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1. Introduction 

Annexin A1, a protein previously termed as lipomodulin and lipocortin, is a member of the 

protein family that binds to phospholipids in a Ca2+ dependent manner (Hirata, 1998; Gerke 

& Moss, 2002; Lim & Pervaiz, 2007). This protein was first discovered as a phospholipase A2 

inhibitory protein, and from its chemical nature was thought to be closely associated with 

membrane functions such as membrane organization, trafficking and metabolism (Hirata, 

1998; Gerke & Moss, 2002; Lim & Pervaiz, 2007). On the other hand, annexin A1 is a major 

substrate of oncogenic kinases such as c-met and c-src, and is thus, proposed to be involved 

in signal transduction of growth factors and mitogens (Hirata et al., 1984; Skouteris & 

Schröder, 1996). Therefore, this protein is thought to have some regulatory roles in cancer 

development. Indeed, certain types of cancers such as hepatoma and pancreas cancers have 

higher levels of annexin A1 (Lim & Pervaiz, 2007). However, transfection of cDNA encoding 

annexin A1 often results in apoptosis of cells or interference of cell proliferation, consistent 

with tumor suppressing functions (Debret et al., 2003; Hsiang et al., 2006). In keeping with 

this interpretation, some types of cancers such as esophageal carcinoma and prostate cancer 

have decreased levels of annexin A1 (Lim & Pervaiz, 2007). However, recent 

pathohistochemical evidence with esophageal carcinoma and neck squamous carcinoma 

suggests that such down-regulation of annexin A1 is partially attributed to nuclear 

translocation, and the nuclear translocation of annexin A1 is facilitated by tyrosine and/or 

serine phosphorylation and Ca2+ signals as well as by oxidative stress (Rhee et al., 2000; Kim 

et al., 2003; Liu et al., 2003; Cui et al., 2007; Lin et al., 2008). The presence of annexin A1 in 

nuclei is now proposed to be a poor prognostic marker of squamous cancer or to be 

associated with malignancy of gastric carcinoma, while changes in cellular expression of 

annexin A1 may not be involved in tumorigenesis (Lin et al., 2008; Zhu et al., 2010). 

Therefore, nuclear annexin A1 is thought to play an important role in cell proliferation 

and/or cell transformation. Since this protein is reported to reside on DNA synthesomes 
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within nuclei (Lin et al., 1997), it is likely that nuclear annexin A1 is involved in DNA 

replication, especially DNA damage induced gene mutation, since DNA damage induced 

mutagenesis plays an important role in tumorigenesis. 

Mutagenesis is largely the outcome of insults to DNA by environmental agents including 

alkylating agents and by endogenous metabolic oxidative metabolites such as reactive 

oxygen, and plays an important role in initiation, progression, and ultimately formation of 

cancer (Wang, 2001). Heavy metals such as As3+ are known to promote the mutagenic action 

of another DNA damaging agent including reactive oxygen, while they alone are weakly- or 

non-mutagenic (Sekowski et al., 1997; Maier et al., 2002). Such promotion by heavy metals is 

attributed not only to inhibition of DNA repair systems such as mismatch repair but also to 

relaxation of the semi-conservative replication machinery for translesion DNA synthesis 

that bypasses sites of damage (Calsou et al., 1996; Jin et al., 2003).  Translesion DNA 

synthesis is catalyzed by error-prone DNA polymerases, and exchange of DNA polymerases 

is promoted by ubiquitination of nuclear proteins such as proliferating cell nuclear antigen 

(PCNA) (Ulrich, 2005). Translesion DNA synthesis is thought to be the major cause of 

mutagenesis rather than incorrect repair of damaged DNA (Kunz et al., 2000). Accordingly, 

we have investigated how annexin A1 in nuclei stimulates DNA damage-induced 

mutagenesis. 

2. Modifications of annexin A1 in nuclei with ubiquitin and ubiquitin-

like proteins 

Ubiquitin and ubiquitin-like modification systems are related pathways that covalently 

attach a protein modifier to a lysine residue of a target protein. Ubiquitin classically marks 

proteins for proteosomal destruction typically when polymeric chains (longer than four 

ubiquitin subunits) assemble via ubiquitin-ubiquitin isopeptide-linkages (Gill, 2004; Chen & 

Sun, 2009). However, other functions of ubiquitin have been recently discovered that do not 

involve the proteosome (Hicke, 2001; Chen & Sun, 2009). The small ubiquitin-related 

modifier, SUMO, post-translationally modifies many proteins with diverse functions 

including regulation of transcription, chromatin structure and DNA repair, and facilitates 

their nuclear translocation (Gill, 2004). In addition, repair of and tolerance to DNA damage 

are regulated by modifications with ubiquitin and SUMO (Ulrich, 2005), and their 

modifications are shown to have antagonistic effects on functions of the target proteins 

(Hilgarth et al., 2004; Huang & D’Andrea, 2006). 

Since annexin A1 contains the consensus sequence, xE/D, for SUMOylation, purified 

bovine annexin A1 was incubated with human recombinant Ubc9 (E2) and SAE I/SAE II (E1) 

in the presence of SUMO 1, 2 or 3 to test whether annexin A1 can be SUMOylated. When the 

reaction mixtures were analyzed by Western blots, monospecific anti-SUMO antibodies 

stained two proteins with apparent molecular weights around 38,000 and 34,000 Da (F. 

Hirata et al., 2010). Anti-annexin A1 antibody detected a broad single protein band with an 

apparent molecular weight around 37,000 Da but not a protein band with a molecular 

weight of 34,000 Da. The protein band with a molecular weight of 34,000 was identified, 
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using anti-Ubc9 antibody as SUMOylated Ubc9 (F. Hirata et al., 2010). With SUMO 2 or 3 as 

a substrate, SUMOylation of annexin A1 was apparently facilitated. Rates of annexin A1 

SUMOylation with SUMO 1, 2 or 3 were approximately 1:3:5, providing that the amounts of 

SUMOylated Ubc9 formed with SUMO 1, 2, or 3 were essentially the same. Ca2+ was 

required for the maximal modification, and increased SUMOylation by 2.6 fold vs. without 

Ca2+. Therefore, we concluded that annexin A1 was conjugated with SUMOs under these 

conditions. While the SUMOylation barely altered the molecular weight of bovine annexin 

A1 (37,000 Da) as detected by anti-annexin A1 antibody, the protein band with an apparent 

molecular weight around 38,000 Da could not be detected by anti-SUMO antibody in the 

absence of E1 or E2 for SUMOylation or in the absence of annexin A1. To further confirm 

that annexin A1 is covalently modified with SUMO, the reaction mixtures in the absence 

and presence of annexin A1 for SUMO 3 modification were scaled up by 5 fold, and the 

incubation was continued overnight. Then, the reaction mixtures were analyzed using FLPC 

(Amersham Biosciences) with a MiniQ column. Native and SUMOylated annexin A1 were 

separately eluted as measured by conductance, suggesting that charges in native and 

SUMOylated annexin A1 are distinct. To establish this contention, 2D electrophoresis was 

performed. Native annexin A1 was detected at pI 6.4. The reaction mixture containing 

SUMOylated annexin A1 showed a new annexin A1 location in the pI 6.1 area as detected by 

anti-annexin A1 antibody, while its mobility on SDS gel electrophoresis was barely shifted. 

This new protein with pI 6.1 was stained with anti-SUMO antibody as well as with anti-

annexin antibody, and its density increased, when the incubation was prolonged. Omission 

of SUMO or ATP from the reaction mixture resulted in no protein around pI 6.1. These 

observations supported the conclusion that annexin A1 was covalently modified with 

SUMO, even though no significant mobility shift on SDS electrophoresis was detected after 

the modification of annexin A1 with SUMOs. Since 160LKRD in the annexin repeat domain II 

is conserved among mammalian annexin A1 proteins (Gerke & Moss, 2002), it is likely that 

SUMOylation takes place in the core domain II. Mutation experiments by mutating K to R 

will be essential for determination of the site of SUMOylation. 

On the other hand, the molecular weight of annexin A1 shifted from 37,000 Da to 

approximately 45,000 Da after ubiquitination. The ubiquitination of annexin A1 required 

UbcH2A (Rad6 homologue) together with HeLa S100 lysate that contained E3 ubiquitin 

ligases. Since HeLa S100 lysate pretreated with anti-Rad 18 antibody did not catalyze 

ubiquitination of annexin A1, it is most likely that Rad18 is an E3 ligase for ubiquitination of 

annexin A1. Ca2+ was required for the maximal ubiquitination, but its stimulation was not as 

much as seen with SUMOylation, when amounts of ubiquitinated annexin A1 were adjusted 

with the total amounts of annexin A1 (free and ubiquitinated annexin A1). These 

observations suggest that the modification site with ubiquitin is distinct from that with 

SUMO. HeLa S100 lysate also contained annexin A1 as detected by anti-annexin A1 

antibody, but under the present experimental conditions, no significant ubiquitination of 

endogenous annexin A1 was detected in the presence of ubiquitin and an ATP generating 

system without UbcH2A. UbcH2A could be equally replaced by its related enzyme, UbcH2B 

but not by E2-25K. These observations suggest but do not necessarily prove that annexin A1 
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is ubiquitinated by the Rad6–Rad18 system which is closely associated with response to 

DNA damage (Kunz et al., 2000; Ulrich, 2005). The difference in stimulation of SUMO and 

ubiquitin conjugation by Ca2+ is apparently attributed to sites of modification and Ca2+ 

induced conformational changes, in which the N-terminal domain is exposed and flexibility 

of the core domain residues are increased by Ca2+ (Shesham et al., 2008). Therefore, we 

suggest that SUMOylation takes place in the core domain regions, while ubiquitination 

takes place outside the core domain regions. 

3. DNA damage and modification of annexin A1 

Among post-translational modification systems, ubiquitin and ubiquitin-like molecules 

including SUMO are a unique family of protein modifiers that play pivotal roles in 

regulation of protein stability and function (Hicke, 2001; Gill, 2004; Hilgarth et al., 2004; 

Huang & D’Andrea, 2006; Chen & Sun, 2009). SUMOylation is involved in protein 

stabilization, nucleo-cytoplasmic trafficking, cell cycle regulation, maintenance of genome 

integrity and transcription. Indeed, annexin A1 present in nuclei is mostly modified with 

SUMO or ubiquitin (F. Hirata et al., 2010). SUMO 1-modified annexin A1 resulted in 

enhanced helicase activity, while SUMO2/3 were the better substrates for in vitro annexin A1 

conjugation, suggesting that SUMOylated annexin A1 might be involved in cell proliferation 

and differentiation (Yang & Paschen, 2009). On the other hand, mono-ubiquitination is 

thought to enable the modified proteins to interact and form complexes with other proteins 

via ubiquitin binding proteins and ubiquitin receptors. Mono-ubiquitination changes 

subcellular localization and alters certain structural and targeting properties, while 

polyubiquitination targets proteins for the degradation pathway (Huang & D’Andrea, 2006). 

Mono-ubiquitination by the Rad6-Rad18 system is proposed to play an important role in 

DNA damage response (Ulrich, 2005). 

To ask whether mono-ubiquitination of annexin A1 is, indeed, involved in DNA damage 

response, we investigated if nuclear annexin A1 is modified with SUMO or ubiquitin in 

mouse L5178Y tk(+/-) lymphoma cells treated with DNA damaging agents, 15 μM MMS or 3 

μM AsCl3 for 3 or 6 hr. Under these conditions, the mutation rate of the thymidine kinase 

gene increased from 23 x 10-6 (vehicle control) to 67 x 10-6 and 104 x 10-6 with AsCl3 or MMS, 

respectively, as measured by the number of colonies with trifluorothymidine resistance 

according to the method described by Honma et al. (1999). These observations suggest that 

DNA damage was induced under these conditions. After 3 hr treatments with 15 μM MMS 

or 3 μM As3+, nuclear and cytoplasmic extracts were isolated and were analyzed by Western 

blots with anti-annexin A1 antibody. Nuclear annexin A1 was increased by the treatments, 

while cytoplasmic annexin A1 was decreased. These observations suggest nuclear 

translocation of annexin A1 following DNA damage signaling. Nuclear annexin A1 

exhibited apparent molecular weights around 38,000 and 45,000 Da, whereas the molecular 

weights of cytoplasmic annexin A1 were 37,000, 30,000 and 27,000 Da (F. Hirata et al., 2010). 

Annexin A1 with the molecular weights of 30,000 and 27,000 Da are reported as products of 

N-terminal cleavage (Kim et al., 2003; Sakaguchi et al., 2007). Such cleavage was also 
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detected in nuclear annexin A1. Polyubiquitination of annexin A1 has recently been shown 

to be catalyzed by E6AP in the presence of Ca2+, and polyubiquitinated annexin A1 is 

degraded by proteosomes (Shimoji et al., 2009). Although poly-ubiquitination of proteins is 

proposed to be a major pathway of protein degradation (Hilgarth et al., 2004; Huang & 

D’Andrea, 2006; Wilkinson et al., 2008), poly-ubiquitinated annexin A1 was not detected in 

either cytosol or nuclei. The direct cleavage of annexin A1 was thought to be its major 

degradation pathway under our experimental conditions. The Western analysis of the 

extracts with anti-SUMO 1 and anti-ubiquitin antibodies suggested that majority of nuclear 

annexin A1 might be modified, while cytoplasmic annexin A1 was not. MMS increased 

ubiquitination of annexin A1 in nuclei by 2 fold, whereas these treatments decreased its 

SUMOylation by 70%. AsCl3 alone was less effective but was more than additive, when 

MMS was present. Cytosolic annexin A1 was not stained with anti-SUMO 1 or anti-

ubiquitin antibodies (data not shown). Accordingly, we concluded that the modifications of 

annexin A1 with SUMO or ubiquitin facilitate its nuclear translocation and that 

ubiquitinated annexin A1 is involved in DNA damage response, in which the Rad6-Rad18 

system plays an important role (Ulrich, 2005). 

4. DNA helicase activity of nuclear annexin A1 

Annexins have a common internal structure comprising 4 or 8 repeats of a conserved 70 

amino acid domain, and differ primarily in the length and composition of the amino-

terminal domains (F. Hirata, 1998; Gerke and Moss, 2002; Lim and Pervaiz, 2007). Since this 

amino-terminal domain contains the sites for phosphorylation and glycosylation, it is 

considered a regulatory domain. A defining feature of annexins is their ability to bind, in a 

Ca2+-dependent manner, to negatively charged phospholipids such as phosphatidylserine 

(PtdSer). This functional feature is attributed to the conserved C-terminal domain, and is 

essential for biological functions of the annexins. The cell-cycle dependent existence of 

annexin A1 and A2 in nuclei suggests a close association with nuclear functions, while they 

are major substrates of the oncogenic tyrosine kinases, met and src (Katoh et al., 1995; Rydal 

et al., 1992). Thus, annexin A1 and A2 are proposed to be a biological marker of proliferating 

cells (cancer cells) (Masaki et al., 1994). In accord with this notion, the treatments of A347 and 

HeLa cells with antisense annexin A1 and A2 oligonucleotides reduce the synthesis and 

subsequent phosphorylation at tyrosine of the annexins, thereby inhibiting cell proliferation 

(Kumble et al., 1992; Skouteris & Schröder, 1996). Translocation of annexins from cytosol to 

nuclei apparently requires their phosphorylation at tyrosine and Ca2+ signaling (Mohiti et al., 

1997). Purified annexin A1 and A2 can stimulate DNA synthesis in cell free systems of HeLa 

cells, Xenopus oocytes and rat hepatocytes (Vishwanatha & Kumble, 1992; Vishwanatha et al., 

1992; Tavokoli-Nezhad et al., 1998). In addition, annexin A1 is present in DNA synthesomes 

and annexin A2 is located in nuclear matrix (Kumble et al, 1992; Lin et al., 1997). These 

observations strongly suggest that nuclear annexins regulate DNA replication. 

Annexin A2 functions in DNA replication as a primer recognition factor for Pol  

Vishwanatha & Kumble, 1993), while this protein is also reported to be an RNA binding 
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protein, interacting with c-myc (Fillipenko et al., 2004). The binding of annexin A2 to RNA 

and DNA requires Ca2+. Accordingly, it was thought that DNA and RNA bind to acidic 

phospholipid binding sites via ionic interaction. Our laboratory has investigated  details of 

annexin A1 binding to RNA and DNA (Hirata & Hirata, 1999; 2002). Annexin A1 purified 

from rat liver nuclei binds to purine clusters in RNA, while it preferentially binds to 

pyrimidine clusters in DNA. The size of maximal recognition for binding was around 20-25 

nt. Since phospholipids, especially acidic phospholipids such a phosphatidylserine, 

enhanced DNA and RNA binding, the binding of annexin A1 to RNA and DNA was not 

due to simple ionic interactions, and the sites for binding to phospholipids and DNA/RNA 

were distinct. Indeed, the RNA binding site of annexin A2 was reported to be C-D helices of 

Domain IV (Aukrust et al., 2007), while the consensus sequence for phosphatidylserine 

binding is proposed to be (R/K)XXXΚ-(B-C helices)-(R/K)XXXXDXXS(D/E) in Domain I and 

II (Montaville et al., 2002). 

Annexins are also reported to interact with ATP and GTP (Bandorowicsz-Pikula & Pikula, 

1998), although they do not have consensus sequences for typical ATP binding sites such as 

Walker A. As seen with annexin A7 that forms ion channels in lipid bilayers, GTP and other 

nucleotides are thought to regulate Ca2+ gating, and/or Ca2+ dependent membrane trafficking 

such as exocytosis (Caohuy et al., 1996). Cotton fiber annexin and N-terminal deleted 

annexin A1 can hydrolyze GTP in the presence of Mg2+, and Ca2+ is not required for this 

hydrolysis (Hyun et al., 2000; Shin & Brown, 1999). Since annexin A1 can bind not only 

ssDNA but also dsDNA in the presence of both Mg2+ and Ca2+, we examined effects of 

various DNAs on ATP hydrolysis by annexin A1 (Hirata & Hirata, 2002). dsDNA such as 

calf thymus DNA and annealed M13mp18 but not ssDNA stimulated ATP hydrolysis by 

annexin A1. When DNA was analyzed, dsDNA was unwound to form ssDNA, suggesting 

that annexin A1 has DNA helicase activity (Hirata & Hirata, 2002). Interestingly, its 

annealing reaction did not require Mg2+ nor ATP, but Ca2+ was necessary. Therefore, binding 

of dsDNA requires Mg2+, and that of ssDNA takes place in the presence of Ca2+ (Fig. 1). 

  

Figure 1. Helicase activity of annexin A1 
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5. Modification with SUMOylation and ubiquitination and annexin 

helicase activity 

Purified rat nuclear annexin A1 had an apparent molecular weight of approximately 92,000 

± 2,000 Da, and was ubiquitinated as detected by anti-ubiquitin antibody (A. Hirata et al., 

2010). Under reducing conditions, its molecular weight was approximately 45,000 ± 1,000 Da 

on SDS-PAGE, suggesting that high molecular weight annexin A1 is a homodimer of mono-

ubiquitinated annexin A1 rather than a heterodimer complex with S100 as previously 

thought. Since this homodimer with an apparent molecular weight of 92,000 Da exhibited a 

Ca2+- and Mg2+-regulated helicase activity, we performed helicase assays of the reaction 

mixtures for ubiquitination and SUMOylation of annexin A1. The reaction mixtures 

containing annexin A1 modified with SUMO1 and native annexin A1 showed helicase activity 

as measured by unwinding of dsDNA . While purified native annexin A1 also exhibited  low 

helicase activity, SUMOylated annexin A1 exhibited much higher activity. Since under the 

present conditions, approximately 10% and 20% of annexin A1 were modified in the absence 

and presence of Ca2+ with SUMO1, we calculated that SUMOylation stimulated the helicase 

activity of annexin A1 by approximately 3.5 fold (F. Hirata et al., 2010).  

HeLa S100 lysate that was required for ubiquitination reactions contained other types of 

helicases beside annexin A1, and thus increased control activity. Despite this challenge, the 

reaction mixtures containing mono-ubiquitinated annexin A1 demonstrated clearly 

enhanced helicase activity (F. Hirata et al., 2010). Assuming that annexin A1 in HeLa S100 

exhibits helicase activity equal to purified bovine annexin A1, mono-ubiquitination of 

annexin A1 results in an approximately 6-fold activation as compared with native annexin 

A1. Since purified rat nuclear annexin A1 shows 9 fold higher activity than native rat 

annexin A1 (A. Hirata et al., 2010), these observations suggest that the conjugation of 

annexin A1 with ubiquitin or SUMO enhances its helicase activity. 

6. Heavy metals and annexin A1 

Annexin A1 has 3 different types of Ca2+ binding sites, type II, type III and type III (AB) 

(Weng et al., 1993). Type II calcium binding sites have the highest affinity for Ca2+, and are 

found only at AB loops. The coordination of the type II sites is octahedral. It consists of three 

peptide oxygens from the AB loops with the (K, R)-(G, R)-X-G-T sequence and bidentate 

ligands from the acidic groups of either an aspartate or a glutamate residue downstream in 

the sequence. The remaining two calcium coordinating sites show electro-density for water 

molecules. The calcium ions at the type III sites coordinate to two backbone carbonyl 

oxygens and one nearby acidic side chain. Water molecules have been found at most of the 

remaining three coordinating sites to complete the six-ligand octahedral coordination. The 

type III sites correspond to the two minor calcium sites labeled by lanthanum in annexin A5. 

As seen with EF band calcium binding proteins that have type I Ca2+ binding sites, 

phospholipid aggregation experiments suggest that other divalent metals such as Pb2+ and 

Zn2+ can replace Ca2+ in annexin A1 (Mel'gunov et al., 2000). Since type III Ca2+ binding sites 
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can be labeled with La3+, we tested not only Pb2+ and Cd2+ but also As3+ and Cr6+ for DNA 

helicase assays (A. Hirata et al., 2010). Pb2+ alone stimulated the DNA binding activity of 

purified mono-ubiquitinated nuclear annexin A1 in the absence of Mg2+ and Ca2+. Heat 

denatured nuclear annexin A1 did not exert DNA binding even with these metals. 

Therefore, we thought that Pb2+ and Ca2+ were acting in essentially similar manners on 

mono-ubiquitinated annexin A1. Similar results were observed with Cd2+, suggesting that 

these divalent metals were able to replace Ca2+ for DNA binding activity of annexin A1 as 

previously shown for its phospholipid binding activity (Mel'gunov et al., 2000). To clarify 

whether carcinogenic heavy metals such as As3+ and Cr6+ can promote or block the DNA 

binding activity of nuclear annexin A1, we tested the effects of As3+ on binding of nuclear 

annexin A1 to P0G, a 80mer polynucleotide that is complimentary to the ori of M13mp18 

(see below). As3+ was synergistic with Ca2+ and with Mg2+, yet As3+ alone apparently 

promoted the binding of annexin A1 to ssDNA. With As3+, formation of the nuclear annexin 

A1-P0G complex increased in a concentration-dependent manner. The concentration of As3+ 

for half-maximal activation was 2.2 μM in the absence of phospholipids. Similar 

concentration-dependent activation was observed with Pb2+, Cd2+, and Cr6+. Half-maximal 

binding in the absence of phospholipids was observed at 30, 0.1, and 2 μM for Pb2+, Cd2+, 

and Cr6+, respectively. Phospholipids increased complex affinity for heavy metals by 

approximately 10 fold, as seen previously with Ca2+ for phospholipid binding (Gerke & 

Moss, 2002). These observations suggest that carcinogenic divalent and some multivalent 

heavy metal cations are able to replace Ca2+ in the DNA binding activity of mono-

ubiquitinated annexin A1. It is noted that Cd2+ at concentrations higher than 5 μM caused 

potent inhibition, possibly due to thiol oxidation of the annexin A1 molecule. 

Ca2+ facilitates the annealing of C20-P0G to M13mp18 by nuclear annexin A1 (Hirata & 

Hirata, 2002). Although poly(dC)20 was added at the 3’- or at the 5’-end of P0G as a binding 

site for annexin A1, which demonstrates a higher affinity for poly(dC)20 (Hirata & Hirata, 

2002), nuclear annexin A1 bound to P0G without a poly(dC)20 tail. To test the interpretation 

that As3+ or Cr6+ can replace Ca2+, the annealing activity of nuclear annexin A1 was measured 

in the presence of As3+ or Cr6+ and the absence of Ca2+ or Mg2+. As expected, As3+ promoted 

the annealing of P0G to M13m18 by nuclear annexin A1 in a concentration-dependent 

manner. Half-maximal stimulation was observed at 1.4 μM AsCl3. This concentration was 

consistent with that required for half maximal binding of ssDNA. Similar results with DNA 

annealing were obtained with CrO3, PbCl2 and CdCl2, with concentrations for half-maximal 

annealing approximately 3,30 and 0.1 μM, respectively. Since heat denatured nuclear 

annexin A1 did not promote DNA annealing even with heavy metals under the present 

experimental conditions (data not shown), it was concluded that carcinogenic heavy metals 

As3+ and Cr6+ and divalent metals Pb2+ and Cd2+ can replace Ca2+ for the ssDNA binding and 

DNA annealing activities of nuclear annexin A1 (A. Hirata et al., 2010). 

7. DNA damage and mono-ubiquitinated annexin A1 

Mono-ubiquitination of nuclear proteins is mainly involved in tolerance of DNA damage, 

while SUMOylated nuclear proteins generally function in repair of damaged DNA (Ulrich, 



 
Mono-Ubiquitination of Nuclear Annexin A1 and Mutagenesis 21 

2005). Therefore, we tested nuclear annexin A1 for binding to damaged DNA. We 

synthesized the 80mer, 5’-GTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGC-

GAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCA-3’ (P0G), and 3 addi-

tional 80mers, each with a selected single G in position 14, 30 or 37 replaced by 8-oxo-

guanosine (8-oxo-G) to model DNA damaged at a specific site by oxidation (A. Hirata et al., 

2011). These damaged DNAs were designated as P14G, P30G, and P37G. We previously 

demonstrated that nuclear annexin A1 binds to ssDNA in a Ca2+-dependent manner, and 

binding to dsDNA or aggregated DNA occurs in a Mg2+-dependent manner (Hirata & 

Hirata, 1999; 2002). In the presence of 50 μM Ca2+, mono-ubiquitinated annexin A1 purified 

from rat liver exhibited higher affinity for damaged DNA, while SUMOylated annexin A1 

did not show much of difference in preference. In the presence of 50 μM Ca2+, Km values for 

P30G, P37G and P14G were 0.20, 0.28, and 0.44 nM. All showed significantly higher affinity 

than P0G which had a Km value of 0.62 nM. Guanosine damaged by oxidation in the middle 

of the polynucleotide rather than at its ends appears to be readily tolerated by mono-

ubiquitinated annexin A1. 

Ca2+ induces annexin A1 conformational changes (Shesham et al. 2008). Since As3+ and Cr6+ 

also bind to the Ca2+ binding sites of annexin A1, we tested As3+ and Cr6+ for damaged DNA 

binding of mono-ubiquitinated annexin A1. The carcinogenic heavy metals, As3+ and Cr6+, 

increased the affinity of nuclear annexin A1 for the oxidatively damaged DNA, P30G, but 

not for undamaged P0G. The Km value in the presence of 50 μM Ca2+ for G30P (0.20 nM) 

was significantly changed to 0.12 and 0.10 nM in the presence of 10 μM Cr6+ and 30 M As3+, 

respectively. However, maximal binding did not appear to be significantly altered (0.42 and 

0.39 mol ssDNA/mol protein for G0P and G30P, respectively). Pb2+ and Cd2+ also increased 

affinity, but effects were much smaller. Ca2+ and heavy metals promote annealing of the 

damaged DNAs to M13mp18 by nuclear annexin A1 (Hirata & Hirata, 2002; A. Hirata et al., 

2010). Km values for the annealing reaction were essentially the same as values for the 

binding reaction. The affinity of nuclear annexin A1 for oxidatively damaged DNA was 

much higher than that for undamaged P0G and amounts of the DNA annealed with 

oxidatively damaged P14G were higher than with undamaged P0G. The specificity of 

nuclear annexin A1 for various oxidatively damaged DNAs was not substantially altered in 

the presence of heavy metals. 

The damaged oligonucleotide-M13mp18 duplexes were also unwound in the presence of 

Mg2+ and ATP by mono-ubiquitinated annexin A1. ATP was hydrolyzed under these 

conditions. Unwinding velocities appeared similar for undamaged and damaged DNA. The 

unwinding of damaged polynucleotide-M13mp18 duplexes was inhibited by Ca2+ and heavy 

metals as reported previously (Hirata & Hirata, 2002). Ki values for heavy metal inhibition 

of the unwinding reaction were essentially the same with the Ka values for binding and 

annealing reactions. These heavy metals did not inhibit but rather stimulated dsDNA-

dependent ATPase activity. Therefore, the apparent inhibition of unwinding by heavy 

metals most likely resulted from metal-induced increases in the annealing reaction, which in 

turn supplied the substrate (A. Hirata et al., 2010). 
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8. Translesion DNA synthesis by mono-ubiquitinated annexin A1 

Helicases and DNA binding proteins are among the first proteins to encounter sites of DNA 

damage during transcription and DNA replication. The Werner syndrome protein enhances 

DNA synthesis during strand replacement of damaged DNA through its helicase activity 

(Harrigan et al., 2003). To test if mono-ubiquitinated annexin A1 stimulates translesion DNA 

synthesis, Pol β was used as an error-prone DNA polymerase that bypasses 8-oxo-guanine 

during DNA replication (Avkin & Livneh, 2002). DNA synthesis was measured by extension 

of the primer, 5’-TGGTTCACGTAG-3’ annealed to P0G or oxidatively damaged DNA 

oligonucleotide (P30G) templates. Mono-ubiquitinated annexin A1 and Ca2+ increased DNA 

replication by approximately 2.6 fold as measured by the synthesis of 80mer, a full size of 

the template, G30G. When DNA synthesis was terminated at the damaged site, the size of 

DNA newly synthesized should be around 50 mer. Because ATP is not required for the 

maximal activation, it was conceivable that mono-ubiquitinated annexin A1 promoted 

annealing of the primer or stabilized the ssDNA template by binding rather than promoting 

unwinding. Translesion DNA synthesis was greatly enhanced by mono-ubiquitinated 

annexin A1, when primer was added separately at low concentrations. The amount of 

primer required for half maximal DNA synthesis in the presence of nuclear annexin A1 and 

Ca2+ decreased significantly to 1 pmol from 5 pmol in the absence of annexin A1. These 

observations suggest that mono-ubiquitinated annexin A1 promoted annealing of primer to 

template, while this primer was not necessarily the best substrate for nuclear annexin A1 

with regards to length and base composition (Hirata & Hirata, 1999). It is noteworthy that 

even when the primer was annealed to the template prior to the experiments, annexin A1 

was able to enhance translesion DNA synthesis by Pol β, suggesting that annexin A1 

stabilizes the ssDNA region of the template. Taken together, these observations suggest that 

mono-ubiquitinated annexin A1 acts as a primer-recognizing protein that anneals primers to 

templates, a ssDNA binding protein, or both (Jindal & Vishwanatha, 1990). Notably, the 

amount of mono-ubiquitinated annexin A1 required for maximal DNA synthesis was not a 

function of Pol , indicating that annexin A1 did not directly interact with this polymerase. 

Given that binding of annexin A1 to damaged DNA was dependent on heavy metals, the 

effects of heavy metals on translesion DNA synthesis by Pol β was examined directly. The 

concentrations of metals required for half-maximal activation of DNA synthesis equaled 

those for half-maximal ssDNA binding. With P30G, Ka values for Ca2+, Pb2+, Cd2+, As3+ and 

Cr6+ were 12.5, 30, 0.1, 1.4, and 3 μM, respectively, without phosphatidylserine. These values 

are essentially the same as those observed with these heavy metals for helicase activity. 

9. Annexin A1-dependent promotion of translesion DNA synthesis by L 

lymphoma nuclear extracts 

L lymphoma, L5178Y tk(+/-) cells contain annexin A1 with an apparent molecular weight 

45,000 Da in nuclei (F. Hirata et al., 2010). The majority of nuclear annexin A1 was present in 

DNA synthesomes (Lin et al., 1997). Heavy metals inhibited DNA unwinding and 
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stimulated DNA annealing by the nuclear extracts, and these metal effects were blocked by 

anti-annexin A1 antibody but not by anti-IgG (A. Hirata et al., 2010). To establish if nuclear 

annexin A1 plays a role in translesion DNA synthesis, we tested nuclear extracts for DNA 

synthesis using the P30G oligonucleotide as a template. Synthesis of 80mer DNA was 

considered as full translesion synthesis. Translesion DNA synthesis from damaged DNA 

templates was stimulated only in the presence of Ca2+ or heavy metals. Heavy metal-

stimulated translesion DNA synthesis was partially blocked by monospecific anti-annexin 

A1 antibody but not by anti-IgGs, indicating that translesion DNA synthesis was dependent 

on annexin A1. However, it is noted that some degree of replication by nuclear extracts with 

damaged DNA templates took place in the absence of heavy metals or Ca2+. Therefore, it 

cannot be ruled out that nuclear annexin A1 can function in recruiting error-prone DNA 

polymerases to the site of DNA synthesis. A recent study by O’Brien and colleagues (2009) 

demonstrates that Pol τ plays an important role in Cr6+-induced mutation. It is also possible 

that the type of error prone polymerase that is recruited depends on the specific type of 

DNA damage. 

When L5178Y tk(+/-) lymphoma cells were exposed to 20 μM MMS and 3 μM AsCl3, 

mutation of the tk gene was induced as measured by the number of clones resistant to 5-

fluoro-thymidine. Such mutation was suppressed by pretreatment of L5178Y tk(+/-) cells with 

an annexin A1 anti-sense oligonucleotide (unpublished data by F. Hirata). These observations 

suggest that DNA damage induced mutagenesis is mediated through annexin A1. 

10. Summary 

Cellular contents of annexin A1 increase in a variety of cancer cells including pancreatic 

cancer, glioma and hepatoma (Lim & Pervaiz, 2007). Not only precancerous hepatocytes but 

also proliferative hepatocytes following liver damage express annexin A1, while normal 

hepatocytes do not. Therefore, annexin A1 is proposed to be a biomarker of cell 

transformation and/or hyperproliferative state (Masaki et al., 1994). In contrast, some cancer 

cells such as prostate, breast and esophageal cancers demonstrate downregulation of 

annexin A1 expression (Lim & Pervaiz, 2007). Transfection of cDNA encoding annexin A1 

into some cells alters the MAP kinase pathway via interaction of annexin A1 with Grb2, 

thereby delaying the cell cycle (Lim & Pervaiz, 2007). These observations lead to the 

proposal that annexin A1 is a suppressor gene that promotes cellular differentiation rather 

than an oncogene that promotes cancer. However, recent studies have shown that the down-

regulation of annexins in certain types of malignant cancers is mainly attributable to 

epigenetic regulation by DNA methylation and histone acetylation, and to deletion of the 

annexin genes due to chromosomal instability following malignant transformation (Lim & 

Pervaiz, 2007). In esophageal epithelial carcinoma cells, nuclear annexin A1 is increased by 

its translocation from the cytosol, and cytosolic annexin A1 is consequently decreased (Liu 

et al., 2008). Therefore, it is proposed that nuclear annexin A1 rather than cytosolic annexin 

A1 is more closely associated with cell transformation, namely, cancer initiation¸ while 

changes of annexin A1 expression may not be involved in tumorigenesis. 
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Annexin A1 contains sequence and structural motifs for binding of nucleotides (non-Walker 

A type), binding of Ca2+ and heavy metals (non-EF hand type II and III ) and DNA and/or 

RNA (helix-loop or turn-helix). Further, this protein is present in DNA synthesomes, 

suggesting some roles in the replication machinery. Nuclear annexin A1 is modified with 

ubiquitin and ubiquitin like molecules, and mono-ubiquitination of annexin A1 increases in 

response to DNA damage. Mono-ubiquitinated annexin A1 exhibits a helicase activity 

which has higher affinity for damaged DNA. Since helicases are among the first proteins 

that encounter damaged sites of DNA, this protein may regulate assembly of proteins 

required for repair of and tolerance to DNA damage. Mono-ubiquitinated but not 

SUMOylated nor native annexin A1 stimulates error-prone DNA polymerases such as Pol β 

with damaged DNA as a template via its helicase activity. In keeping with this interpretation 

that annexin A1 plays an important role in error prone lesion bypassing DNA synthesis in 

response to DNA damage, nuclear extracts of L5178Y tk(+/-) lymphoma cells promote 

translesion DNA synthesis in an annexin A1 dependent manner. Carcinogenic heavy metals 

such as As3+ and Cr6+ bind to the Ca2+ binding sites of annexin A1, and promote translesion 

DNA synthesis via annexin A1. DNA damage induced mutagenesis was found to be 

annexin A1 dependent both in vivo and in vitro (Fig. 2). 

 

Figure 2. Annexin A1 mediated translesion DNA synthesis  
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