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1. Introduction 

The optical techniques are a powerful tool on situations where either the physical contact or 

invasive techniques for evaluation are not suitable. Vehicle environments constitute an 

application field for the optical techniques and are the focus of this chapter. In order to 

reinforce this kind of techniques, it must be clarified that the idea to manipulate the light backs 

to the second century before our age, when Archimedes planned to destroy enemy ships using 

a solar heat ray with an array of actuators to change the shape of a mirror (Bifano T., 2011). 

Therefore, the field of photonics is the one that offers the possibility to achieve one of the 

greatest realizations and applications because the light is present in all aspects of the human 

life and our way of living is impossible without light (Carmo J. P. et al., 2012a). Optical 

measurement systems are also suitable for harsh monitorization because they are non-contact 

and full-field techniques. This is the case of Moiré Interferometry, which is used for many 

optoelectronic applications as displacement measurements (Wronkowski L., 1995), evaluation 

of microelectronics devices deformation (Xie H. et al., 2004), optical communications (Chen L. 

et al., 2000), strain measurements with Fiber Bragg Grattings, FBGs, (Silva A. F. et al., 2011) and 

spectrography (Kong S. H. et al., 2001). In this context, it must be noted that the recent nuclear 

disaster in Fukushima, Japan, confirms the need of tighter security measures be done within 

harsh environments (which includes the automobiles) in order to increase both the safety of 

people and the reliability of vehicles’ parts. 

2. Principles of full-field optical techniques 

2.1. Holographic interferometry 

The holography is a method to store and regenerate all the amplitude and phase 

information contained in the light which is scattered from an illuminated object. This 

technology offers the possibility of three dimension photography. 
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Despite the holography requires coherent light, it was discovered by Gabor in 1948 (Gabor 

D., 1948), more than a decade before the invention of the laser, which in 1960. By means of 

holography an original wave field can be reconstructed at a later time at a different location. 

This technique therefore has many potential applications. 

In the year of 1965, when the CW lasers became available, Robert Powell and Karl Stetson 

published the first work on holographic interferometry (Powel R. L. et al., 1965). Using this 

technique, it is possible record the precise shape and position of a object in two different 

states, then it is possible compare the two records to measure the movement or deformation, 

that were displayed as fringes on the image. 

In the Figure 1 is shown the optical set-up of holography. 

 

Figure 1. Holography configuration to measure the surface displacement. 

The laser beam is divided in two beams using a beam splitter (BS). Each of one is opened by 

two lenses (L1 and L2), on film plate is recorded the interference of two coherent wavefronts: 

the object (OW) and reference (RW). When the film plate is developed and then illuminated 

by the reference wavefront, it will be reconstructed a virtual image of the original object. The 

most used technique for displacement measurement is double exposure or frozen-fringe, 

which records two holograms on the same film plate, the first one is corresponding to an 

initial condition of the object and the second one to a displaced or charged condition. The 

image is reconstructed by a coherent beam illumination; the two reconstructed images will 

interfere, resulting in a holographic fringe pattern that can be used to measure surface 

displacements. Each fringe represents a contour of equal displacement of the object, where 

the value of displacement is one-half the wavelength of the light source used in the 

recording process (Shang H. et al., 2009). 

There are others holographic interferometry techniques in which the most relevant are real-

time live-fringe and time-average holographic interferometry. The real-time approach 

requires that the photographic plate must be physically developed in place without 

changing its position. The single-exposure hologram is made in the regular way and after it 

is illuminated by the reference beam while the object is illuminate by the original object 

beam (Cloud G., 1988). The time-average holographic interferometry approach is used for 
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modal analysis of vibrating bodies. A hologram of the moving body is made with an 

exposure time lasting over numerous periods of the vibrational motion. 

Recent advances in recording materials, lasers and computer allowed more holography 

techniques being developed, which include: TV holography, digital holography and 

dynamic holographic interferometry. These techniques open new and challenge fields of 

research and applications. Nevertheless, this technique has some drawbacks like the 

displacement components cannot be measured independently in different planes. Another 

limitation is the strict requirement of vibration (half a wavelength of the illuminating 

source), if the vibration magnitude is higher occurs decorrelation. As a result, its industrial 

application as a routine Non Destructive Testing (NDT) technique is restrict, usually these 

techniques are used in laboratory environment. 

2.2. Electronic speckle pattern interferometry  

Electronic speckle pattern interferometry is a NDT technique which basic concepts were 

simultaneously developed Mavsky et al (Macovsky A. et al., 1971) in United States and by 

Butters and Leendertz (Butters J. et al., 1971; Butters N. et al., 1975) in England. Later group 

pursued the development of the ESPI technique, with Lökberg (Lökberg O. et al., 1976; 

Lökberg O., 1985) and Beidermann (Beidermann et al., 1975) being important references in 

this field. 

Speckle techniques use the random pattern of dark and bright spots (speckles) that are 

formed in space when a diffusely reflecting object is illuminated by coherent laser light 

(laser speckles). A random granular pattern called a speckle pattern is observed when 

looking, with the eye or with a camera, at a object surface when it is illuminated by a 

laser - see the Figures 2(a) and (b). The speckles appear only if the surface roughness is 

greater than the wavelength, λ, of the light. If the object is imaged, each point P on the 

detector will gain contribution of light coming from a coherence volume, determined by at 

least the airy spot and the roughness of the surface (Svanbro A., 2005). 

The observed speckle pattern unrepeatable for each illuminated area in the sense that the 

observed pattern is unique for the microstructure of the specific surface area. Another 

region will give rise to a totally different random speckle pattern. The speckle pattern is 

records by a CCD camera and could interfere with a reference wave. If the object suffers a 

deformation caused by an external load, the speckle pattern will change due the variation of 

wavefront between the object and reference waves. This deformation could be computed 

using an operation of digital subtracting between the speckle patterns corresponding to 

before deformation from the one after deformation. This operation will result in an 

interferogram, which will be displayed on the monitor as a pattern of dark and bright 

fringes that are called correlation fringes. ESPI allows displacements in different directions 

to be measured separately with a high-resolution. 

ESPI technique can be sensitive to out-of-plane or in-plane displacement, depending of the 

used optical set-up. For in-plane displacement measurement (Figure 3), the object lies in the  
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Figure 2. (a) The schematic representation of speckle formation and (b) a typical speckle pattern. 

 

Figure 3. A schematic presentation of the optical set-ups used in-plane ESPI (Jones R. et al., 1974). LA: 

laser source, BS: beam splitter, M1 and M2: plane mirrors, L: lens, TS: test specimen or object. 
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xy-plane and is illuminated by two plane wavefronts, inclined at equal and opposite angles, 

θ, to the x-axis surface-normal. No separate reference beam is needed at the image plane. 

The positive y-axis points out of the page, and the center of the viewing lens aperture lies on 

the z-axis. The phase change Δ of the wavefront from the object surface before and after 

deformation can be expressed as: 

 
4

sin( )U


  


 (1) 

where λ is the wavelength of the laser, θ the incident angle, and U is the in-plane 

displacement component. 

For out-of-plane displacement measurement, the object is illuminated by an object which is 

viewed by a CCD camera (Figure 4). A reference speckle pattern formed by a reference 

beam is also observed by the camera. So the resultant image is the interference of these two 

speckle patterns. 

 

 

Figure 4. ESPI sensitive to out-of-plane displacement. Where BS1,2: beam splitter; M: plane mirror; L1: 

concave lens; L2: convex lens. 

The relation between the phase change and the deformation can be expressed as: 

 
2

1 cos( ) W

     

 (2) 

where W is the out-of-plane displacement component 

2.3. Shearography 

Shearography technique is particularly interesting because it enables direct measurements 

of displacement derivatives which are related to the strains (Hung Y. et al., 1973; Leendertz, 

J. A. et al., 1973). 
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The basic principle of shearography, is to carry the rays scattered from one point of the 

object into interference with those from a adjacent point. To obtained this interference is 

used a speckle-shearing interferometric camera like the represented in the Figure 5. The 

optical set-up is similar as that used in common speckle photography, however one half of 

the camera lens is covered by a thin glass wedge. Thus, the two images focused by each half 

of the lens are laterally sheared one to other (Gåsvik K. J. et al., 2002). The shearing direction 

is oriented by the wedge position and it is proportional to its angle. If the shearing is in the x 

direction, the rays from a point P(x,y) on the object will interfere in the image plane with 

those from a neighboring point P(x+δx,y). 

 

Figure 5. The optical set-up of shearography. 

When the object is deformed there is a relative displacement between the two points that 

produces a relative optical phase change  is given by: 

 

1 cos( ) ( , ) ( , )

sin( ) ( , ) ( , )

w x x y w x y

k

u x x y u x y

                   
         

 (3) 

where θ is the angle of incidence and u and w are the displacement components in the x-and 

z-directions, respectively. If the shear δx is very small, the relative displacements may be 

approximated by the displacement derivatives and thus Equation (3) becomes: 

 { 1 cos( ) sin( ) }
w u

k x
x x

 
          

 (4) 

By rotating the camera 90º around the z-axis, u in Equation (4) is replaced by v, the 

displacement component in the y-direction. 

2.4. Moiré methods 

The word Moiré derives from the French term meaning wet silk or fringe patterns produced 

by the interference of aligned fibers in thin tissues. In Engineering, Moiré refers to a 

technique for experimental analysis for determining the displacement or deformation from a 

P(x + δx,y) 

object
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δx 

z 

z 
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set of interference fringes resulting from the superposition of two systems - one in the 

deformed specimen and the other that is undeformed can be used as reference. Moiré 

techniques have appeared in the field of optics since nineteenth century (Rayleigh L., 1874). 

The Moiré techniques allow the measurement of deformations which occur when an object 

is subjected to applied charges. These methods can measure out-of-plane and in-plane 

displacements. The displacements are measured simultaneously over the whole view field 

and the measurement data are exposed as contour maps of displacements. One of most 

important Moiré method is the Moiré interferometry that was performed by Post (Post D. et 

al., 1994) in 1980 and represents one the most important advances in optical techniques 

applied to experimental stress analysis in the last decades. The Moiré interferometry 

principle is based in the interference of two coherent light beams or lasers beams. This 

interference produces regions in space of constructive and destructive interference where 

two equal coherent beams intersect. The most important advantages of Moiré interferometry 

compared with other optical methods are: excellent fringe contrast, high sensitivity and 

special resolution (typically 0.417 m per fringe), dynamic range of measurement and high 

signal-to-noise ratio (Ribeiro J. E., 2006). On the other hand, an important disadvantage of 

this technique is the need of a high-frequency grating replication onto the sample surface 

before the measurement begins. The replication of grating could restrict its application in 

cases where the replicated grating may considerably change the stiffness of the testing 

sample, another difficulty of this process is the need of a technician with experience 

implement the replication and it is very laborious. 

To measure in-plane displacement with Moiré interferometry are used two symmetrical 

incident beams of mutually coherent light (Post D. et al., 1994), see the Figure 6. 

 

Figure 6. Schematic representation of Moiré interferometry principle (Post D. et al., 1994). 

The diffraction equation for the represented grating is: 

 sin( ) sin( )m sm f      (5) 
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where m are angles of diffracted beams,  is the angle of incident beam, mth the diffraction 

order, λ the laser wavelength and fs is the grating frequency of specimen. 

When the equation (5) is satisfied, the ±1 order diffraction beams will emerge normal to the 

specimen grating, producing a uniform intensity throughout the field (null field) (Shang H. 

et al., 2009). 

The obtained displacement fields allow the calculation of components orthogonal direction 

(x, y) and they can be expressed as: 

 

1 1

2

1 1

2

x x
s

y y
s

u N N
f f

v N N
f f

 

 
 (6) 

By differentiation of displacements is obtained the corresponding strain components: 
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 (7) 

where Nx and Ny are fringe orders in x and y direction, respectively. 

To measure out-of-plane deformation and obtained the shape of a body is frequently used 

the well-kwon experimental technique Shadow Moiré (Takasaki H., 1970). The optical set-up 

is schematically represented in the Figure 7. 

 

Figure 7. An optical set-up of Shadow Moiré. 

The grating lying over the curved surface is illuminated under the angle of incidence  
(measured from the grating normal) and viewed under an angle  (Gåsvik K. J., 2002). From 
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the Figure 7, it possible to observe that a point O on the grating is projected to a point O’ on 

the surface which by viewing is projected to the point O’’ on the grating. This is equivalent 

to a displacement of the grating relative to its shadow equal to: 

 
tan( ) tan( )

np
W 

  
 (8) 

where W is the out-of-plane displacement, n is the order of fringe and p is the pitch of the 

grating. 

2.5. Digital Image Correlation (DIC) 

Digital image correlation belongs to the class of non-contacting measurement methods that 

were developed by Sutton (Sutton M. A. et al., 1983; Sutton M. A. et al., 1986; Sutton M. A. et 

al., 1991; Sutton M. A. et al., 1988) and by Bruck (Bruck A. et al., 1989), in which acquires 

images of an object, store these images in digital form and perform image analysis to obtain 

full-field shape, deformation and motion measurements (Sutton M. A. et al., 2009). In this 

method is used a mathematical correlation to estimate the displacement in the plane 

surfaces or structures of components subject to mechanical or thermal stresses. This 

technique is based in the use of random patterns on the surface of the components or 

structures. The technique compares two images acquired at different states, one before 

deformation (reference image) and other after deformation (deformed image) (Hu T. et al., 

1985). 

In this technique the object is illuminated by an incoherent light source and the patterns of 

intensity results from the surface texture. These patterns of intensity, which would have a 

random distribution, are subdivided into smaller areas. Each subregion [originally defined 

in the image recorded] is then compared with images obtained by correlation between two 

different states of deformation in the object. If f(x,y) is a discrete function that defines the 

grayscale of pixel on the original image and f*(x*,y*) is the grayscale of pixel on the final 

image (Marcellierl H. et al., 2001). The relation between the two functions is defined by: 

 * * *( , ) [ ( , ), ( , )]f x y f x u x y y v x y    (9) 

where u and v represent the displacement field. 

The determination of the displacement field is obtained by correlation between the random 

pattern of the initial image (reference) and its transform (deformed). This operation is 

performed for all patterns that meet in the center of the virtual grating on the initial image 

so as to obtain all the displacement field of each grating element. 

Considering the displacement field for a random pattern, that is uniform and bilinear along 

the axes x and y, and given by: 

 ( , ) u u u uu x y a x b y c xy d     (10) 
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 ( , ) v v v vv x y a x b y c xy d     (11) 

The correlation between images of before and after deformation can be expressed as: 

 
2

* * *

,

1

2 * * * 2

, ,

[ ( , ) ( , )]

( , ) ( , )

x y S

x y S x y S

f x y f x y
C

f x y f x y



 



 
  



 
 (12) 

where f(x,y) and f*(x*,y*) are intensity distributions of speckle images before and after 

deformation, respectively. When C=1, the two images have the best correlation, i.e., they 

become identical. 

This method has many advantages compared with others, which is possible to detach the 

follow: the cost of DIC is relatively low when compared to moiré and ESPI, because optical 

set-up is simple and it is not necessary a coherent light source; the resolution of DIC 

depends not only on the optical magnification, but also on the image processing (sub-pixel 

algorithms). Using a zoom lens and high resolution imaging system including CCD, can be 

reached a resolution of sub-micron. 

2.6. Phase measurement techniques 

In last decades, have been developed different techniques for quantitative phase 

measurement from fringe patterns (Robinson D. W. et al., 1993; Creath K. et al., 1994). These 

techniques are classified in two groups: spatial and temporal. In the spatial phase-

measurement techniques, the phase information is extracted from a single interferogram 

which has a large number of tilt fringes that are used as a carrier frequency. For the 

temporal phase-measurement techniques, the phase is measured using a single point in an 

interferogram as the phase difference between the analyzed and reference beams is changed 

in a controlled way by the means of a piezoelectric device. The N-frame techniques measure 

a sequence of interferograms with known phase shifts techniques and they are the most 

popular type of these (Creath K. et al., 1996). 

The phase shifts or phase-shifting are the techniques extensively used in automatic fringe 

analysis of interferogram. It has considerably improved the accuracy of optical techniques, 

allowing the fast visualization of results. In the phase-shifting technique, the phase change is 

introduced usually by a calibrated phase steps. The phase of the whole image can be 

computed by analyzing the intensity patterns taken at different step.  

The intensity or irradiance recorded by a detector for a single interferogram can be written as: 

 0( , ) ( , ){1 ( , )cos[ ( , ) ]}iI x y I x y x y x y       (13) 

where I0(x,y) is background contribution, (x,y) is the interference fringe amplitude, and 

ϕ(x,y) is the function of fringe phase, i the amount of phase shifting, (x,y) the coordinates of 

the image plane. 
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The most common phase-shifting technique is the four-point which uses four intensity 

values with /2 relative phase shifts between steps. It is written in the form: 

 4 2

1 3

atan( )
I I

I I


 


 (14) 

where I1, I2, I3 and I4 are intensities recorded in the detector for four different interferograms 

with phase shifts of =0, /2,  and 3/2. 

Analyzing the equation (15) it is possible to verify that there are discontinuities for the phase 

values of  and - which results from the atan function. These discontinuities are eliminated 

by using algorithms developed for this purpose (unwrapping). Thus, the absolute phase 

maps can be computed by phase unwrapping to reveal the accurate displacement field. 

3. Industrial applications of full-field optical techniques 

3.1. Vehicle shape measurement 

In the automotive industry, it is essential measuring with accuracy the 3-D shapes of objects 

to ensure product development and manufacturing quality. 

Traditionally, the most used technique to measure the vehicle shape is the use of structured 

method combined with photogrammetry. In this case are used some targets that are fixed on 

the vehicle body which allow the coordinate transformation from local to global. A 

structured light is projected on the vehicle surface combined with absolute phase 

measurement and phase shifting using fringe frequency change to determine the local 

coordinate pixel by pixel at one view direction (Chen F. et al., 2000). The process is repeated 

for more than a two hundred views to cover hall vehicle. After these measurements are 

obtained a cloud of points that are patched together using a least mean squares method. 

Recently, have been developed new progresses in 3D shape measurement (Zhang S., 2010), 

in this process is used a projector to project sinusoidal patterns and is called digital fringe 

projection technique, if is adopted a phase-shifting algorithm to, this technique is called 

digital fringe projection and phase-shifting technique. 

In the digital fringe projection technique, a computer creates the digital fringe patterns 

which are composed of vertical straight stripes that are sent to a digital video projector. The 

fringe images (vertical straight stripes) are projected onto the object, which are distorts by 

the surface profile, then a CCD camera captures the distorted fringe images for the 

computer that analyzes the fringe images to obtain 3D shape information based on the 

deformation using triangulation. In this process is frequently used phase shifting algorithms 

which improve the optical metrology resolution (Huang P. S. et al., 2006). 

3.2. Measurement of residual stresses 

The residual stresses can be defined as those which remain in the material or component 

after the manufacturing process and in the absence of external forces and thermal gradients 
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(James M. R. et al., 1996). The manufacturing processes are the most common cause of 

residual stresses and some examples of manufacturing processes that can introduce residual 

stresses in the produced components are casting, welding and machining, all of them are 

used in automotive industry. However, the residual stresses can also arise for maintenance 

or repair operations. Sometimes, these stresses can also be induced in service during 

installation or by occasional overloads. 

The effects of residual stresses can be beneficial or detrimental, depending on its magnitude, 

sign, and its distribution. In most cases residual stresses are harmful because they overlap 

with the operating stresses. However, they could be also beneficial, especially by allowing 

the increased of the fatigue limit in components which are dynamically requested. Another 

particularly important feature concerning the residual stress is that its presence usually is 

undetected until the malfunction or failure occurring. 

There are currently different techniques for measuring residual stress, such as the contour 

method (Richter-Trummer V. et al., 2011), the hole-drilling with strain gages or optical 

processes which use visible radiation of light (Ribeiro J. E., 2006), X-ray and neutrons 

diffraction, magnetic techniques and ultra sounds (James M. R. et al., 1996). Some of them 

use mechanical processes to stress release in order to measure the residual stresses while in 

others it detects its presence by the effect of material properties. However, none of which is 

universally applicable, despite the most used technique to measure residual stresses is the 

hole-drilling method. 

The hole-drilling method is an experimental technique used for measuring the strains on 

surface caused by the stress release. These strains can be measured using electrical discrete 

transducers or calculated from the displacement field on surface. The optical techniques used 

for measuring the displacement have great advantages compared with other techniques, 

emphasizing the performing of a global or field measurement and without contact. These 

techniques allow in-plane and out-of-plane measurements with a resolution that can be 

variable, ranging from a low resolution (tenths of mm) until very high with a magnitude of 

used light wavelength (a few tenths of a micrometer). The most used optical techniques 

combined with hole-drilling method (Ribeiro J. et al., 2009) are the Moiré interferometry 

(Ribeiro J. et al., 2009) and the ESPI (Cheng P. et al., 2008) to measure residual stresses. 

In this chapter a process to measure residual stresses with optical techniques (in-plane ESPI 

and Moiré Interferometry) is developed and combined with the hole-drilling method. 

Measurements were carried out on a ring and plug specimen, constructed to produce well 

known residual stress fields. The calibration coefficients were obtained by numerical 

simulation with a Finite Element Method (FEM) code. For these measurements were 

prepared two optical set-ups, one for Moiré Interferometry (Post D. et al., 1994), see in the 

Figure 8, and the other for double-illumination ESPI (Jones R. et al., 1974), see in the Figure 3. 

Both were used to measure the in-plane displacements generated by residual stress release. 

Image processing algorithms, involving filtering, phase calculation and unwrapping, and 

spatial differentiation were used in data post-processing to transform surface displacement 

into residual stress fields. 
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Figure 8. The schematic presentation of the moiré interferometry optical set-up used (Ribeiro J. et al., 

2011). 

Where LA is the laser source, Ms is a mask, C is the collimator, WM is a window mask, CB is 

the collimated beam, M1, M2, M3 and M4 are plane mirrors, PP is a parallel plate glass, L is 

a lens, TS is the test specimen, DG is the diffraction grating, and I is the interferometer. 

The stresses were released according to the conventional procedure used with strain gages. 

Drilling a hole on the surface of a specimen with residual stresses produces a stress 

relaxation around it. The corresponding deformation was assessed in this work with an 

optical technique. In the Figure 9 is possible to observe the system used to measure the 

residual stresses in the ring and plug specimen using the Moiré Interferometry an ESPI. 

In the ESPI measurement an initial specklegram is acquired and saved. Then, the drill is 

placed in front of the test specimen and a small hole is drilled to a given depth. Next, the 

drill is removed and another specklegram is acquired. The interferogram resulting from the 

correlation of the two recordings leads to the surface displacements caused by the stress 

relaxation. In this case the surface information is codified in the speckle patterns. 

For the Moiré Interferometry a high frequency grating was previously bonded on the surface 

of the specimen. The grating used was a 1200 lines/mm, obtained by aluminum vaporization 

on the top of an epoxy replication of a master grating. The set-up proposed by Post  (Post D. et 

al., 1994) was used in the virtual grating generation by laser interferometry. The first recording 

was obtained by superposition of the virtual grating over the object replication grating. Then, a 

hole is drilled at the desired place, and the Moiré fringes due to stress relaxation are obtained 

and recorded. A tiltable parallel plate glass was used to promote phase modulation with a four 

image phase calculation algorithm (Creath K. et al., 1996). 
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In both cases, the residual stress field was computed establishing an appropriate stress–

displacement relationship by a FEM code. 

 

Figure 9. An apparatus to measure residual stresses using the hole-drilling technique associated to: (a) 

in-plane ESPI; (b) Moiré Interferometry (Ribeiro J. et al., 2011). 

The ring and plug specimen has a closed form solution (Lamé M. G., 1852) for the residual 

stresses, and relatively simple stress distribution. In the plug the stress is constant, in the 

ring only depends on the radial position. The specimen was prepared in agree of the 

reference (Ribeiro J. et al., 2009). After the specimen preparation and its stress state control, 

several measurements of residual stresses were made using optical techniques and the hole-

drilling method. The optical set up used to measure residual stresses with in-plane ESPI and 

Moiré Interferometry are schematically represented in the Figures 6 and 8, respectively. The 

Figure 9 shows details of both set-ups with the additional system for drilling of holes.  

To calculate the displacement field eight images should be recorded in both techniques, at 

different phase shift, being half of them before and the remaining after hole drilling. In ESPI 

(a)

(b)
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the displacement field is calculated by subtracting the speckle phase maps obtained before 

and after strain relaxation. 

The Figure 10 summarizes the results obtained for residual stresses measurements. In this 

graphic presentation the solid lines represent the stresses calculated by the close form 

solutions given by Lamé (Lamé M. G., 1852). The experimental data is represented by dots. 

In all the cases the error was less than 17%, with most of the measurements being around 5% 

of error. 

 

 

Figure 10. A closed form solution and experimental measurements with (a) ESPI and (b) Moiré. 

In this work an experimental methodology for residual stress assessment is presented using 

optical techniques with the hole drilling method. These methods were tested with a well 

known residual stress field in a ring and plug specimen. The experimental results obtained 

with in-plane ESPI and Moiré Interferometry are in good agreement with the closed form 

solution. These optical techniques are a very interesting alternative to the traditional hole-

drilling method with strain gages, and present some advantages, it is a global measurement, 

has better resolution and allows measurements closer to the hole edge. 
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4. Other optical techniques for the automotive industry 

4.1. Smart materials based on FBGs 

There are available a wide variety of optical fiber sensors, which can be divided in three 

categories. The first category includes the external type (also known as extrinsic) where the 

fiber is only used to transfer the measured information from a distant location (Beard P. C. et 

al., 1996). The intrinsic category includes the optical fibers where at least one optical 

property (with the consequence of modulating the light) is affected in result of the measured 

information (Boerkamp M. et al., 2007). Finally, it exists the hybrid category that includes all 

the situations where the light is transferred for further optoelectronic conversion on a 

distant receiver (Yau S.-K. et al., 1983). In this context, the Fiber Bragg Gratings (FBGs) are 

the most suitable sensing elements with an increased usage for structural measurements due 

to their high performance in terms of the sensitivity and linear response. These sensors 

differ from conventional optical fiber sensors approaches because their optical signal is not 

based on power amplitude but instead on spectral changes. This factor is important for 

embodiment techniques into structures (for example, in the vehicles’ structures) since the 

bends on the optical fiber introduce intensity changes (Kung P., 2009). Moreover, the FBGs 

are suitable sensing elements for doing physical measurements where a kind of 

displacement is available. Examples of such applications found in the literature include the 

measurements of strain (Ling H. Y. et al., 2006), pressure (Peng B. J. et al., 2005), force (Zhao 

Y. et al., 2005), acceleration (Antunes P. et al., 2011), tilt rotation by an angle (Xie F. et al., 

2009), temperature (Gu X. et al., 2006) humidity (Arregui F. J. et al., 2002), magnetic fields 

(Orr P. et al., 2010), cardiorespiratory function (Silva A. F. et al., 2011), gait function analysis 

(Rocha R. P. et al., 2011) and integration on wearable garments (Carmo J. P. et al., 2012b).  

Looking to the technology point of view, the FBGs consists on periodic changes of the 

refraction index allong the fiber core. These changes are “shaped” by exposing the fiber to 

intense ultra violet (UV) light with a suitable interferometer mask (Hill K. O. et al., 1997). 

The typical lengths of produced gratings are in the range of few millimetres and are 

characterized by a narrowband resonance spectral reflection. The resonance behaviour 

depends on grating pitch and on their axial variation because the resonance behaviour 

strictly follows external actions in the exact proportion as the silica matrix surrounding the 

gratings (Kersey A. D. et al., 1997). The ultimate effect of the resonances is the reflection by 

successive and coherent scatterings from the index modulation of a narrow band of the 

incident optical field injected into the fiber (Hill K. O. et al., 1997). In a FBG, the strongest 

interaction or mode coupling responsible for the reflected light occurs at a well-known 

wavelength, B [nm], also known as Bragg wavelength. The Bragg’s spectral component 

depends directly from the grating period of the FBG,  [nm], from the modal index, neff, also 

known as effective refractive index of the FBG, and is given by: 

 B=2neff (15) 

The shift in the wavelength, B [nm], with respect to the cross sensitivity with the 

temperature and the axial strain changes, T [K] and ε, (respectively) is given by (Wei C. L. 

et al., 2010; Silva et al., 2010): 
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where ε is the photo-elastic coefficient of the fiber,  is the thermal expansion coefficient of 

the fiber material, and ξ is the thermo-optic coefficient of the fiber material. Typical value 

for a 1550 nm FBG fabricated in a silica fiber, the temperature and the axial strain 

sensitivities are respectively T13 pm.ºC-1 and ε1 pm.ε-1 (Silva A. F. et al., 2011). It 

mandatory to compensate the temperature offset when the measurements consist only on 

strains. The Figure 11 illustrates a FBG structure after being written on an optical fiber. This 

figure also illustrates that the injection of a broadband pulse on the FBG results in a reflected 

beam located around the Bragg wavelength, B . It is then possible to determine the exact 

strain by measuring the reflected spectra and/or the shifting produced in the Bragg 

wavelength (Zhou W. et al., 2010). 

It must also be noted that the absence of mechanical steps on sensor’s fabrication results in 

the possibility to fabricate high sensitivity sensors with high reproducibility of their 

characteristics (Hill K. O. et al., 1997). However, the most important features that made FBG 

based systems a wide established technology were their electrically passive operation, 

electromagnetic interference immunity, compact size, self referencing capability, and more 

important, inherent multiplexing-ability, which enables a wide number of sensors in a single 

fiber as well as Bragg a single interrogation system (Wang Q. et al., 2007). 

 

Figure 11. Illustration of working principle of FBGs. 

The artwork illustrated in the Figure 12(a) helps to understand how to apply FBGs on 

vehicles. The use of a polymeric carrier with elastic properties, such as those developed and 

fabricated by Silva (Silva A. F. et al., 2012) in polychloroethanediyl (polyvinyl chloride, or 

simply PVC) (Saeki Y. et al., 2002) with one or more embedded FBGs can be used to sense 

deformations along the vehicle structure. The beauty of all is in the intrinsic simplicity, e.g., the 

whole system require only the use of a broadband optical source (and centred at the 1550 nm),  
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Figure 12. (a) Application of FBGs for monitoring structural deformations on vehicles, (b) 

Optoelectronic monitoring system based on FBGs for online/offline monitoring of vehicles. 

a single optical circulator, few FBGs centred at different Bragg wavelengths B and a optical 

receiver with enough spectral resolution R (Carmo J. P. et al., 2012a) spanned along the 

wavelength range to cover all Bragg wavelengths. The Figure 12(b) illustrates an example 

for both online (i.e., during the motion of the vehicles) and offline (i.e., with the vehicle 

parked for maintenance by a mechanic) monitoring. In terms of technology and systems 

there are available a wide number of companies that offer optical sources, FBGs, optical 

circulators and optical sources at reasonable costs. Of course, the most challenging task is 

embedding FBGs into the flexible carriers. However, this problem was already addressed 

and the complete details can be found on (Silva A. F. et al., 2012). The optical source 

Superluminiscent LEDs from DenseLight Semiconductors manufacturer can constitute a 

possibility due to its capability to generate broadband light beams with wavelengths in the 

range 1530-1570 nm with a maximal power of 8 mW (Denselight, 2012). Additionally, this 

optical source also presents a full width at half maximum (FWHM) of 60 nm with a 

maximum ripple of 0.2 dB. The FBGs can be acquired with the FiberSensing company 

(FiberSensing, 2012), which offers to their clients the possibility to write gratings in 

(a)

(b)
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hydrogen loaded standard telecommunication fiber (Corning SMF28e+) using the phase 

mask technique and a pulsed Excimer Laser. The I-MON 80D interrogation monitor from 

Ibsen Photonics (Ibsen, 2012) is an interesting option to implement the optical receiver 

because it is especially suitable for real-time spectrum monitoring of signals acquired from 

FBG sensors. One of the characteristics of this optical detector is operating in the wavelength 

range of 1529-1561 nm with a resolution of 1 pm for at least 20 dBm of optical power. 

Moreover, the maximum wavelength drift of this optical detector is around 2 pm per ºC 

with a dynamic range of 30 dB, an input optical power in the range 10-50 dBm and a power 

consumption of 250 mW. Finally, the optical circulators can be found in the manufacturer 

ThorLabs with interesting costs and low losses (ThorLabs, 2012). The 6015-3 optical 

circulator constitues an interesting option because it operates in a relatively broadband 

wavelength range with isolation higher than 40 dB (e.g., between 1525 nm and 1610 nm 

according the manufacturer). Simultaneously, the loss due to the polarization sensitivity of 

this component is very low (e.g., less than 0.1 dB). Moreover, the delay spread is also very 

low (e.g., less than 0.05 ps). To finish, this optical circulator provides a high return loss (e.g., 

higher than 50 dB) for optical powers up to 500 mW . 

4.2. Spectroscopy 

Spectroscopy is the science investigating the interaction between radiation and matter 

centered on the wavelengths. The propagation of energy occurs through waves that can be 

classified either as a function of the frequency υ, or the wavelength λ. The relation between 

these two properties is given by the following equation: c=λv where c is the speed of light 

(3108 m.s-1). Radiation, within the context presented in this paper, describes how photons 

propagate through a medium and is given by E=h.v where E is the energy associated with 

the photons emission and h is the Planck constant and is equal to 6.626/1034 J.s. With these 

equations it is possible to correlate the different properties, which are the foundations of the 

spectrography laws. The all-generic purpose spectroscopic techniques used more often are 

the X-ray diffraction (XRD, from 10-3 to 10 nm), ultraviolet (UV, from 10 to 400 nm), visible 

(VIS, from 380 to 780 nm) and infrared (IR, from 0.7 to 1000 μm). 

Paint is essentially made of three components: binders, pigments (responsible for the 

color) and solvents. From these components of paint, attention will only be given to the 

one that define colors by selectively absorbing the visible wavelengths. Pigments are 

mainly composed by groups of aromatic rings linked by chromophores (may be azo 

compounds, carbonyl groups, basic, etc.). The mechanism responsible for providing a 

color to a pigment is the combination of two molecular components: the chromophores 

and the auxochromes (Zhang Y. et al., 1995). Chromophores are the part of the molecule 

that gives the necessary conjunction to obtain colors. The auxochromes are a group of 

atoms linked to the chromophores that complement the action of the latter by performing 

the necessary changes, within the system’s total energy, resulting in the final color.  An 

example in basic dye (where chromophores have thiazine group), is seen in the Figure 13 

(Lachheb H. et al., 2002). 
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Figure 13. Example of the presence of chromophores and auxochromes in basic blue 9. 

From the mentioned spectroscopic techniques, only the UV/Vis and IR, allow the detection 

of colors from a specific chemical compound by analyzing the intensity level of the 

absorption band. Therefore, when a chemical compound absorbs within a specific spectrum, 

it means that it will have the complementary color. As an example, if the most intense 

absorption band in a UV/Vis spectrum is in the 600 nm, i.e. absorbs the orange color, this 

means that its color will be the orange’s complementary; which is blue. Consequently, when 

these analyses are done, it is not the color that it is determined directly but, instead, the 

chemical composition of the compound. 

The main performance parameter is the spectral resolution R=λ/Δλ, where λ [m] is a 

particular wavelength setting, and Δλ is the smallest discernible wavelength difference for 

the given λ. High-performance spectrometers can reach very high resolutions, greater than 

R=106 (Lindblom P. et al., 1990) but are macrosized and expensive. However many times, 

mainly in the industry due to its intrinsic fast-moving nature, it is not required such a high 

level of resolution. Microspectrometers on the other hand, because of their small size 

limitation, have resolutions which are more suitable for rapid color evaluation without the 

excessively high-quality optical performance for such industrial applications. Spectrometers 

built using integrated silicon microsystems, have a spectral resolution R<50 and for MEMS 

based systems, R=100 (Carmo J. P. et al., 2012a). Color identification is a process being 

widely used in many different fields. A very interesting and challenging one is to apply 

microspectrometers in industrial environments. Some industries are more suitable for such 

color evaluation and measurement procedures such as the: paint, biomedical, textile, 

ceramic, glass, chemical, etc. Industrial production processes permit the possibility to 

measure different chemical compounds by spectroscopic methods, which allow studying 

the colors and according to the needs, different wavelengths spectrum are used. In this 

context, the color identification and evaluation in the different states of matter is a process with 

increasing focus by the industry. Within the chemical industry, where is included the textile, 

polymeric and the ceramics industries, as well as the biomedical, are some of the ones that 

need more of these kind of characterizations. In the mentioned industries, there is a flagrant 

need to analyze and detect the presence of different chemical compounds in laboratorial 
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environment, by spectroscopy techniques that allow the study of the different colors. These 

different spectral analysis techniques demand very expensive, bulky equipments, hardware 

and software (Wolffenbuttel). A tunable microspectrometer for non-extremely demanding 

optical resolutions industrial applications is a very interesting solution, especially for end-use 

customer services offered by the paint industry (Xie F. et al., 2009). Customization of colors can 

be done quicker, and cheaper, by analyzing on an early stage, the development of any color is 

having. This procedure can potentially save money and time, which is of extreme value in the 

industry. Any necessary correction can be performed at any stage of color design. An 

application in the automotive industry can be seen in Figure 14. 

 

Figure 14. Microspectrometer use in color evaluation in the automotive industry. 

The Figure 14 illustrates from the top to bottom and left to right, a practical use for 

microspectrometers in the automotive industry. First, the cars are painted by an industry 

standard process and then, the color of the car is evaluated throughout its entire painted 

areas, by a microspectrometer in scanning-type movements, in real-time. If the automatic 

color evaluation process does not detect any defect the car may move to the next phase. If 

that is not the case, then, the correspondent actions can be applied at once without creating 

any delays or bubbles in the process line, which is always an undesirable and costly event. 

These principles are usable in many other different fields. The glass, jewelry, paint and 

textile industries have obvious interests because colors are a direct way to evaluate the 

progress of the different production steps and final product design and quality. The Figure 

15 shows a block diagram for a setup to perform color evaluation in the paint. 
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Figure 15. Color evaluation setup. 
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A light source projecting the full visible spectrum is narrowed down by a monochromator to 

set the desired wavelength range. Then, the selected spectrum is transmitted through the 

sample and the output light is recorded and analyzed by a photodetector and adequate 

software. In the following step, the resulting light is compared with the known selected light 

reference for improved resolution and sample characterization. By discriminating the 

difference between these two colors, a more accurate reading is obtained and a specific color 

pigment can be evaluated, investigated and discriminated. To finish with an example, it is 

possible to observe a photography showing a microspectrometer made in silicon for analysing 

the visible wavelength in the Figure 16. A detailed discussion about microspectrometers can be 

found in (Carmo J. P. et al., 2012a) and in (Wolffenbuttel R. F., 2005). 

 

Figure 16. Photograph of a prototype of an array type microspectrometer composed by 16 channels, 

each one with a CMOS photodiode with a Fabry Perot etalon mounted on top. Three main subsystem 

blocks can be identified in the photograph: (a) array of 16 Fabry Perot mounted above 16 photodiodes, 

(b) dark current reduction, and (c) electronics for readout and signal processing (analog to digital 

conversion and amplification) and a serial bus for communicating with external devices (Carmo J. P. et 

al, 2012a). Reproduced with authorization of Elsevier Science. 

5. Conclusions and further directos of research 

This chapter presented optic techniques for analysing defects on vehicles. However, and 

given the importance of the vehicular industry in the world, the research doesn’t finishes 

with one or other technique. To conclude this chapter it is important to reinforce the need of 

renewable power sources for reducing the greenhouse gas emissions to the atmosphere (Bell 

L. E., 2008) and to reduce the dependence of fossil fuel combustion sources (Vining C. B., 

2008). The current research on production methods for obtaining the next generation algae 

biofuels is winning support as an even more sustainable alternative to fossil fuel sources 

(Savage N., 2011). However and despite the claim of experts to promote this upcoming 
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power source to be a sustainable energy, the biofuels don’t solve the problem of greenhouse 

emissions (Wisner R., 2009) and is a threat to forests and agricultural fields (Hudiburg T. W. 

et al., 2011). Moreover, oils can’t be yet produced at large scale from algae and at the same 

time further/though research in genetics must be done in order to engineer synthetic 

microorganisms for excreting the desired hydrocarbons (Biello D., 2011). The demand for 

combining vehicles with renewable power is even more evident when locking the hybrid 

vehicles available on roads (Boulanger A. G. et al., 2011) or the forthcoming generation of 

new plug¬ in vehicles that use the grid power to charge their lithium ion battery packs for 

powering their electric traction motors (Voelcker J., 2011). However and despite the 

availability of these type of vehicles, these is still much to do at the both the electronics (Cao 

J. et al., 2011) and batteries level (Kularatna N., 2011). In this sequence of ideas, it is still 

possible to provide cleaner forms of energy from vehicles based on internal combustion of oil 

derivatives. The heat released from the vehicle’s engine can be scavenged using solid state 

thermoelectric generators (TEGs) based in the Seebeck effect for generating electricity in a 

process known as energy harvesting (Carmo J. P. et al., 2010). These TEGs characterizes for a 

few number of useful features, such as silent operation and without moving parts in its 

constitution (DiSalvio F. J., 1999). These features are behind the successful use by NASA of 

radioisotope TEGs (RTGs) for more than three decades of operation in deep space probes 

(Wolverton M., 2008) and are now under study for application in vehicles (Snyder G. J., 2008).  
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