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1. Introduction 

Rough topography is very common and we have to deal with it during the acquisition, 

processing and interpretation of seismic data. For example, in the context of the deep 

seismic soundings to explore the crustal structure, seismic experiments are usually carried 

out across: (a) orogenic belts for understanding the mechanisms; (b) basins to understand 

the formation mechanisms; (c) transition zones for the study of its interaction (Al-Shukri et 

al., 1995; Ashford et al., 1997; Boore, 1972; Jih et al., 1988; Levander, 1990; Robertsson, 1996; 

Zhang et al., 2010). In oil/gas seismic exploration, seismologists also have a similar problem 

with the undulating topography along the survey line.  

In the last two decades, several approaches have been proposed to simulate wave 

propagation in heterogeneous medium with irregular topography. These schemes include 

finite element method (Rial et al., 1992; Toshinawa and Ohmachi, 1992), spectral element 

method (Komatitsch and Tromp, 1999, 2002), pseudo-spectral method (Nielsen et al., 1994; 

Tessmer et al., 1992; Tessmer and Kosloff, 1994), boundary element method (Bouchon et al., 

1989; Campillo and Bouchon, 1985; Sánchez-Sesma and Campillo, 1993; Sánchez-Sesma et 

al., 2006), finite difference method (Frankel and Vidale, 1992; Gao and Zhang, 2006; 

Hestholm and Ruud, 1994, 1998; Jih et al., 1988; Lombard et al., 2008; Robertsson, 1996; 

Zhang and Chen, 2006), and also a hybrid approach which combines the staggered-grid 

finite difference scheme with the finite element method (Galis et al., 2008; Moczo et al., 

1997). Both the spectral element and the finite element methods satisfy boundary conditions 

on the free surface naturally. 3D surface and interface topographies can be modeled using 

curved piecewise elements. However, the classical finite element method suffers from a high 

computational cost, and, on the other hand, a smaller spectral element than the one required 

by numerical dispersion is required to describe a highly curved topography, as 
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demonstrated in seismic modeling of a hemispherical crater (Komatitsc and Tromp, 1999). 

The pseudo-spectral method is limited to a free surface with smoothly varying topography 

and leads to inaccuracies for models with strong heterogeneity or sharp boundaries 

(Tessmer et al., 1992). The boundary integral equation and boundary element methods are 

not suitable for near-surface regions with large velocity contrasts (Bouchon et al., 1995). The 

finite difference method is one of the most popular numerical methods used in 

computational seismology. In comparison to other methods, the finite difference method is 

simpler and more flexible, although it has some difficulty in dealing with surface 

topography. The situation has improved recently. For rectangular domains, a stable and 

explicit discretization of the free surface boundary conditions has been presented by Nilsson 

et al. (2007). By using boundary-modified difference operators, Nilsson et al. (2007) 

introduce a discretization of the mixed derivatives in the governing equations; they also 

show that the method is second order accurate for problems with smoothly varying material 

properties and stable under standard Courant-Friedrichs-Lewy (CFL) constraints, for 

arbitrarily varying material properties. We have investigated 6 free-surface boundary 

condition approximate schemes in seismic wavefield modelling and evaluated their stability 

and applicability by comparing with corresponding analytical solutions, the results reveal 

that Nilsson et al.’s method is more effective than others (Lan & Zhang, 2011a). Recently, 

Appelo and Petersson (2009) have generalized the results of Nilsson et al. (2007) to 

curvilinear coordinate systems, allowing for simulations on non-rectangular domains. They 

construct a stable discretization of the free surface boundary conditions on curvilinear grids, 

and they prove that the strengths of the proposed method are its ease of implementation, 

efficiency (relative to low-order unstructured grid methods), geometric flexibility, and, most 

importantly, the “bullet-proof” stability (Appelo and Petersson, 2009), even though they 

deal with 2D isotropic medium. 

Nevertheless, the earth is often seismically anisotropic resulting from fractured rocks, fluid-

filled cracks (Crampin, 1981; Hudson, 1981; Liu et al., 1993; Schoenberg and Muir, 1989; 

Zhang et al., 1999), thin isotropic layering (Backus, 1962; Helbig, 1984), lack of homogeneity 

(Grechka and McMechan, 2005), or even preferential orientation of olivine (Dziewonski and 

Anderson, 1981; Forsyth, 1975). Here, we give an introduction of the method in 3D case with 

the purpose of simulating seismic wave propagation in 3D heterogeneous anisotropic 

medium with non-flat surface topography. The chapter is organized as follows: firstly, we 

give a brief introduction on the boundary-conforming grid and the transformation between 

curvilinear coordinates and Cartesian coordinates; then we write the wave equations and 

free boundary conditions in these two coordinate systems; after that we introduce a 

numerical method to discretize both the wave equations and the free surface boundary 

conditions. Finally, several numerical examples are presented to demonstrate the accuracy 

and efficiency of the method. 

2. Transformation between curvilinear and Cartesian coordinates 

As to the topographic surface, the discrete grid must conform to the free surface to suppress 

artificial scattered waves. Such grid is named boundary-conforming grid (Hvid, 1994; 
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Thompson et al., 1985), and it was early used by Fornberg (1988) in seismic wave simulation 

with the pseudo-spectral method. A grid of this type is achieved by carrying out a 

transformation between the (curvilinear) computational space and the (Cartesian) physical 

space as illustrated in Figure 1. By means of this transformation, the curvilinear coordinates 

q, r and s are mapped into Cartesian coordinates within the physical space, where both 

systems have positive direction downward for the vertical coordinate. A boundary in the 

physical space presents a constant value of one of the curvilinear coordinates-be it a curve in 

two dimensions or a surface in three dimensions. 

Boundary conforming grids may be of two fundamentally different types: structured and 

unstructured (or irregular) grids. A structured type grid (Figure 1) is characterized by 

having a fixed number of elements along each of the coordinate directions. The general 

element is a hexahedron in 3D, just as in the left panel of Figure 1. Neighboring elements in 

the physical space are also adjacent in the computational space, which is one of the great 

advantages of this type of grid. This property makes it relatively simple to implement in a 

computer. Structured grids are mainly used in finite difference and finite volume solvers. 

Here, we focus on structured boundary conforming grids. Several methods may be used to 

generate these grids, namely: Partial Differential Equation (PDE) methods, algebraic 

methods, co-normal mapping methods and variational methods. Here we use PDE methods 

(see Hvid, 1994; and Thompson et al., 1985 for details). 

 

Figure 1. Mapping between computational and physical space in three dimensions (after Hvid, S., 

1994). 

After generating the boundary-conforming grid, the Cartesian coordinates of every grid 

point can be determined from the curvilinear coordinates through the equations: 

 x = x(q,r,s)      y = y(q,r,s)      z = z(q,r,s)                (1) 

then, we can express the spatial derivatives in the Cartesian coordinate system (x, y, z) from 

the curvilinear coordinate system (q, r, s) following the chain rule: 

    x x q x r x s= q + r + s       y y q y r y s= q + r + s       z z q z r z s= q + r + s        (2) 

and similarly in other cases 

    q q x q y q z= x + y + z        r r x r y r z= x + y + z        s s x s y s z= x + y + z      (3) 
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where xq  denotes  q(x,y,z) x  and the similar in other cases. These derivatives are called 

metric derivatives or simply the metric. We can also find the metric derivatives 

 

x r s r s

x s q s q

x q r q r

1
q = (y z - z y )

J

1
r = (y z - z y )

J

1
s = (y z - z y )

J

     

y r s r s

y s q s q

y q r q r

1
q = (z x - x z )

J

1
r = (z x - x z )

J

1
s = (z x - x z )

J

     

z r s r s

z s q s q

z q r q r

1
q = (x y - y x )

J

1
r = (x y - y x )

J

1
s = (x y - y x )

J

      (4) 

where J is the Jacobian of the transformation that is written as  

q r s q s r r q s r s q s q r s r qJ = x y z - x y z - x y z + x y z + x y z - x y z  

and whose detailed form can be found in Appendix A in Lan & Zhang (2011b). 

It is worthful to note that even if the mapping equations (1) are given by an analytic 

function, the derivatives should still be calculated numerically to avoid spurious source 

terms due to the coefficients of the derivatives when the conservation form of the 

momentum equations are used (Thompson et al., 1985). In all examples presented in this 

paper the metric derivatives are computed numerically using second-order accurate finite 

difference approximations. 

3. Elastic wave equations in Cartesian and curvilinear coordinate systems 

In the following we consider a well-studied type of anisotropy in seismology, namely, a 

transversely isotropic medium. In the absence of external force, the elastic wave equations in 

the Cartesian coordinates are given by: 

 (b)

          
         

          
         

     
   

2

11 12 13 66 66 44 442

2

66 66 11 12 13 44 442

2

44 44 442

u u v w u v u wρ = (c + c + c ) + (c + c ) + (c + c ) (a)
x x y z y y x z z xt

v v u v u w v wρ = (c + c ) + (c + c + c ) + (c + c )
x x y y y x z z z yt

w w u wρ = (c + c ) + (c
x x z yt

(c)
    

     44 33 13 13

v w u v
+ c ) + (c + c + c )

y z z z x y

   (5) 

where ijc (x, y, z) are elastic parameters and 66 11 12c = 0.5(c - c ) ; u, v and w are the 

displacements in x-, y- and z-directions, respectively; ρ (x, y, z) is density. Equations (5a)-

(5c) are complemented by the initial data: 

 


0

1

u(x,y,z,0) = u (x,y,z)

u(x,y,z,0)
= u (x, y,z)

t

    


0

1

v(x,y,z,0) = v (x,y,z)

v(x,y,z,0)
= v (x,y,z)

t

    


0

1

w(x,y,z,0) = w (x,y,z)

w(x,y,z,0)
= w (x,y,z)

t

  (6) 

Utilizing relationships (2), the wave equations (5a)-(5c) can be re-written in the curvilinear 

coordinate system in the following form (see Appendix B in Lan & Zhang, 2011b for details): 
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2

x{
 

         


     

     


 



x 11 x q r x s 12 y q y r y s 13 z q z r z s2

y 66 x q x r x s 66 y q y r y s

z 44 z q z r z s 44 x q x r x s

x 11 q x r x

Jρ Jq [c (q + r + s )u + c (q + r + s )v + c (q + r + s )w]
t

+Jq [c (q + r + s )v + c (q + r + s )u]

+Jq [c (q + r + s )u + c (q + r + s )w]}

+ {Jr [c (q + r + sx

u

q

r
      

     

     


       


s 12 y q y r y s 13 z q z r z s

y 66 q x r x s 66 y q y r y s

z 44 z q z r z s 44 x q x r x s

x 11 x q x r x s 12 y q y r y s 13 z

)u + c (q + r + s )v + c (q + r + s )w]

+Jr [c (q + r + s )v + c (q + r + s )u]

+Jr [c (q + r + s )u + c (q + r + s )w]}

{Js [c (q + r + s )u + c (q + r + s )v + c (q

x

s
 

     

     

q z r z s

y 66 x q x r x s 66 y q y r y s

z 44 z q z r z s 44 x q x r x s

+ r + s )w]

+Js [c (q + r + s )v + c (q + r + s )u]

+Js [c (q + r + s )u + c (q + r + s )w]}

(7) 

 

 
     


        

     


 



2

x 66 x q x r x s 66 y q y r y s2

y 11 y q y r y s 12 x q x r x s 13 z q z r z s

z 44 z q z r z s 44 y q y r y s

x 66 x q x r x

v
Jρ = {Jq [c (q + r + s )v + c (q + r + s )u]

qt

+Jq [c (q + r + s )v + c (q + r + s )u + c (q + r + s )w]

+Jq [c (q + r + s )v + c (q + r + s )w]}

+ {Jr [c (q + r + s
r

   

        

     


     



s 66 y q y r y s

y 11 y q y r y s 12 x q x r x s 13 z q z r z s

z 44 z q z r z s 44 y q y r y s

x 66 x q x r x s 66 y q y r y s

y 1

)v + c (q + r + s )u]

+Jr [c (q + r + s )v + c (q + r + s )u + c (q + r + s )w]

+Jr [c (q + r + s )v + c (q + r + s )w]}

+ {Js [c (q + r + s )v + c (q + r + s )u]
s

+Js [c         

     
1 y q y r y s 12 x q x r x s 13 z q z r z s

z 44 z q z r z s 44 y q y r y s

(q + r + s )v + c (q + r + s )u + c (q + r + s )w]

+Js [c (q + r + s )v + c (q + r + s )w]}

 (8) 

 

 
     


     

        


 



2

x 44 z q z r z s 44 x q x r x s2

y 44 z q z r z s 44 y q y r y s

z 33 z q z r z s 13 x q x r x s 13 y q y r y s

x 44 z q z r z

w
Jρ = {Jq [c (q + r + s )u + c (q + r + s )w]

qt

+Jq [c (q + r + s )v + c (q + r + s )w]

+Jq [c (q + r + s )w + c (q + r + s )u + c (q + r + s )v]}

+ {Jr [c (q + r + s
r

   

     

        


     



s 44 x q x r x s

y 44 z q z r z s 44 y q y r y s

z 33 z q z r z s 13 x q x r x s 13 y q y r y s

x 44 z q z r z s 44 x q x r x s

y 4

)u + c (q + r + s )w]

+Jr [c (q + r + s )v + c (q + r + s )w]

+Jr [c (q + r + s )w + c (q + r + s )u + c (q + r + s )v]}

+ {Js [c (q + r + s )u + c (q + r + s )w]
s

+Js [c      

        
4 z q z r z s 44 y q y r y s

z 33 z q z r z s 13 x q x r x s 13 y q y r y s

(q + r + s )v + c (q + r + s )w]

+Js [c (q + r + s )w + c (q + r + s )u + c (q + r + s )v]}

 (9) 
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4. Free boundary conditions in the Cartesian and curvilinear coordinate 

systems 

At the free surface, the boundary conditions in the Cartesian coordinates are given by: 

 

       
          
         
            
         
 

        

11 12 13 66 66 44 44

x

66 66 11 12 13 44 44 y

z

44 44 44 44 33 13 13

u v w u v u w
c + c + c c + c c + c

x y z y x z x
n

v u v u w v w
c + c c + c + c c + c n = 0

x y y x z z y
n

w u w v w u v
c + c c + c c + c + c

x z y z z x y

 (10) 

Here  
 

T

x y zn ,n ,n  is the inward normal of the free surface. Using relationships (2), the 

above boundary conditions in the curvilinear coordinates can be re-written as 

 

 
 

 
 

 
 

-

x 11 x q x r x s 12 y q y r y s 13 z q z r z s

-

y 66 y q y r y s 66 x q x r x s

-

z 44 z q z r z s 44 x q x r x s

s c (q u + r u + s u )+ c (q v + r v + s v ) + c (q w + r w + s w )

+s c (q u + r u + s u ) + c (q v + r v + s v )

+s c (q u + r u + s u )+ c (q w + r w + s w ) = 0

       (11) 

 

 
 

 
 

 
 

-

x 66 x q x r x s 66 y q y r y s

-

y 11 y q y r y s 12 x q x r x s 13 z q z r z s

-

z 44 z q z r z s 44 y q y r y s

s c (q v + r v + s v ) + c (q u + r u + s u )

+s c (q v + r v + s v )+ c (q u + r u + s u )+ c (q w + r w + s w )

+s c (q v + r v + s v )+ c (q w + r w + s w ) = 0,

      (12) 

 

 
 

 
 

 
 

-

x 44 x q x r x s 44 z q z r z s

-

y 44 y q y r y s 44 z q z r z s

-

z 33 z q z r z s 13 x q x r x s 13 y q y r y s

s c (q w + r w + s w )+ c (q u + r u + s u )

+s c (q w + r w + s w )+ c (q v + r v + s v )

+s c (q w + r w + s w ) + c (q u + r u + s u ) + c (q v + r v + s v ) = 0

   (13) 

Note that here the normal is represented by the normalized metric (evaluated along the free 

surface) 

,
-

x
x

2 2 2
x y z

s
s =

s +s + s

,
-

y
y

2 2 2
x y z

s
s =

s + s + s
.

-
z

z
2 2 2
x y z

s
s =

s +s +s
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5. A discretization scheme on curvilinear grid 

To approximate (7)-(9) we discretize the rectangular solid (Figure 2)  

 

 
 

Figure 2. Grids distributions in curvilinear coordinate. 

 

i q

j r

k s

q = (i - 1)h

r = (j - 1)h

s = (k - 1)h

 

q

r

s

i = 1,...,N

j = 1,...,N

k = 1,...,N

 

;

;

q q

r r

s s

h = l (N - 1)

h = w (N - 1)

h = h (N - 1)

  (14) 

where l, w, h are the length of the rectangular solid in q-, r- and s-directions, respectively; 

q r sh ,h ,h > 0 define the grid size in q-, r- and s-directions, respectively. The three 

components of the wave field are given by 

i, j,k i, j,k i, j,k i j k i j k i j k[u (t),v (t),w (t)] = [u(q ,r ,s , t),v(q ,r ,s , t),w(q ,r ,s , t)]  

and the derivation operators as 

 

i+1, j,k i, j,kq
+ i, j,k

q

i, j+1,k i, j,kr
+ i, j,k

r

i, j,k+1 i, j,ks
+ i, j,k

s

u - u
D u =

h

u - u
D u =

h

u - u
D u =

h

  

q q
- i, j,k + i-1, j,k

r r
- i, j,k + i, j-1,k

s s
- i, j,k + i, j,k-1

D u = D u

D u = D u

D u = D u

  

q q q
0 i, j,k + i, j,k - i, j,k

r r r
0 i, j,k + i, j,k - i, j,k

s s s
0 i, j,k + i, j,k - i, j,k

1
D u = (D u + D u )

2
1

D u = (D u + D u )
2
1

D u = (D u + D u )
2

 (15) 

The right hand sides of eqs. (7)-(9) contain spatial derivatives of nine basic types, which are 

discretized according to the following equations 
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














qq q
q - +1 2

qr
q 0 0

qs
q 0 0

(aω ) D (E (a)D ω)
q

(dω ) D (dD ω)
r

(gω ) D (gD ω)
s

  
















q r
r 0 0

r r r
r - 1 2 +

s r
r 0 0

(bω ) D (bD ω)
q

(eω ) D (E (e)D ω)
r

(mω ) D (mD ω)
s

   


















q s
s 0 0

r s
s 0 0

s s s
s - 1 2 +

(cω ) D (cD ω)
q

(fω ) D (fD ω)
r

(pω ) D (E (p)D ω)
s

 (16) 

Here ω  represents u, v or w; a, b, c, d, e, f, g, m and p are combinations of metric and 

material coefficients. We introduce the following averaging operators: 

 

i, j,k i+1, j,kq
i, j,k i+1 2, j,k1 2

i, j,k i, j+1,kr
1 2 i, j,k i, j+1 2,k

i, j,k i, j,k+1s
1 2 i, j,k i, j,k+1 2

γ + γ
E (γ ) = γ =

2
γ + γ

E (γ ) = γ =
2

γ + γ
E (γ ) = γ =

2

  (17) 

The cross terms which contain a normal derivative on the boundary are discretized one-

sided in the direction normal to the boundary: 

 
 




s
+ i, j,ks

0 i, j,k s
0 i, j,k

D u , k = 1,
D u =

D u , k 2.
  (18) 

5.1. A discretization on curvilinear grid: Elastic wave equations 

We approximate the spatial operators in eqs. (7)-(9) by (16). After suppressing grid indexes, 

this leads to 

 

  

  









2
q q qq qq q qq q qq q

- 1 + 2 + 3 +1 2 1 2 1 22

q qs qs qss s s
0 1 0 2 0 3 0

r rs s rs s rs s
0 1 0 2 0 3 0

sq q sq q sq qs
0 1 0 2 0 3 0

s sr r sr r sr r
0 1 0 2 0 3 0

q qr r
0 1 0

u
Jρ = D [E (M )D u + E (M )D v + E (M )D w]

t

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u +



qr qrr r
2 0 3 0

rq q rq q rq qr
0 1 0 2 0 3 0

r r rr r r rr r r rr r
- 1 2 1 + 1 2 2 + 1 2 3 +

s s ss s s ss s s ss s
- 1 2 1 + 1 2 2 + 1 2 3 +

(u)

M D v + M D w]

+D [M D u + M D v + M D w]

+D [E (M )D u + E (M )D v + E (M )D w]

+D [E (M )D u + E (M )D v + E (M )D w]

L (u,v,w)

         (19) 
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  

  









2
q q qq qq q qq q qq q

- 5 + 2 + 4 +1 2 1 2 1 22

q qs sq qss s s
0 5 0 2 0 4 0

r rs s sr s rs s
0 5 0 2 0 4 0

sq q qs q sq qs
0 5 0 2 0 4 0

s sr r rs r sr r
0 5 0 2 0 4 0

q qr r
0 5 0

v
Jρ = D [E (M )D v + E (M )D u + E (M )D w]

t

+D [M D v + M D u + M D w]

+D [M D v + M D u + M D w]

+D [M D v + M D u + M D w]

+D [M D v + M D u + M D w]

+D [M D v +



rq qrr r
2 0 4 0

rq q qr q rq qr
0 5 0 2 0 4 0

r r rr r r rr r r rr r
- 1 2 5 + 1 2 2 + 1 2 4 +

s s ss s s ss s s ss s
- 1 2 5 + 1 2 2 + 1 2 4 +

(v)

M D u + M D w]

+D [M D v + M D u + M D w]

+D [E (M )D v + E (M )D u + E (M )D w]

+D [E (M )D v + E (M )D u + E (M )D w]

L (u,v,w)

           (20) 

 

  

  









2
q q qq qq q qq q qq q

- 3 + 4 + 6 +1 2 1 2 1 22

q sq sq qss s s
0 3 0 4 0 6 0

r sr s sr s rs s
0 3 0 4 0 6 0

qs q qs q sq qs
0 3 0 4 0 6 0

s rs r rs r sr r
0 3 0 4 0 6 0

q rq r
0 3 0

w
Jρ = D [E (M )D u + E (M )D v + E (M )D w]

t

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u + M D v + M D w]

+D [M D u +



rq qrr r
4 0 6 0

qr q qr q rq qr
0 3 0 4 0 6 0

r r rr r r rr r r rr r
- 1 2 3 + 1 2 4 + 1 2 6 +

s s ss s s ss s s ss s
- 1 2 3 + 1 2 4 + 1 2 6 +

(w)

M D v + M D w]

+D [M D u + M D v + M D w]

+D [E (M )D u + E (M )D v + E (M )D w]

+D [E (M )D u + E (M )D v + E (M )D w]

L (u,v,w)

           (21) 

in the grid points i j k(q ,r ,s ) ,   q r s(i, j,k) [1,N ] [1,N ] [1,N ] . We have introduced the 

following notations for the material and metric terms in order to express the discretized 

equations in a more compact form:  

 

kl kl
1 x x 11 y y 66 z z 44 2 x y 12 y x 66

kl kl
3 x z 13 z x 44 4 y z 13 z y 44

kl kl
5 x x 66 y y 11 z z 44 6 x x 44 y y 44 z z 33

M = Jk l c + Jk l c + Jk l c M = Jk l c + Jk l c

M = Jk l c + Jk l c  M = Jk l c + Jk l c

M = Jk l c + Jk l c + Jk l c M = Jk l c + Jk l c + Jk l c

 (22) 

where k and l represent the metric coefficients q, r or s.  

We discretize in time using second-order accurate centered differences. The full set of 

discretized equations is 
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n+1 n n-1
(u) n n n

2
t

n+1 n n-1
(v) n n n

2
t

n+1 n n-1
(w) n n n

2
t

u - 2u + uρ( ) = L (u ,v ,w )
δ

v - 2v + vρ( ) = L (u ,v ,w )
δ

w - 2w + wρ( ) = L (u ,v ,w )
δ

  (23) 

where tδ  represents the time step. 

5.2. A discretization on curvilinear grid: Free boundary conditions 

The boundary conditions (11)-(13) are discretized by  

 

sq q sq qss s ss s
1 i, j,3 2 + i, j,1 1 i, j,1 2 + i, j,0 1 i, j,1 0 i, j,1 2 i, j,1 0 i, j,1

sq q ss s ss s sr r
3 i, j,1 0 i, j,1 2 i, j,3 2 + i, j,1 2 i, j,1 2 + i, j,0 1 i, j,1 0 i, j,1

sr r
2 i, j,1 0 i, j,1

1
[(M ) D u +(M ) D u ]+(M ) D u +(M ) D v

2
1

+(M ) D w + [(M ) D v +(M ) D v ]+(M ) D u
2

+(M ) D v sr r ss s ss s
3 i, j,1 0 i, j,1 3 i, j,3 2 + i, j,1 3 i, j,1 2 + i, j,0

1
+(M ) D w + [(M ) D w +(M ) D w ] = 0

2

 (24) 

 

sq q qs qss s ss s
5 i, j,3 2 + i, j,1 5 i, j,1 2 + i, j,0 5 i, j,1 0 i, j,1 2 i, j,1 0 i, j,1

sq q ss s ss s sr r
4 i, j,1 0 i, j,1 2 i, j,3 2 + i, j,1 2 i, j,1 2 + i, j,0 5 i, j,1 0 i, j,1

rs r
2 i, j,1 0 i, j,1

1
[(M ) D v +(M ) D v ]+(M ) D v +(M ) D u

2
1

+(M ) D w + [(M ) D u +(M ) D u ]+(M ) D v
2

+(M ) D u sr r ss s ss s
4 i, j,1 0 i, j,1 4 i, j,3 2 + i, j,1 4 i, j,1 2 + i, j,0

1
+(M ) D w + [(M ) D w +(M ) D w ] = 0

2

 (25) 

 

qs q qs qss s ss s
3 i, j,3 2 + i, j,1 3 i, j,1 2 + i, j,0 3 i, j,1 0 i, j,1 4 i, j,1 0 i, j,1

sq q ss s ss s rs r
6 i, j,1 0 i, j,1 4 i, j,3 2 + i, j,1 4 i, j,1 2 + i, j,0 3 i, j,1 0 i, j,1

rs r
4 i, j,1 0 i, j,1

1
[(M ) D u +(M ) D u ]+(M ) D u +(M ) D v

2
1

+(M ) D w + [(M ) D v +(M ) D v ]+(M ) D u
2

+(M ) D v sr r ss s ss s
6 i, j,1 0 i, j,1 6 i, j,3 2 + i, j,1 6 i, j,1 2 + i, j,0

1
+(M ) D w + [(M ) D w +(M ) D w ] = 0

2

 (26) 

q ri = 1,...,N ; j = 1,...,N .  

The key step in obtaining a stable explicit discretization is to use the operator
s

0D ( which is 

one-sided on the boundary) for the approximation of the normal derivative in 

     q s r s s q, ,  and  s r  cross derivatives. At first glance, it may appear that using a one-

sided operator the accuracy of the method would be reduced to the first-order. However, as 

it was theoretically shown by Nilsson et al. (2007) (for a Cartesian discretization), a first-
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order error on the boundary in the differential equations (19)-(21) can be absorbed as a 

second-order perturbation of the boundary conditions (24)-(26). 

 

Figure 3. Model of a half-space with a planar free surface. 

6. Accuracy and efficiency tests 

6.1. Accuracy 

The accuracy of the proposed method is examined by comparing numerical results with the 

analytical solution of the Lamb’s problem, for a transversely isotropic medium with a 

vertical symmetry axis (VTI medium). The elastic parameters describing the VTI medium 

are given in Table 1. The analytical solution is obtained by convolving the free-surface 

Green-function with the source function (Payton, 1983). A vertical point source of the type 

 

11c  

(GPa) 
12c

(GPa) 
13c

(GPa) 
33c

(GPa) 
44c

(GPa) 

ρ  
3(g cm )  

25.5 2.0 14.0 18.4 5.6 2.4 

Table 1. Medium parameters in the homogeneous half-space 

 
2 2
0 0-0.5f (t-t )

0 0f(t) = e cosπf (t - t )   (27) 

with 0t = 0.5 s and a high cut-off frequency 0f = 10 Hz, is assumed to be located at (300 m, 

2000 m) at the surface, which is marked as an asterisk in Figure 3. It should be mentioned 

that Carcione et al. (1992) and Carcione (2000) presented an analytical comparison of the 

point-source response in a 3-D VTI medium in the absence of the free surface. The 

comparisons are performed by first transforming the 3-D numerical results into a line-source 

response by carrying out an integration along the receiver line (Wapenaar et al., 1992) and 

then comparing the emerging results with the 2-D Lamb’s analytical solutions. The 

numerical model contains 401 x 401 x 191 grid nodes in the x-, y- and z-direction, 

respectively. The grid spacings are 10 m in all directions. The solution is advanced using a 

time step of 1.25 ms for 3.5 s. 



 
Earthquake Engineering 116 

 

 

Figure 4. Comparison between numerical and analytical vertical components of the displacement for 

the VTI medium. 

Three receiver lines are positioned on the free surface, two of which are parallel to the y-

direction with respective normal distances of 130 (Line 1) and 1000 m (Line 2) away from the 

point source, the other crosses the source location and parallels to the x-direction (Line 3). 

The integrations are performed along the first two receiver lines, these represent 2-D results 

of 130 and 1000 m away from the source, respectively. Figure 4 shows the comparisons 

between the resulting numerical and 2-D analytical z-components of the displacement for 

the VTI medium. In spite of the errors resulting from the transformation of the point-source 

response into the line-source one, numerical and analytical results agree well in Figure 4. 

These comparisons demonstrate the accuracy of our corresponding algorithm. 

 

Figure 5. Seismogram sections at Line 3 for the planar surface model. Symbol qP indicates the qP wave 

and R indicates Rayleigh wave. 
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Figure 6. Snapshots of the vertical component of the wavefield at the surface (xy-plane) of the planar 

surface model.  

Synthetic seismograms are computed at Line 3. The seismograms in Figure 5 show the direct 

quasi-P wave (qP) and a high-amplitude Rayleigh wave (R). Snapshots of the vertical 

component of the wavefield in horizontal (xy-) plane at the propagation time of 1.4 s are 

displayed in Figure 6. We define the incidence plane by the propagation direction and the z-

axis, quasi-P wave and quasi-SV wave (qSV) motions lie in this plane, while SH motion is 

normal to the plane. Hence, the z-component does not contain SH motion. The xy-plane of a 

transversely isotropic medium is a plane of isotropy, where the velocity of the qP wave is 

about 3260 -1ms  and the velocity of the qSV wave is about 1528 -1ms . The amplitude of the 

qP wave is so weak compared with that of the Rayleigh and qSV wave that one can hardly 

identify it in the snapshot (Figure 6a). In order to observe the qP wave, a gain has been 

given to the amplitudes of the wavefield. Owing to this, side reflections also appear in the 

photo, as shown in Figure 6b. As the velocity of the Rayleigh wave is very close to that of 

the qSV wave, the two waves are almost superimposed and it is difficult to distinguish 

between the two in synthetic seismograms and snapshots.  

 

Figure 7. Snapshots of the x-component of the wavefield in the vertical (xz-) plane which contains the 

receiver line and the source at 1.4 (a) and 2.3 s (b) propagation times for the planar surface model.  
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Figure 7 shows the x-component of the wavefield in the vertical (xz-) plane at 1.4 and 2.3 s 

propagation times. The xz-plane contains the receiver line (Line 3) and the source location. 

Both snapshots show the wave front of the qP-wave and the qSV-wave. The former snapshot 

(1.4 s) shows the qSV-wave with the cusps. A headwave (H) can also be found in the photos, 

the headwave is a quasi-shear wave and is guided along the surface by the qP-wave.  

6.2. Numerical simulations on an irregular (non-flat) free surface  

Three numerical experiments with irregular free surfaces are now investigated. The first 

example is a test on smooth boundaries, while the second example consists of a 

hemispherical depression to test the ability of the method for non-smooth topography. For 

sake of simplicity both these examples are based on homogeneous half-spaces, i.e., the 

medium parameters are the same as in the case of flat surface (Table 1). The same source is 

located at the same place as in the planar surface model, the time step is 0.8 ms. The total 

propagation time is 3.5 s for the two models. Finally, we consider a two-layered model with 

a realistic topography.  

6.2.1. Topography simulating a shaped Gaussian hill 

The first model considered here is a half-space whose free surface is a hill-like feature 

(Figure 8). The shape of the hill resembles a Gaussian curved surface given by the function 

 2 2y - 2000x - 2000
z(x,y) = -150exp(-( ) - ( ) )m

150 150
  2(x,y) [0m,4000m]  (28) 

 

Figure 8. Model of a half-space with Gaussian shape hill topography. 

The computational domain extends to depth z(x, y)=2000 m. The volume is discretized with 

equal grid nodes in each direction as in the planar surface one. The grid spacings are 10 m in 

the x, y-directions and about 10.5 m in the z-direction for average. The vertical spacing 

varies with depth, it is smaller toward the free surface and larger toward the bottom of the 

model. The minimum and maximum of the vertical spacings are 6 and 12 m, respectively. 

The gridding scheme which shows the detailed cross-section of the grids along Line3 is shown 

in Figure 9. Synthetic seismograms are also computed at Line3 (Figure 10). As a result of the 
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hill-shaped free surface (and compare with the synthetic seismograms in Figure 5), the 

amplitudes of the quasi-P wave and Rayleigh wave are reduced in the right-hand part of the 

sections. In addition, after the ordinary quasi-P wave a secondary quasi-P wave (RqPf) 

induced by the scattering of the direct Rayleigh wave can be observed. Similarly, a secondary 

Rayleigh wave (qPRf) which travels in front of the ordinary Rayleigh wave induced by the 

scattering of the direct quasi-P wave can also be distinguished. Some energy is scattered back 

to the left-hand side as a Rayleigh wave (qPRb, RR) and a quasi-P wave (RqPb).  

 

Figure 9. The gridding scheme which shows the detailed cross-section of the grids along Line3 in the 

Gaussian shape hill topography model. For clarity, the grids are displayed with a reducing density 

factor of 3. 

 

Figure 10. Seismograms along the receiver line for the Gaussian shape hill topography model: (a) x-

component (horizontal) of the displacement; (b) z-component (vertical). Symbols mean the following: 

(qPd) qP wave diffracts to qP wave; (Rd) Rayleigh wave diffracts to Rayleigh wave; (qPRf) qP wave 

scatters to Rayleigh wave and propagates forward; (qPRb) qP wave scatters to Rayleigh wave and 

propagates backward; (RqPf) Rayleigh wave scatters to qP wave and propagates forward; (RqPb) 

Rayleigh wave scatters to qP wave and propagates backward; (RR) Rayleigh wave reflectes to Rayleigh 

wave. 
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Figure 11. Snapshots of the vertical component of the wavefield at the surface (xy-plane) at different 

propagation times for the Gaussian shape hill topography model.  

Snapshots of the wavefield in the horizontal (xy-) plane at different propagation times are 

displayed in Figures 11. The amplitudes are also gained. In the beginning the wavefield 

propagates undisturbed along the free surface. At 1.1 s the direct quasi-P wave hits the hill 

and generates a circular diffracted wave. This wave is a Rayleigh wave, which is marked as 
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two parts, one travels forward (qPRf), and the other travels backward (qPRb). These can be 

seen clearly in the later snapshots (1.4 - 2.3 s). In addition, a reflected Rayleigh wave (RR) 

can be observed. The direct quasi-P wave (qP) and Rayleigh wave (R) are also marked in the 

figure. By the way, side reflections from the boundaries can also be noted in the plane. 

Figure 12 shows the x-component of the wavefield in the vertical (xz-) plane. The xz-plane 

contains the receiver line and source location. The snapshots show the diffracted quasi-P 

and quasi-SV waves clearly in the vertical plane. 

 

Figure 12. Snapshots of the x-component of the wavefield in the vertical (xz-) plane which contains the 

receiver line and the source at different propagation times for the Gaussian shape hill topography model. 
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6.2.2. Topography simulating a shaped hemispherical depression 

In the second model, we consider a hemispherical depression model as illustrated in Figure 

13. The first model that we have considered is of smooth topography, that is, with 

continuous and finite slopes everywhere. However, the shaped hemispherical depression 

here taken as reference is a case of extreme topography, such that the vertical-to-horizontal 

ratio of the depression is very large (1:2) and the slopes of the edges tend to infinity. The 

hemispherical depression is at the middle of the free surface and the radius is 150 m. 

 

Figure 13. Model of a half-space with hemispherical shape depression topography. 

 

Figure 14. The gridding scheme which shows the detailed cross-section of the grids along Line3 in the 

hemispherical shape depression topography model. For clarity, the grids are displayed with a reducing 

density factor of 3. 

The numerical model is discretized in the same way as in the hill topography model. The 

gridding scheme which shows the detailed cross-section of the grids along Line3 is shown in 

Figure 14. Owing to the existence of model edges with strong slopes at x=1850 and x=2150 m 

along the receiver line, both body and Rayleigh waves scattered by sharp changes in the 

topography can be clearly observed on the synthetic seismograms shown in Figure 15. 

Owing to its shorter wavelength, the scattering of Rayleigh wave is much stronger than that 
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of the body wave when propagating through the hemispherical depression, this indicating 

that such sharp depression can affect the propagation of Rayleigh wave significantly.  

 

Figure 15. Seismograms at the receiver line for the hemispherical shape depression topography model: 

(a) x-component (horizontal) of the displacement; (b) z-component (vertical). Symbols mean the same as 

in Fig. 10. 

The photos in Figure 16 show the vertical component of the wavefield in the horizontal (xy-) 

plane. Compared with the photos of the hill topography model, we can see the Rayleigh 

wave scattering at the edges of the hemispherical depression; it seems as if the reflected 

Rayleigh wave propagating faster in the hemispherical depression model than that in the 

hill topography model. What’s more, the back scattered waves of Rayleigh wave in the 

hemispherical depression model are much stronger, this may also indicating that such sharp 

depression blocks the propagation of Rayleigh wave more significantly. 

6.2.3. Real topography simulating 

It is also interesting to study a realistic example. We consider a model in Tibet (Figure 17). 

The length and width of the model are 21.6 km, and the “average” height of the topography 

is roughly -3560 m (3560 m in the geodetic coordinate system). The computational domain is 

extended to depth z(x, y)= 7200 m. For simplicity we use a two-layered model with 

parameters given in the model sketch (Figure 17) instead of the “real” velocity structure 

under the realistic topography. It consists of 241×241×121 grid nodes in the x-, y-, and z-

direction, respectively, with equal vertical grid nodes in each layer. A vertical point source 

like the used in previous models is loaded in the middle of the free surface (indicated by the 

asterisk in Fig. 17), where the high cut-off frequency has been changed to 2.7 Hz and the 

time-shift is 1.5 s. Two lines of receivers crossing the source location and paralleling to the x- 

and y-direction respectively are placed at the free surface. The time step is 5 ms, and the 

total propagation time is 8 s. 
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Figure 16. Snapshots of the vertical component of the wavefield at the surface (xy-plane) at different 

propagation times for the hemispherical shape depression topography model.  
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Figure 17. A two-layered model with a realistic topography. The medium parameters of each layer are 

also given in the figure. The units for the elasticity and density are GPa and 3g cm , respectively.  

Snapshots of the z-component of the wavefield in the vertical plane which contains receiver 

line Line1 and the source location are presented on Figure 18, and the seismograms of the z-

component are also computed at the two receiver lines (Figure 19). We can see that the effect 

of the topography is very important, with strong scattered phases that are superimposed to 

the direct and reflected waves, which make it very difficult to identify effective reflections 

from subsurface interface. The scattering in the seismograms also reflect different features of 

the surface. The scattering in the seismograms at Line 1 (Figure 19a) is much stronger than 

that in the seismogram at Line 2 (Figure 19b), indicating that the surface along Line 1 is 

much rougher than that along Line 2, which also can be observed in Figure 17. What’s more, 

the scattering in Figure 19a is approximately uniformly distributed while in Figure 19b it is 

mostly distributed in the vicinity of the shot. These may due to different distributions of the 

surface topography along these two lines. 
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Figure 18. Snapshots of the vertical component of the wavefield in the vertical (xz-) plane along Line 1 

at different propagation times for the two-layered model with a realistic topography. 

 

 
 

Figure 19. Vertical-component synthetic seismograms coming from the two-layered model with real 

topography represented in Figure 19: (a) at the receiver line (Line 1) that crosses the source location and 

is parallel to x-direction (Fig. 19 ); (b) at the receiver line (Line 2) that crosses the source location and is 

parallel to y-direction. 
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7. Conclusion 

We propose a stable and explicit finite difference method to simulate with second-order 

accuracy the propagation of seismic waves in a 3D heterogeneous transversely isotropic 

medium with non-flat free surface. The method is an extension of the 2D method proposed 

by Appelo and Petersson (2009) to the 3D anisotropic case. The surface topography is 

introduced via mapping rectangular grids to curved grids. The accurate application of the 

free surface boundary conditions is done by using boundary-modified difference operators 

to discretize the mixed derivatives in the governing equations of the problem. Several 

numerical examples under different assumptions of free surface are given to highlight the 

complications of realistic seismic wave propagation in the vicinity of the earth surface. 

Synthetic seismograms and snapshots explain diffractions, scattering, multiple reflections, 

and converted waves provoked by the features of the free surface topography. The typical 

cuspidal triangles of the quasi-transverse (qS) mode also appear in the snapshots of the 

anisotropic medium. 

The future directions of our research will include an extension of the schemes to the 

viscoelastic case. This will allow a realistic attenuation of the seismic waves due to the 

presence of a weathered layer to be included (2000).  
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