios favoring parasympathetic tone. Lastly, the origination of very low frequency 

oscillations (VLFO, 0.01-0.04 Hz) is very controversial but may be related to heart period 
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changes driven by the very slow oscillation in the renin-angiotensin-aldosterone system or 

thermoregulation [13]. One major clinical investigation has produced standards of RR 

spectral measurements, physiological interpretation, and clinical utilization [14]. 

 

Figure 3. Power spectrum of human PP intervals before (solid line) and after random shuffling (dotted 

line) of intervals. Reproduced from reference [11] with permission. 

The spectral analysis of RR intervals is commonly known as heart rate variability (HRV). 

The name is kind of a misnomer, because the spectral analyses are performed on heart 

periods not heart rates (a ratio). Nevertheless, all such computations are classified as linear 

and one dimensional. That is, the Fourier spectrum consists of the linear sums of sine and 

cosine waves which reconstruct the time domain signals (even square waves can be 

approximated with an infinite number of summations of wide ranging frequencies). With 

the growing appreciation that physiological signals are, among other things, highly 

nonlinear, another popular methodology has come to the forefront, approximate entropy 

(ApEn) [15]. This technique uses RR intervals as the input and treats then as chains of 

information. Low values of ApEn indicate that the cardiac signals have a deterministic 

structuring, whereas high ApEn values signal that the signals are more random or 

stochastic. There are technical problems associate with ApEn measures of complexity [3], 

but the utility of the approach cannot be denied. 

6. The cardiac period in recurrence space 

Physiological systems, including the cardiovascular system, are not only nonlinear, but they 

can be nonstationary, high-dimensional, and noisy. Such “miss-behaved” dynamics are 

characteristic of real-world systems. To tame the signals rendering them suitable for 
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classical analyses often requires filtering, smoothing, clipping of outliers, detrending, 

interval replacements, etcetera, all of which contort the original signals. For this reason the 

first introduction of recurrence plots in the physics literature [16] became highly attractive to 

physiologists [17, 18]. Recurrence plot can be generated from any time-varying (or space-

varying) signals consisting of either discrete intervals or continuous flows. The attraction of 

recurrence plots is that they are distribution-free, model-free, and have utility in dissecting 

out meaningful information from signals living on a dynamical transient and buffeted by 

noise. Higher dimensions are captured in surrogate variables by employing the principles of 

the embedding theorem of Takens [19]. What this means is that the windowed signal is 

divided up into short vectors of length EMBED and compared with each other exhaustively. 

If two vectors “match” by falling beneath a threshold radius value, then the leading points 

of the paired vectors are said to be recurrent. To render the data visible, a point is placed at 

the intersection of each and every vector i and vector j (e.g. for i = 1 to 500 and j = 1 to 500) 

falling within the allowed radius. 

 

Figure 4. PP time series (bottom) and RR recurrence plot (top) along with recurrence parameters and 

quantifications (left). The plot is symmetrical on either side of the line-of-identity. The PP time series 

has 500 points displayed (417.9s) with HRV fluctuations centered on mean of 71.8 beats per min.  
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The recurrence plot of a 500 sequential PP intervals from a disease-free human is shown in 

Figure 4. In this case the embedding dimension was set to 5 such that all possible vectors of 

5 points were compared with each other. The plot presents with lacelike delicacy revealing 

hidden patterns that are not seen in the one-dimensional time series beneath the plot. For 

quantitation, however, eight recurrence variables are extracted from the plot (%recur, 

%determ, dmax, entropy, trend, %laminar, vmax, traptime). Each variable has a critical, 

non-biased definition [20, 21] which report eight unique perspectives on the data derived 

from the time series. In the example shown, the density of points in the plot (%recur) is 

4.576% and the probability of diagonal lines in the plot (%determ) is 82.098%. However, 

after randomly shuffling the PP intervals into a “nonsense” sequence (destroying the 

dynamical structure), %recur fell to 0.162% and %determ fell to 46.535% (not shown). These 

shuffling changes indicate that the original time series had deterministic structures 

attributed to physiological laws of the heart. 

Proper implementation and interpretation of recurrence strategies requires careful selection 

of recurrence parameters for which a tutorial primer has been written [22] and freeware 

developed [23]. Recurrence windows can also move through very long time series, 

converting the eight unique recurrence variables into separate time series for further 

analysis. Little to no changes in these variables after random shuffling indicates rule-free 

signals. But such pure stochasticities are very rare in the world of structured physiological 

systems. 

7. Partitioning the cardiac period as a terminal dynamic 

Most modern quantifications of the cardiac dynamics, either linear or nonlinear, revert back 

to the fundamental RR or PP interval. Electrically speaking, during this time period two 

specific and alternating dynamics are occurring, electrical depolarization/repolarization 

during the beat and electrical isopotential between beats. Clean separation of these two 

phases can be realized by simply dividing the PP interval into two parts: the PT interval (the 

dynamic trajectory) and the TP interval (the stochastic pause) as shown in Figure 5A. Most 

interesting is Figure 5B in which the PP interval, the PT interval and the PT interval are all 

plotted as functions of time (or cardiac cycle number). The PP interval shows the typical 

respiratory sinus arrhythmia as expected. However, most of the variability is carried by the 

TP intervals when the heart is at isopotential rest, not the PT intervals when the heart is self-

excited, actively contracting, and repolarizing. This arrangement forms what is called a 

terminal dynamic [24]. 

What is a terminal dynamic? Simply stated, a terminal dynamic is a dynamic the reaches its 

terminus [25]. It comes to its end and simply stops. The incoming plane (active) is not 

asymptotic to the runway, but it actually lands and comes to a standstill at the gate (resting). 

The ant that runs (active) makes intermittent pauses along its path (resting). In the same 

way the heart follows an almost stereotypic trajectory while being electrically depolarized 

and repolarized (active) before it come to its rest during the inter-beat isopotential of the 

ECG (resting). The key here is that while the dynamic is “living” on the transient trajectory, 
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it is robust against noise. On the other hand, once the dynamic has ended and the dynamic 

is paused, it is at this point (technically, its singularity) when it becomes most vulnerable to 

external noise. This is why cardiac pacemakers can only pace the myocardium (e.g. select 

the next active trajectory) between beats during quiescent phases of the electrical cycle. The 

complex interplay of ion channel activation and inactivation during the active phase 

generates a refractory period for external stimuli. 

 

Figure 5. (A) Partitioning of PP intervals into PT and TP intervals for 512 beats. (B) HRV in PP intervals 

is carried almost exclusively in the TP intervals, not the PT intervals. Reproduced from reference [11] 

with permission. 

How can a terminal dynamic be modeled? Well, instead of devising some fancy differential 

equation depicting beat after ECG beat, a better approach would be to write a single 

equation for the active phase of the heart which starts and comes to its end [26]. Then a 
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pause or varying duration can be interposed before initiating the next beat. To impart more 

reality to the picture, the trajectory selection could come randomly, say, from a dozen 

slightly different differential equations (imparting a realistic wobbling in the active 

trajectory path). Likewise, the pause period could be randomly selected from a collection of 

actual cardiac isopotential times. 

Thus the cardiac dynamic recorded in the ECG is really an alternation between a 

deterministic trajectory (which can be modeled by a differential equation) and a 

stochastic pause (which can only be randomly sampled from a collection of measure real-

time pauses). This pause is termed the cardiac singularity, from which one of many 

trajectories can be selected for the next beat. The dynamic is also called a terminal 

dynamic, because the active heart actually stops (rests) at a terminus each and every 

beat. When one thinks about it, this type of modeling constitutes a piecewise 

deterministic system. The trajectory is the deterministic piece and the pause is the 

stochastic piece. Thus during the PP interval the heart alternates between determinism 

(PT interval) and stochasticity (TP interval). 

8. Atrial fibrillation 

One of the most common arrhythmias in human medicine is atrial fibrillation due to ectopic 

foci with possible spiral wave reentries [27]. Modeling of these three-dimensional patterns is 

very difficult, and control of atrial fibrillation is not fool-proof [28]. The thesis of a recent 

report is that atrial fibrillation may arise from unstable cardiac singularities [21]. As hinted 

at in the previous section, a singularity can be understood as the disruption or termination 

of an otherwise continuous event. For example, a sine wave has two singularities, one at its 

peak and another at its nadir. Under the influence of gravity, a ball tossed up into the air 

reaches its first unstable singularity at its peak. Then falling back to earth (the trajectory) 

again, the ball experiences a few bouncing cycles (unstable singularity-trajectory 

alternations) before finally coming to rest on the ground (stable singularity). Balancing a 

pencil on it stub end is easy (stable singularity), but balancing the same pencil on its point is 

very difficult (unstable singularity). 

Beyond sine waves, bouncing balls and balancing pencils, how can singularities be 

identified in the cardiac electrogram and what might they have to do with the detection of 

electrical patterns that may precipitate out as full atrial fibrillation? In the bottom panels of 

Figure 6, two atrial electrograms are shown as recorded from roving bipolar electrodes in 

human patients [21]. Each window consists of 2048 points spanning 2.10 seconds in time 

(digitization frequency 977 Hz). The first recording shows a spike pattern at 254 pulses per 

minute (4.2 Hz, Fig. 6A) and the second recording shows a spike pattern at 881 pulses per 

min (14.7 Hz, Fig. 6B). Although these rates are much too fast for each depolarization to be 

conducted through the atrioventricular node, the can still wreak havoc with arrhythmias in 

the main pumping chambers of the heart.  
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Recurrence plots of these two atrial signals clearly display singularities as square blocks 

stair-casing upward along the central diagonal line (line of identity, Fig. 6A and Fig. 6B). 

These singularities are coincident with the quasi-isopotentials periods in the electrograms. 

Off-central recurrences form rectangular boxes due to variability in isopotential durations 

among the windowed beats (analogous to the TP variability discussed above). Clearly, the 

faster the arrhythmia, the smaller the singularity that is inscribed. The postulate is that as 

atrial singularities become vanishingly small, then unrestrained atrial fibrillation is 

unleashed. Somewhere along the continuum to oblivion, the singularities become unstable, 

triggering fibrillation. The clinical application of this methodology may evolve such that 

mapped regions in the atria lacking singularities may be candidate sites for ablation in 

halting the dysrhythmia expressed within the larger tissue [29].  

 

Figure 6. Singularities in atrial electrograms. (A) Fast atrial waves (4.2 Hz) with relatively long 

singularities. (B) Very fast atrial waves (14.7 Hz) with relatively short singularities. Recurrence 

parameters: delay = 1, embedding dimension = 15, norm = Euclidean, radius = 15% of maximum 

distance, line = 2. Data from reference [21]. 

9. Conclusions 

The heart is a homeodynamic organ with automatic rhythms expressed in both mechanical 

electrical domains. Mechanical activities presume electrical underpinnings, but the reverse 

is not necessarily true except for possible stretch-activated electrical channels [30]. To get a 

window into cardiac dynamics, this chapter has majored on linear and nonlinear analyses 

that tease apart the cardiac cycle as defined as the R-R (or P-P) interval. For clinical 

medicine, the quest has been to define cardiovascular dynamics that may forecast unstable 



 
Current Issues and Recent Advances in Pacemaker Therapy 244 

patterns (arrhythmias) or fatal events (asystole). Can it be that dis-homeodynamics is a kind 

of dynamical disease [31]? 

Numerous studies have examined heart rate variability (HRV) and concluded that high 

HRV is good (how high?) and low HRV is bad (how low?). There are methodological 

problems associated with the measurement of HRV restricted to linear the perspective 

(spectral analysis) and low-dimensionality perspective (approximate entropy). One thing is 

for sure – autonomic imbalance and heart rate variability are important risk factors for 

cardiovascular disease [32]. Importantly, the reciprocity or co-activation of the sympathetic 

and parasympathetic branches of the autonomic nervous system is decidedly non-linear [33] 

and non-Gaussian [34]. This being true, it becomes apparent and necessary to apply the 

proper nonlinear tools to assess the signals. One proven too is recurrence quantification 

analysis (RQA) which has a demonstrated utility in diagnosing nonstationary cardiac 

dynamics [35]. 

As can be seen, the normal cardiac dynamic (mechanical or electrical) has a wealth of 

descriptors. With these in hand, it becomes easier to detect and possibly predict heart 

dysfunction and failure. Returning to the concept of homeodynamics, as people age or 

become ill, the dynamic range of cardiac functionality becomes limited. The loss of 

complexity and high-dimensional dynamics become markers for dysrhythmias, fibrillations 

and possibly even death [36]. 

Although current implanted artificial pacemakers are limited in their computational 

capacity, advances in nonlinear dynamics are being investigated to augment signal filtering 

and facilitate event detection [37-38]. 
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