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1. Introduction

In recent years, with the increasing interest in indoor wireless communications systems, the
development of appropriate tools for modeling the propagation within an indoor environ‐
ment is becoming of utmost importance. A versatile technique for studying propagation in
such a complex scenario is ray tracing [1-2]. Through this approach, a number of paths,
stemming from the transmitter, are traced along their way to the receiver, accounting for re‐
flection over the obstacles within the scenario. Other mechanisms of interaction between the
wave and the environment, such as diffraction, can be accommodated in ray tracing proce‐
dures by appropriate generalization of the basic theory [2].

While this method is purely deterministic, in actual environments with many randomly
placed scatterers of size comparable to the wavelength (Mie scattering), statistical characteri‐
zation of the multipath channel [3-6] may be the only viable approach in order to have an
accurate model of the propagation [7-8]. Statistical modeling built on iteration of ray tracing
results suffers of its inner computational intensity. As for the radio channel design what it is
of interest are the fluctuations about a mean value of the received power, one can use a sim‐
pler and efficient method to take into account variations due to randomly placed obstacles
in the propagation environment. Radiative transfer theory seems to be appropriate, as it
deals with the wave propagation within a random medium characterized by randomly
placed scatterers. Based on a phenomenological description of the transfer of energy, the ba‐
sic equation (referred to as radiative transfer equation, RTE) simply states the conservation
of energy in terms of the specific intensity I (r , ŝ), i. e. the power per unit area and per unit
solid angle propagating along ŝ, and which is a function of position r in the random medi‐
um [9]. The development of the theory is heuristic and does not entail any information
about the phase of the wave. Chandrasekhar first studied the RTE within the context of as‐
trophysics [10]. Later, the same formulation was employed successfully for many other ap‐
plications, such as propagation modeling in the atmosphere or in forested environments,
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heat transfer through insulating materials, neutron scattering, and power absorption within
biological tissues [11-14].

In this chapter, the author reports the RTE results for the evaluation of the power fluctua‐
tions in an indoor environment described as a homogeneous medium filled with scatterers
arbitrarily placed. The radiative transfer outcome is compared with the ray tracing predic‐
tions to assess its limits of applicability.

For the sake of simplicity and without introducing inessential complications in our analysis,
the investigation is limited to a propagation environment that can be modeled as a layered
parallel plane medium. This modeling is a first approximation of an indoor environment in‐
cluding people, benches or, for instance, a row of chairs in an auditorium, whose location is
not fixed. The random medium layer accounts for the average condition out of many possi‐
ble spatial configurations, given or assumed the number density of scatterers of a succession
of layers where each layer is modeled as random medium containing randomly placed scat‐
terers. Moreover, we consider infinite-length circular cylinder as scatterers so as to simplify
the solution of the RTE. It should be clear that while the ray tracing approach can be in prin‐
ciple used for any geometry and provide information about the phase of the wave, RT is in
practice only applicable to simple geometries and can only yield information about the sec‐
ond order statistics of the wave. The scatterer’s number density is chosen so as interference
and interaction between scatterers could be neglected. RT reliability under this condition
has been thoroughly investigated [15-17]; here, it is shown how it can be a useful and simple
tool for indoor propagation analysis regarding the spatial correlation as defined in Section 5.

The chapter is organized as follows. A review of the radiative transfer is presented in Sec‐
tion 2, together with the definition of main quantities. Section 3 and 4 are devoted to the de‐
scription of the RTE and of the numerical techniques for its solution. Iterative procedure and
its limits of applicability are discussed. Section 5 reports the numerical results in two study
cases in a 2D geometry with focus on the impact of the system parameters on the specific
intensity and spatial correlation. The results of the comparison between the radiative trans‐
fer results and the predictions obtained through ray tracing are also reported. Section 6 is
devoted to comments and conclusions.

2. Radiative Transfer Theory: physical background

Two basic theories have been developed in order to approach the study of wave propaga‐
tion within a random medium characterized by randomly placed scatterers. The first is the
analytical theory, where taking into account the scattering and absorption characteristic of
the particles solves the Maxwell equations. This approach is mathematically and physically
rigorous since in principle the effects of the mechanisms involved in multiple scattering, dif‐
fraction and interference can be appropriately modeled. However, in practice, various ap‐
proximations have to be made in order to obtain feasible solutions (see [9] or [10] for an
overview). Recent developments [18] adopt the random medium as paradigm to describe
the propagation channel. Stochastic Green’s functions are computed to obtain the channel
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transfer matrix T in MIMO applications. On the other hand, the transport theory is based on
a phenomenological description of the transfer of energy. The basic equation simply states
the conservation of energy expressed in terms of the specific intensity and it is equivalent to
the Boltzmann equation used in kinetic theory of gases [9]. The development of the theory is
heuristic and it does not entail any information about the phase of the wave.

In this chapter, the basic concepts and the quantities of interest when dealing with radiative
transfer theory are reviewed, while the reader is referred to literature for a deeper insight.
As the problem is defined in a two-dimensional domain, the classic theoretical formulation
is adapted to this framework. Accordingly, the chosen reference system is in cylindrical co‐
ordinates, as shown in Figure 1. The analysis deals with monochromatic signals with fre‐
quency f and the phasor notation is used.

Figure 1. Coordinate system.

To study the propagation of a wave in presence of randomly distributed particles, the main
results related to scattering and absorption of a single particle in vacuum are reviewed. Let
us consider an elliptically polarized incident plane wave Ei(ρ) in the direction t i described
by the azimuth angle ϕ i:

t̂ i =cosϕi x̂ + sinϕi ŷ (1)

that is:

Ei =Ei
0e

jki ⋅
ρ

= Ev ,i
0 v + Eh ,i

0 h e jki⋅ρ (2)

being (E0
v,i, E0

h,i) the field amplitudes for the vertical (z) and the horizontal (unit vector h ly‐
ing on the xy plane) components, respectively. k is the wave number vector:
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ki =k0ti =ω μ0ε0ti (3)

and (μ0, ε0) represent the vacuum dielectric constant and its permeability. As the propaga‐
tion takes place in the xy plane, the observed directions are denoted by a unit vector t̂  or by
the corresponding azimuth angle ϕ according to (1). The particle is characterized by a com‐
plex dielectric relative constant:

εr =
ε
ε0

=εr
' + jεr

'' (4)

and it is assumed for simplicity to be homogeneous with:

εr
'' = −

σ
ωε0

(5)

where σ is the conductivity [Sm-1].

In far field, the scattered field behaves like a cylindrical wave:

Es =
1
r
F (ϕi, ϕ)Ei

0e j(kρ−
π
4

)
(6)

where F(ϕi,ϕ) is the 2×2 scattering matrix accounting for the amplitude, the phase and the
polarization of the scattered wave in direction ϕ when illuminated by a plane wave propa‐
gating in direction ϕι. For a 2D problem the polarizations are independent and the scattering
matrix is diagonal:

F (ϕi, ϕ)=
Fvv(ϕi, ϕ) 0

0 Fhh (ϕi, ϕ)
(7)

Therefore, for each polarization p (p = v, h) we can write:

E p,s =
1
r

F pp(ϕi, ϕ)E p,i
0 e j(kρ−

π
4

)
(8)

In the following, where not stated otherwise the subscript p is dropped for simplicity of no‐
tation.
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2.1. Scattering and absorption cross widths

The power dPs scattered along direction ϕ within the differential width dl subtended by the
differential angle dϕ,dl = r dϕ is:

d Ps =Ssdl

where Ss [Wm-1] is the amplitude of the Poynting vector of the scattered wave,
Ss = | ES | 2 / 2ηand η = μ0 / ε0 is the vacuum electromagnetic impedance. It follows from (8)
that:

d Ps = | F (ϕi, ϕ)| 2Sidϕ (9)

and integrating over all angles:

Ps = ∫
0

2π

d Ps = ∫
0

2π

| F (ϕi, ϕ)| 2Sidϕ =Siσs

where the scattering cross width σs is defined as:

σs =
Ps
Si

= ∫
0

2π

| F (ϕi, ϕ)| 2dϕ (10)

This quantity represents the equivalent width that would produce the amount Ps of scat‐
tered power if illuminated by a wave with power density Si.

The geometric cross width σg [m] of a particle is its geometric width projected onto a plane
that is perpendicular to the direction of the incident wave ti. The relationship between the
geometric and scattering widths can be investigated in two regimes. If the size of the object
D (maximum distance between two points inside the object) is much smaller than the wave‐
length λ, it follows that:

σs
σg

< <1 (D < <λ)

According to Rayleigh scattering theory [19], it means meaning that in this regime the pow‐
er scattered by the particle is much smaller than the product of geometric cross width and
the amplitude of the Poynting vector. Besides, in the high frequency regime D>>λ:

σs
σg

→1

which is known as geometric optics limit.

Similarly to (10), the absorption cross width can be defined as the ratio between the absor‐
bed power Pa and the incident Poynting vector Si. From Ohm’s law [20]:
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Pa =
1
2 ω ∫

A

dρεr
'' | Eint(ρ)| 2 (11)

where Eint(ρ) is the internal field within the particle and A is the particle’s area.

2.2. Extinction cross width and albedo

The extinction cross-section σext of a particle is defined as:

σext =σs + σa (12)

and it represents the total power loss from the incident wave due to scattering and absorp‐
tion. The fraction of scattering over the extinction cross width is defined as albedo α:

α =
σs

σext
≤1 (13)

The computations of the extinction cross width (12) can be carried out from the knowledge
of the scattering matrix, as stated by the forward scattering theorem (also known as optical
theorem):

σext = −4
π

2k0
Re(F (ϕi, ϕ))

This result can be proved either undertaking the explicit computation of (11) [15] or comput‐
ing the received power over a given width and relating this quantity to the geometric di‐
mensions [19]. Besides, it can be shown that for the high frequency regime [9]:

σa
σg

→1 (14)

σext
σg

→2 (15)

Equation (15) is also known as extinction paradox.

2.3. Example: scattering from a circular cylinder

Figure 2 shows the scattering, the absorption and the extinction cross widths are computed
for a circular cylinder of radius a [21]. In figure 2 these cross width values are normalized
over the geometric cross width σg=2a and they are plotted versus the radius a normalized
over the wavelength λ. The particle is characterized by εr ' =4 and σ=10−3. One could notice
that as the size of the particle increases the absorption and scattering cross widths tend to σg
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width; whereas the extinction cross width tends to 2σg (extinction paradox, (15)). Also, Fig‐
ure 2 distinguishes three different regions: Rayleigh scattering (a<< λ), Mie scattering (a ≈λ)
and optical region (a>> λ).

Figure 2. Scattering, absorption and extinction cross widths normalized over the geometric cross width σg =2a versus
a/λ (εr ' = 4and σ= 10−3).

2.4. Specific intensity

Transport theory deals with the propagation of energy in a medium containing randomly
placed particles. For a given point ρ and a given direction specified by vector
t̂ =cosϕx̂ + sinϕ ŷ (or equivalently by the azimuth angle ϕ), the power flux density within a
unit frequency band centered at frequency f within a unit angle is defined as specific intensi‐
ty and denoted by I(ρ,ϕ) [W m−1rad−1Hz-1]. Hence, the amount of power dP flowing along
direction ϕ within an angle dϕ through an elementary width dl with normal that forms an
angle Δϕ with ϕ (see Figure 3) in a frequency interval (f, f+df) is:

dP = I (ρ, ϕ)cosΔϕdldϕdf (16)

The specific intensity I(ρ,ϕ) as it appears in (16) could be related either to the power emitted
from a surface or to the power received by the unit width. As far as the single particle of §
2.3 is concerned, the specific intensity carried by the incident plane wave (2) is:

I i(ρ, ϕ)=Siδ(ϕ −ϕ) (17)

in which δ(.) is the Dirac Delta function, whereas, recalling (9), the specific intensity for the
scattered wave can be written as:

Is(ρ, ϕ)= | F (ϕi, ϕ)| 2Si = | F (ϕi, ϕ)| 2I i(ρ, ϕi) (18)
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Hence, the square modulus of the scattering function F(ϕi,ϕ) relates the incident specific in‐
tensity with the scattered specific intensity. In a random medium, the specific intensity is
computed as the ensemble average of the power per unit angle, frequency and area over the
distribution of the random scatterers.

Figure 3. Geometry used for the definition of specific intensity: the amount of power dP flows along direction �̂ within
an angle d� through an elementary width dl whose normal n̂forms an angle Δ� with the direction of propagation �̂.

3. Radiative transfer equation

The radiative transfer equation is an integro-differential equation that governs the propaga‐
tion of specific intensity within a random medium. Let us assume that the random medium
is a made of uniform slabs in the x-direction (see Figure 4). Therefore, specific intensity is a
function of position in space only through y. In the following the derivation of the radiative
transfer equation is briefly reminded. The reader is referred to [15, 17] for further details.

Figure 4. Geometry of the propagation environment.
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3.1. Reduced intensity

Let us consider an area with side 1 in the x-direction and dy in the y-direction The area dy
contains Ndy particles, where N is the number of particle per unit area. The particles are uni‐
formly distributed in space. Each particle absorbs the power Pa = σaI and scatters the power
Ps = σsI, so that the decrease of specific intensity due to area dy is (recall (12)):

sinϕ ⋅dI (y, ϕ)= −dyN σt I (y, ϕ)=m−dy ⋅kext I (y, ϕ) (19)

where kest = Nσext [m-1] is the extinction coefficient. Notice that if there are different kinds of
particles (say m), each with possibly different orientation, density Nj and extinction cross
width σext,j [9]:

kext =∑
j=1

m
N j <σext , j > (20)

where < > represents the ensemble average over the distribution of particles orientations.
Equation (19) defines the so-called reduced intensity since it only takes into account the ex‐
tinction of the incident wave [9].

3.2. Independent scattering and limits of the transfer theory

Scattering of waves impinging on the area dy from all directions ϕi increases the intensity
along direction ϕ according to (18). As the scatterers are assumed to be independent, the
specific intensities due to different particles can be added. This is strictly true under some
conditions that are discussed in the following as this point entails the limits of applicability
of the radiative transfer theory [15]. As the Maxwell equations are linear, the total scattered
field E can be written as the sum of the Ej fields scattered from each particle:

E =∑
j
E j (21)

The specific intensity is proportional to the square modulus of the electric field averaged
over the distribution of scatterers:

< | E | 2 > =∑
j

< | Ej | 2 > +∑
j
∑
l≠ j

< EjEl
* >

Now, letEj = | Ej | e jαj, we get that:

< EjEl
* > = < | Ej | | El | e j (αj−αl )

The phase difference (αj− αl) depends on the distance between the particles djl through the
product k0djl. If the distribution of particle separation is not much smaller than the wave‐
length, i.e. the standard deviation (S.D.) of djl satisfies:
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S .D.(d jl)≥
λ
4 (22)

then (αj− αl) is approximately uniformly distributed within [0, 2π] so that:

< EjEl
* > =0

From the discussion above, the assumption underlying the radiative transfer equation of in‐
dependent scattering limits the applicability of the transfer theory to cases where the dis‐
tance between particles is large enough (see (22)) so as to make negligible the near far
interactions between particles. Experimental studies confirm this conclusion: for the radia‐
tive transfer to be applicable the spacing between scatterers must be larger than λ/3 and
0.4D where λ is the wavelength of the host medium and D the diameter of the scatterers
[10]. Theoretical studies on the relationship between the radiative transfer approach and the
wave approach using Maxwell’s equations can be found in [22-23]. Moreover, the limits of
the transfer theory are investigated for a two-dimensional problem similar to the one con‐
sidered here in [16] through comparison with the wave approach.

Assuming independent scattering, the increase on the specific intensity along direction ϕ
due to scattering within the area dy is:

dy ∫
0

2π

N | F (ϕi, ϕ)| 2I (ρ, ϕi)dϕi =dy ∫
0

2π

p(ϕiϕ)I (ρ, ϕi)dϕi (23)

wherep(ϕiϕ)= N F (ϕi, ϕ) is the phase function. Notice that if the random medium contains
particles of different kinds, the overall phase function is defined as [9]:

p(ϕi, ϕ)=∑
j=1

m
N j < pj(ϕi, ϕ)> (24)

3.3. Progressive and regressive intensity

The radiative transfer equation is obtained by combining (19) and (23):

sinϕ
∂ I (y, ϕ)
∂ y = −kext I (y, ϕ) + ∫

0

2π

p(y, ϕi, ϕ)I (y, ϕi)dϕi (25)

In this formulation, the extinction coefficient and the phase function are considered function
of the position y. A first step toward the solution of scalar radiative transfer problem is con‐
verting equation (25) into two coupled integro-differential equations by introducing the pro‐
gressive intensity I+, that corresponds to propagating directions 0 < ϕ < π, and the regressive
intensity I-, that accounts for the propagating directions π < ϕ < 2π. Τhe two specific intensi‐
ties are defined as:
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I +(y, ϕ)= I (y, ϕ)
I −(y, ϕ)= I (y, ϕ + π)

where the azimuth direction ϕ ranges within 0 < ϕ< π. The scalar radiative transfer equation
(25) can be equivalently stated as:

sinϕ
∂ I +(y, ϕ)
∂ y = −kext I

+(y, ϕ) + ∫
0

π

p(y, ϕi, ϕ)I +(y, ϕi)dϕi +

+ ∫
0

π

p(y, ϕi + π, ϕ)I −(y, ϕi)dϕ

− sinϕ
∂ I −(y, ϕ)
∂ y = −kext I

−(y, ϕ) + ∫
0

π

p(y, ϕi, ϕ + π)I +(y, ϕi)dϕi +

+ ∫
0

π

p(y, ϕi + π, ϕ + π)I −(y, ϕi)dϕ

(26)

This equivalent formulation of (25) makes it easier to set the boundary conditions as ex‐
plained in §3.3.1 and §3.3.2. For a uniform distribution of the particles over the random me‐
dium and circular cylindrical particles, the phase matrix becomes a function ϕ-ϕi only and
the extinction matrix becomes independent on ϕ [17]. Therefore, in this case the scalar radia‐
tive transfer equations (26a-26b)can be written as:

sinϕ
∂ I +(y, ϕ)
∂ y = −kext I

+(y, ϕ) + ∫
0

π

p +(y, ϕ −ϕi)I
+(y, ϕi)dϕi +

+ ∫
0

π

p −(y, ϕ −ϕi)I
−(y, ϕi)dϕ

(27)

− sinϕ
∂ I −(y, ϕ)
∂ y = −kext I

−(y, ϕ) + ∫
0

π

p −(y, ϕ −ϕi)I
+(y, ϕi)dϕi +

+ ∫
0

π

p +(y, ϕ −ϕi)I
−(y, ϕi)dϕ

(28)

where p +(y, ϕ −ϕi)= p(y, ϕi, ϕ) andp −(y, ϕ −ϕi)= p(y, ϕi, ϕ + π)= p(y, ϕ + πi, ϕ), based on
the 2π periodicity of both p+ and p- [17].
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3.3.1. Boundary conditions on the specific intensity

The radiative transfer equation has to be solved by imposing appropriate boundary condi‐
tions. Here, the boundary conditions that the specific intensity must satisfy on a plane boun‐
dary between two media with indices of refraction n1 and n2 are considered. The expression
for the transmission T and reflection coefficient R for the two polarizations are known in lit‐
erature [20]. The reflected specific intensity Ir is related to the incident specific intensity Ii as:

Ir = | R | 2I i

As far as the transmitted specific intensity is concerned, we can write the conservation of
power on a segment dl belonging to the boundary (recall (16)):

I icosϕ1dϕ1dl = Ircosϕ1dϕ1dl + Itcosϕ2dϕ2dl (29)

As by the Snell’s lawn1sinϕ1 =n2dsinϕ2, it ends:

It
I i

=
n2
n1

(1− | R | 2)

4. Solution of the radiative transfer equation through numerical
quadrature

The radiative transfer equation is an integro-differential equation whose solution in analyti‐
cal form is very difficult, if not impossible. However, efficient numerical solutions can be de‐
vised. A comprehensive treatment of the main techniques can be found in [15, 24].

The case under study concerns a random medium where relevant scattering occurs. An ap‐
proximate solution can be obtained by computing the integrals in (26) by numerical quadra‐
ture as firstly proposed in [15]. The continuum of propagation directions ϕ is discretized
into a set of n directions ϕiI = (i-1) Δϕ, where Δϕ = π/n and i = 1,..., n, and the corresponding
n×1 vectors gathering the progressive and regressive intensities:

I +(r)=

I +(h , ϕ1)

I +(h , ϕ2)
⋮

I +(h , ϕn)

(30)

I −(r)=

I −(h , ϕ1)

I −(h , ϕ2)
⋮

I −(h , ϕn)

(31)
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The two integro-differential equations (27) can be approximate as follows:

d I +(y)
dy = −K (y)I +(y) + P +(y)I +(y) + P −(y)I −(y) (32)

d I −(y)
dy = −K (y)I −(y)−P −(y)I +(y)−P +(y)I −(y) (33)

where then ×n matrices P+ and P- are defined as:

P ±(y) i , j =
1

sinϕi
p ±(y, ϕi −ϕj)Δϕ

so that:

1
sinϕi

∫
0

π

p ±(y, ϕ −ϕ ')I ±(y, ϕ ')dϕ '≈∑
j=1

n
P ±(y) i , jI ±(y, ϕj) (34)

The n×n K(y) matrix is defined as:

K (y) i , j =
1

sinϕi
kext(y)i = j

=0i ≠ j
(35)

Now, defining the 2n×1 vectorI (y)= I +(y)T I −(y)T , one obtains the system of first order lin‐
ear equation:

d I (y)
dy =G(y)I (y) (36)

where

G(y)=
−K (y) + P +(y) P −(y)

−P −(y) K (y)−P +(y)

4.1. Discrete ordinate Eigen analysis

If the space contains slabs of homogeneous random (and non-random) media, the linear dif‐
ferential system (36) within each slab (say the l th) can be written as

d I (y)
dy =GlI (y) (37)
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being matrix Gl a constant. This follows from the fact that, the extinction coefficient and the
phase function within each slab are constant. In this case, the system (37) can be solved by
the discrete ordinate analysis method as follows. Let I (y)=βexp(−λg)be a tentative solution
where β is a 2n×1, one get by substitution in (36) - dropping l for simplicity:

(λU +G)β =0

As a result, (β,λ) represent pair of eigenvectors/eigenvalues of the matrix –G. Notice that
given the symmetry relations:

Gl (n+i))n+i) = − Gl i ,i

Gl (n+i))n+ j) = − Gl ijii, j =1,⋯ , n

by ordering the eigenvalues in increasing order (λi ≥λi−1) it follows:

λ(n+i) = −λii =1,⋯ , n

and the corresponding eigenvectors satisfy the condition:

β(n+i) (n+) = βi ji =1,⋯ , n

The solution of (36) can be written as the linear combination

I (y)=∑
i=1

2n
βie

(−λi y)ci =BD(y)c (38)

whereB = β1⋯β2n , c = c1⋯c2n
T , and D(y) is a diagonal matrix with elements

e (−λ1 y)⋯ e (−λ2n y) .

The vector of unknown constant c can be computed from the knowledge of I(y) for one val‐
ue of y, say ȳ, as:

c =(BD( ȳ))−1I ( ȳ) (39)

4.1.1. Setting the boundary conditions for a single slab

Given geometry depicted in figure 4, with only one slab of random medium (ranging within
0 ≤ y ≤d), the semi-infinite medium along the positive direction of y is a dielectric one with
given dielectric constant. The boundary conditions read:

I +(0)= Ī 0
+ (40)

I −(d )=AR Ī
+(d ) (41)

where Ī 0
+is the incident specific intensity and AR is the n×n reflection matrix relative to the

interface at y = d between the random medium and the last slab. This can be easily computed
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from the results in §2.4. The value of the unknown constant vector (39) for the specific inten‐
sity within the random medium is obtained through the computation of the specific intensi‐
tyI ( ȳ). To do this, as first step one need to calculate from (38) and (39):

1( ) ( ) ( ) (0)d d y-=
T

I BD B I I14243 (42)

Then, using (40) and (41), and partitioning the matrix T as:

T =
T11 T12

T21 T22
(43)

in which Tij is n×n, one gets:

I (0)−= (ART12−T22)−1(T21−ART11)Ī 0
+

The substitution of this finding in (39) is used for the computation of the vector c.

4.1.2. Setting the boundary conditions for a multi-layer medium

In the multi-layered geometry of figure 4, each slab has depth dl and the specific intensity is
(38). The unknown is the constant vector cl and the subscript l runs over the different slabs, l
= 1,..., L. Notice that slab can contain either a random medium characterized by its matrix Gl

or vacuum (matrix Gl=0 for vacuum). The semi-infinite medium along the positive direction
of y is a general dielectric with given dielectric constant. The boundary conditions (40) and

(41) still hold withd =∑
l=1

L
dl .

The specific intensity Il,2 - at the interface between the l and the (l + 1)th slab - is related to the
specific intensity Il,1 at the interface between the (l – 1) and l th slab as:

1
,2 ,1( ) ( )

l

l l l l ld y-=
T

I B D B I I1442443 (44)

Therefore, similarly to (42) we can write:

Proceeding as in the previous Section, the specific intensity I(0) is now calculated and used
in (39) to obtain the constant vector c1 for the first slab. Then, equation (44) can be iteratively
applied so as to compute the specific intensity at the beginning of each slab. The latter al‐
lows through (39) the computation of cl for each slab.
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5. Numerical results

In this section two examples illustrate how radiative transfer theory could be employed to
study the beam broadening and the corresponding spatial correlation for an indoor environ‐
ment within the context of a communication system.

The main assumption is that the propagation environment can be modeled as a layered par‐
allel plane medium. This situation is a first approximation of an open space office made of a
succession of tables where each table is modeled as random medium containing randomly
placed scatterers. These are modeled as circular cylinder so as to simplify the solution of the
radiative transfer equation.

5.1. Case study I: one table

In this example, the geometry under study is depicted in Figure 5. The whole xy plane is
characterized by the vacuum dielectric constant ε0. One slab ranging within 1 ≤ y ≤ 1.8 con‐
tains N [m−2] uniform randomly distributed circular cylinders with radius a = 6 cm. Where
not stated otherwise, frequency of operation is f = 5.2 GHz, according to standard wireless
local area networks (WLAN) such as IEEE802.11x and Hyperlan/2.

Figure 5. Geometry of the propagation environment (case study I).

5.1.1. Beam broadening

Figure 6 shows the specific intensity I+(y,ϕ) for N=10, ε’
r =4, σ=10−3 Sm-1 and vertical polariza‐

tion. Specifically, the image represents the beam broadening of a plane wave propagating in
the direction ϕi = 90° with specific intensity I0

+= 1 [W m−1rad−1Hz].

The specific intensities are assumed to be normalized with respect to I0
+and thus are shown

in dB. Right after the entrance into the table region the progressive beam I+(y, ϕ) broadens
since the energy is scattered in all directions by the cylinders. As expected the regressive beam
I−(y, ϕ) is zero on the right side of the table and almost uniform in the yϕ plane (not shown).
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Figure 6. Specific intensity I+(y,�) versus y (vertical polarization, ε’
r = 4, σ = 10−3 Sm-1, N = 10).

In order to get a quantitative insight into the beam broadening discussed above, Figure 7
shows the specific intensity I+(y, ϕ) for y = 1.9 m (on the right of the table) for different val‐
ues of the density N=2, 10 (vertical polarization). The reduced or line of sight (LOS) contri‐
bution as shown in the box decreases for increasing object densities. However, a larger
density of scatterers entails a more relevant contribution of the diffuse energy (i.e., I+(y, ϕ)
for ϕ ≠ 90°).

Figure 7. Specific intensity I+(y, �) for y = 1.9 m (on the right of the table) for different values of the density N = 2, 10
(vertical polarization, ε’

r = 4, σ=10−3 Sm-1).
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Figure 8. Specific intensity I+(y, �) for y = 1.9 m (on the right of the table) for different values of the frequency f = 5.2, 52
GHz (vertical polarization, N = 6, ε’

r = 4, σ = 10−3 Sm-1).

The effect of an increase in the carrier frequency, envisioned for next generation wireless
LAN, is shown in Figure 8. A larger carrier frequency (f = 52 GHz) yields a less consistent
contribution of the LOS direction (see box) and a greater number of interference fringes. Em‐
ploying the horizontal polarization instead of the vertical one yields qualitatively similar re‐
sults as shown in Figure 9 for N=6. Therefore, in the following only the vertical polarization
is considered.

Figure 9. Specific intensity I+(y, �) for y = 1.9 m (on the right of the table) for horizontal and vertical polarization fre‐
quency (f = 5.2 GHz, N = 6, ε’

r = 4, σ = 10−3 Sm-1).
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5.1.2. Spatial correlation

In a communication link, it is of great interest to assess the degree of correlation between the
signals received by different antennas as a function of their inter-spacing Δ [m]. In fact,
wireless links can capitalize on the uncorrelation between the received signals to increase
the degree of diversity of the system that in turn rules the asymptotic performance of the
link in terms of probability of error [25].

The correlation ry(Δ) of the signals received by antennas separated by Δ can be expressed in
terms of the probability density function py(ϕ) of the direction of arrivals of the waves im‐
pinging on the receivers. This function can be obtained by interpreting (after appropriate
scaling) the power received over a certain direction ϕ as a measure of the probability that a
signal is received through direction ϕ:

py(ϕ)=
I +(y, ϕ)

∫I +(y, ϕ)dϕ
(45)

Then, recalling that the ratio between signals received at two points separated by Δ in the
direction x isexp(− j2π / λcosϕΔ):

ry(Δ)= ∫
0

π

py(ϕ)e
(− j2π

λ cosϕΔ)
dϕ (46)

The correlation (46) is evaluated for the example at hand under the same assumptions as in
Figure 7.

Figure 10. Correlation ry(Δ) versus Δ/ λ for y = 1.9 m (on the right of the table) for different values of the density N = 2,
10 (vertical polarization, ε’

r = 4, σ = 10−3 Sm-1).
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The results are shown in figure 10. The correlation decreases with increasing object density.
Thus, from the perspective of communication system performance, increasing the object
density is beneficial in terms of degree of diversity. For instance, for Δ = λ the correlation
decreases from around 0.9 to around 0.7.

5.2. Case study II: two tables with interface

In this example the environment has a more complicated geometry, where two tables are
followed by a semi-infinite dielectric slab (dielectric constant εr,I) as shown in figure 11. The
simulation parameters follow the setting described for Case study I, in particular the radius
of the scatterers is a=6 cm and the carrier frequency is f=5.2 GHz. The dielectric constant of
the slab is chosen as εr,I =3.

Figure 11. Geometry of the propagation environment (case study II).

5.2.1. Beam broadening

Figure 12 shows the specific intensity I+(y, ϕ) for N = 6, ε’
r = 4, σ = 10−3 Sm-1 and ϕi=90° and

vertical polarization. Again, the specific intensity is normalized with respect to I0
+ and thus

are shown in dB. As discussed for case study I, right after the entrance into the table regions
the progressive beam I+(y, ϕ) broadens since the energy is scattered in all directions by the
cylinders. Moreover, the refraction over the interface at y=4.6 m focuses the beam within the
semi-infinite dielectric, hence reducing its angular spread. The refraction and the reflection
of the reduced (or LOS) component are apparent in Figures 12 and 13, respectively. The inci‐
dence angle is chosen equal to 45°. Refracted and reflected angles satisfy the Snell’s law.
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Figure 12. Specific intensity I+(y, �) versus y (vertical polarization, ε’
r = 4, σ = 10−3 Sm-1, N = 6, �i=90°).

Figure 13. Specific intensity I+(y, �) versus y (vertical polarization, ε’
r = 4, σ = 10−3 Sm-1, N = 6, �i=45°).

Figure 14. Specific intensity I-(y, �) versus y (vertical polarization, ε’
r = 4, σ = 10−3 Sm-1, N = 6, �i=45°).
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5.2.2. Spatial correlation

The spatial correlation ry(Δ) is shown for the same parameters of the previous example in
Figure 15. It is computed for y = 1.9 m (just on the right of the first table) and y = 3.7 m (just
on the right of the second table). As expected, the increased scattering contribution due to
the random scatterers of the second table decreases the spatial correlation. In particular, for
inter-antenna spacing around Δ = 5λ the correlation is decreased from 0.75 to around 0.61.

Figure 15. Correlation ry(Δ) versus Δ/ λ for y = 1.9 m (on the right of the first table) and y = 3.7 m (on the right of the
second table) for N = 6, vertical polarization, ε’

r = 4, σ=10−3 Sm-1, �i=90°.

5.3. Limits and validity of radiative transfer predictions

The validation of numerical results presented in §5.1 and §5.2 relies on a discussion, as there
is no empirical evidence (measurements) to compare with. The two chosen cases are not re‐
alistic but they represent a possible benchmark to be employed against the numerical results
that issue from analytical methods. Among these, the T-matrix approach [26, 27] seems to be
the best suited to compute scattering from a random distribution of cylinders and to com‐
pare the radiated fields on a realization-by-realization basis with ray tracing. At this stage of
development, the only comparison that the author is able to provide to assess the validity of
a radiative transfer approach is against a ray tracing technique based upon the beam tracing
method [26]. The numerical code used for the simulations was developed at the Politecnico
di Milano [29] and it has already been used for different purposes related to the indoor
propagation [30].

To make the beam tracing procedure suitable for the study of electromagnetic propagation,
it is necessary to include the reflection coefficient associated with the interactions of the path
with the environment. In particular, the signal received from each path has to be scaled by
the product of the reflection coefficients corresponding to the bounces each path goes
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through when propagating from the transmitter to the receiver. To compare the outcome of
the ray tracing simulation with the results of radiative transfer theory some approximations
were made. Case I was reproduced in such a way to replicate the same geometrical and ra‐
dio electrical conditions. The reader is referred to [31] for further details about the numerical
computation and the comparison results, while here the author recalls the general approach
and the basic information. The transmitted plane wave was approximated by building a lin‐
ear antenna array of NT elements with inter-element spacing ΔT lying parallel to the y axis.
To fulfill the requirement of far field regime, the transmitting array was placed at a range
distance R > (N ΔT )2 / λ [9].

The circular scatterers were approximated by polygons of NP sides. The quantities of interest
were averaged over NI realizations of the random medium. The signal is received at the de‐
sired points by a linear antenna array of NR elements with inter-element spacing ΔR lying
parallel to the y axis. Figure 16 illustrates the geometry together with the transmitting and
the receiving antenna arrays.

Figure 16. Geometry of the experiment studied by means of ray tracing.

The specific numerical values for the ray-tracing algorithm were selected after careful em‐
pirical investigation to yield negligible approximation errors. The transmitting array has NT=
100 elements and inter-element distance ΔT=λ/2, while the receiving array has NR= 80 ele‐
ments with inter-element spacing ΔR = λ/4, thus resulting in an angular resolution of approx‐
imately Δϕ=6°. The key parameter that discriminates the reliability of the radiative transfer
approach was identified as the fraction of area that is effectively occupied by the scatterers.
Let Aext =π(σext / 2)2 be the effective area occupied by each particle. The fraction of effective
area that is occupied by the scatterers isη = N Aext . The numerical investigation proved that
for scatterers that yield a relatively low value of η the radiative transfer provides a solution
that closely matches the second order statistics (i.e. power fluctuations) as given by the ray
tracing results.
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Figure 17 shows the progressive specific intensity I +(y,ϕ) computed according to radiative
theory compared with Î (y, ϕ) from the ray tracing procedure. To compare the two ap‐
proaches, the effect of limited angular resolution is accounted for by processing the outcome
of the radiative transfer I+(y,ϕ) and the number of averaging iterations for ray tracing is NI =
100 [31]. By increasing the density N, and consequently the fraction η of effective area occu‐
pied by the scatterers, the difference between the prediction of radiative transfer and those
from ray tracing increases.

Figure 18 shows the comparison between the spatial correlation r y(Δ) computed by the radi‐
ative transfer theory and the same quantity r̂ y(Δ)from ray tracing versus Δ/λ for y = 1.9 m
(on the right of the table) and two values of the density N=6,10.

Figure 17. Specific intensity I+(y,�) computed according to the radiative theory with and without limited resolution and
Î (y, �) from the ray tracing procedure for ε’

r = 4, σ = 10−3 Sm-1, y = 1.9 m (on the right of the random medium), N = 10 m
−2 and vertical polarization.

Figure 18. Spatial correlation ry(Δ) computed by the radiative transfer theory and r̂ y(Δ) from ray tracing versus Δ/λ for
y = 1.9 (on the right of the random medium) and different values of the density N = 6, 10 m−2 (vertical polarization and
ε’ r = 4, σ = 10−3 Sm-1).
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6. Conclusions

In this work, the use of radiative transfer theory to study the propagation in an indoor envi‐
ronment was reported. A particular focus was made on two specific aspects related to the
channel performances, such as the beam broadening and the spatial correlation, as they are
parameters of interest when deploying a network. The pretty good agreement, although un‐
der well-controlled conditions, encourages proceeding along two distinct directions. From
one side, an improvement in the modeling and in the sketching of actual environments is
mandatory if one wants to use the radiative transfer technique as a possible approach to an‐
alyze indoor channel performances in practical scenarios. From the other side, validation
should be performed either against measurements or - at least - against appropriate analyti‐
cal solution without limitations or approximations in the frequency domain (or wavelength
scale) of interest.
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