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1. Introduction  

Congenital myasthenic syndromes (CMS) are heterogeneous disorders caused by mutations 
in molecules expressed at the neuromuscular junction (NMJ) (Fig. 1). Each mutation affects 
the expression level or the functional properties or both of the mutant molecule. No fewer 
than 11 defective molecules at the NMJ have been identified to date. The mutant molecules 
include (i) acetylcholine receptor (AChR) subunits that forms nicotinic AChR and generate 
endplate potentials (Ohno et al., 1995; Sine et al., 1995), (ii) rapsyn that anchors and clusters 
AChRs at the endplate (Ohno et al., 2002; Milone et al., 2009), (iii) agrin that is released from 
nerve terminal and induces AChR clustering by stimulating the downstream 
LRP4/MuSK/Dok-7/rapsyn/AChR pathway (Huze et al., 2009), (iv) muscle-specific 
receptor tyrosine kinase (MuSK) that transmits the AChR-clustering signal from agrin/LRP4 
to Dok-7/rapsyn/AChR (Chevessier et al., 2004; Chevessier et al., 2008), (v) Dok-7 that 
interacts with MuSK and exerts the AChR-clustering activity (Beeson et al., 2006; Hamuro et 
al., 2008), (vi) plectin that is an intermediate filament-associate protein concentrated at sites 
of mechanical stress (Banwell et al., 1999; Selcen et al., 2011), (vii) glutamine-fructose-6-
phosphate aminotransferase 1 encoded by GFPT1, the function of which at the NMJ has not 
been elucidated (Senderek et al., 2011), (viii) skeletal muscle sodium channel type 1.4 
(NaV1.4) that spreads depolarization potential from endplate throughout muscle fibers 
(Tsujino et al., 2003), (ix) collagen Q that anchors acetylcholinesterase (AChE) to the synaptic 
basal lamina (Ohno et al., 1998; Ohno et al., 1999; Kimbell et al., 2004), (x) 2-laminin that 
forms a cruciform heterotrimeric lamins-221, -421, and -521 and links extracellular matrix 
molecules to the -dystroglycan at the NMJ (Maselli et al., 2009), (xi) choline 
acetyltransferase (ChAT) that resynthesizes acetylcholine from recycled choline at the nerve 
terminal (Ohno et al., 2001). AChR (Lang & Vincent, 2009), MuSK (Hoch et al., 2001; Cole et 
al., 2008), and LRP4 (Higuchi et al., 2011) are also targets of myasthenia gravis, in which 
autoantibody against each molecule impairs the neuromuscular transmission. 

CMS are classified into three groups of postsynaptic, synaptic, and presynaptic depending 
on the localization of the defective molecules. Among the eleven molecules introduced 
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above, AChR, rapsyn, MuSK, Dok-7, plectin, and NaV1.4 are associated with the 
postsynaptic membrane. Agrin, ColQ, and 2-laminin reside in the synaptic basal lamina. 
The only presynaptic disease protein identified to date is choline acetyltransferase (ChAT). 
A target molecule and its synaptic localization of glutamine-fructose-6-phosphate 
aminotransferase 1 (GFPT1) are still unresolved but the phenotypic consequence is the 
postsynaptic AChR deficiency. This chapter focuses on molecular bases of these three 
groups of CMS. 

 
Fig. 1. Schematic of molecules expressed at the NMJ 

2. Physiology of the NMJ 

This section introduces molecular basis of development and maintenance of the NMJ, and 
physiological features of nicotinic muscle AChR. 

2.1 NMJ synaptogenesis 

At the NMJ, MuSK is an indirect receptor for agrin (Valenzuela et al., 1995; Dechiara et al., 
1996). Agrin released from the nerve terminal binds to LRP4 on the postsynaptic membrane 
(Kim et al., 2008; Zhang et al., 2008). Binding of LRP4 to agrin phosphorylates MuSK. 
Phosphorylated MuSK recruits the noncatalytic adaptor protein Dok-7 (Okada et al., 2006). 
Once recruited, Dok-7 further facilitates phosphorylation of MuSK, and induces clustering 
of rapsyn and AChR by phosphorylating the  subunit of AChR. Rapsyn self-associates and 
makes a homomeric cluster at the endplate, which serves as a scaffold for AChR. Rapsyn 
and AChR bind each other with a stoichiometry of 1:1. Rapsyn also binds to -dystroglycan 
and links the rapsyn scaffold to the subsynaptic cytoskeleton (Froehner et al., 1990; Cartaud 
et al., 1998; Ramarao & Cohen, 1998; Ramarao et al., 2001). Except for LRP4, each of the above 
molecules is a CMS target. 
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2.2 Physiology of the nicotinic muscle AChR 

Nicotinic AChRs are pentameric ligand-gated ion channels. The family of pentameric 
ligand-gated ion channels includes cationic AChRs, cationic serotonergic receptors (5HT3), 
anionic glycine receptors, and anionic GABAA and GABAC receptors (Keramidas et al., 
2004). Heteromeric neuronal nicotinic AChRs are comprised of various combinations of  
(2-7) and  subunits (2-4), whereas homomeric AChRs are formed only by a single  
subunit (e.g., 7-9) (Mihailescu & Drucker-Colin, 2000). On the other hand, nicotinic 
muscle AChRs have only two forms: fetal AChR that carries the , , , and  subunits 
encoded by CHRNA1, CHRNB1, CHRND, CHRNG, respectively, in the stoichiometry 2; 
and adult-type AChR that carries the  subunit instead of the  subunit in the stoichiometry 
2 (Mishina et al., 1986). The  subunit is encoded by CHRNE. Nicotinic muscle AChR 
harbors two binding sites for ACh at the interfaces between the  and / subunits 
(Lee et al., 2009; Mukhtasimova et al., 2009). Binding of a single ACh molecule opens the 
channel pore but for a short time. Binding of two ACh molecules stabilizes the open state of 
AChR, and AChR stays open for a longer time. Only cations pass through the channel pore 
of nicotinic AChRs. Unlike sodium, potassium, or calcium channels, AChRs, in general, 
have no selectivity for cations, but 7 AChRs have 10-20 times higher permeability for Ca2+ 
than for Na+. 

3. Postsynaptic CMS 

Postsynaptic CMS is classified into four phenotypes: (i) endplate AChR deficiency due to 
defects in AChR, rapsyn, agrin, MuSK, Dok-7, plectin, glutamine-fructose-6-phosphate 
aminotransferase 1, (ii) slow-channel congenital myasthenic syndrome, (iii) fast-channel 
congenital myasthenic syndrome, and (iv)  sodium channel myasthenia. 

3.1 Endplate AChR deficiency 

Endplate AChR deficiency is caused by defects in AChR, rapsyn, agrin, MuSK, Dok-7, 
plectin, and GFPT1. 

3.1.1 Endplate AChR deficiency due to defects in AChR subunits 

Endplate AChRs deficiency can arise from mutations in CHRNA1, CHRNB1, CHRND, and 
CHRNE, but not CHRNG.  

Two different groups of mutations of the AChR subunit genes cause endplate AChR 
deficiency. The first group includes null mutations in CHRNE encoding the  subunit. The 
null mutations are caused by frameshifting DNA rearrangements, de novo creation of a stop 
codon, and frameshifting splice-site mutations, or mutations involving residues essential for 
subunit assembly. Large-scale in-frame DNA rearrangements also abolish expression of the 
AChR  subunit (Abicht et al., 2002). Mutations in the promoter region (Ohno et al., 1999) 
and most missense mutations (Ohno et al., 1997) do not completely abolish expression of the 
 subunit but the molecular consequences are indistinguishable from those of null 
mutations. Lack of the  subunit can be compensated for by the presence of the fetal  
subunit that is normally expressed in embryos (Engel et al., 1996). The patients can survive 
with -AChR even in the absence of -AChR. If a null mutation resides in the other AChR 
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subunit genes, the affected individual will have no substituting subunit and cannot survive. 
Indeed, two homozygous missense low expressor or null mutations in CHRNA1 and 
CHRND caused lethal fetal akinesia (Michalk et al., 2008). 

The second group of mutations affecting the AChR subunit genes includes missense 
mutations of CHRNA1, CHRNB1, and CHRND. These mutations compromise expression of 
the mutant subunit and/or the assembly of AChRs, but do not completely abolish AChRs 
expression. The main difference between mutations in CHRNE and those in CHRNA1, 
CHRNB1, and CHRND is tolerance to low or no expression of the  subunit whereas similar 
mutations in other subunits generally have devastating consequences and cause high 
fatality. Some missense mutations in CHRNA1, CHRNB1, CHRND, and CHRNE also affect 
the AChR channel kinetics and vice versa. The kinetic effects will predominate if the second 
mutation is a low expressor, or if the kinetic mutation has slow-channel features with 
dominant gain-of function effects. 

In endplate AChR deficiency, the postsynaptic membrane displays a reduced binding for 
peroxidase- or 125I-labeled -bungarotoxin and the synaptic response to ACh, reflected by 
the amplitude of the miniature endplate potential, endplate potential, and endplate current, 
is reduced. In some but not all cases the postsynaptic region is simplified. In most cases, the 
muscle fibers display an increased number of small synaptic contacts over an extended 
length of the muscle fiber. In some patients quantal release is higher than normal. In patients 
with null mutations in CHRNE, single channel recordings of AChRs at patient endplates 
reveal prolonged opening bursts that open to an amplitude of 60 pS, indicating expression 
of the fetal -AChR in contrast to the adult -AChR that has shorter opening bursts and 
opens to an amplitude of 80 pS. In contrast, in most patients with low-expressor mutations 
in the CHRNA1, CHRNB1, or CHRND, single channel recordings demonstrate no or minor 
kinetic abnormalities. 

As in autoimmune myasthenia gravis, endplate AChR deficiency is generally well 
controlled by regular doses of anticholinesterases. Anticholinesterase medications inhibit 
the catalytic activity of AChE; this prolongs the dwell time of ACh in the synaptic space and 
allows each ACh molecule to bind repeatedly to AChR. 

3.1.2 Endplate AChR deficiency due to defects in rapsyn 

Congenital defects of rapsyn also cause endplate AChR deficiency. Rapsyn makes a 
homomeric cluster and binds to AChR as well as to-dystroglycan, and forms AChR 
clusters at the endplate (Froehner et al., 1990; Cartaud et al., 1998; Ramarao & Cohen, 1998; 
Ramarao et al., 2001). The structural domains of rapsyn include an N-terminal 
myristoylation signal required for membrane association (Ramarao & Cohen, 1998), seven 
tetratrico peptide repeats at codons 6 to 279 that subserve rapsyn self-association (Ramarao 
& Cohen, 1998; Ramarao et al., 2001), a coiled-coil domain at codons 298 to 331 that binds to 
the long cytoplasmic loop of each AChR subunit (Bartoli et al., 2001), a Cys-rich RING-H2 
domain at codons 363-402 that binds to the cytoplasmic domain of -dystroglycan (Bartoli et 

al., 2001) and mediates the MuSK induced phosphorylation of AChR (Lee et al., 2008), and a 
serine phosphorylation site at codon 406. Transcription of rapsyn in muscle is under the 
control of helix-loop-helix myogenic determination factors that bind to the cis-acting E-box 
sequence in the RAPSN promoter (Ohno et al., 2003). 
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Loss-of-function mutations in RAPSN have been reported in the coding region (Ohno et al., 
2002; Burke et al., 2003; Dunne & Maselli, 2003; Maselli et al., 2003; Muller et al., 2003; 
Banwell et al., 2004; Yasaki et al., 2004; Cossins et al., 2006; Muller et al., 2006) as we as in the 
promoter region (Ohno et al., 2003). N88K in RAPSN is one of the most frequently observed 
mutations in CMS (Muller et al., 2003; Richard et al., 2003). We reported lack of a founder 
haplotype for N88K (Ohno & Engel, 2004), but analysis of markers closer to RAPSN later 
revealed possible presence of a shared haplotype (Muller et al., 2004) suggesting that N88K 
is an ancient founder mutation but subsequent multiple recombination events and 
divergence of microsatellite markers have narrowed the shared haplotype region. 
Functional analysis L14P, N88K, and 553ins5 disclosed that these mutations have no effect 
on self-association of rapsyn but impair colocalization of rapsyn with AChR (Ohno et al., 
2002). Analysis of A25V, N88K, R91L, L361R, and K373del later revealed diverse molecular 
defects affecting colocalization of rapsyn with AChR, formation of agrin-induced AChR 
clusters, self-association of rapsyn, and expression of rapsyn (Cossins et al., 2006). Although 
there are no genotype-phenotype correlations in mutations at the coding region, 
arthrogryposis at birth and other congenital malformations occurs in nearly a third of the 
patients. In addition, the -38A>G mutation affecting an E-box in the promoter region 
observed in Near-Eastern Jewish patients exhibits unique facial malformations associated 
with prognathism and malocclusion (Ohno et al., 2003). 

Most patients respond well to anticholinesterase medications. Some patients further 
improve with addition of 3,4-diaminopyridine, ephedrine, and albuterol (Banwell et al., 
2004). The drug 3,4-diaminopyridine blocks the presynaptic potassium channel, which 
slows the repolarization of the presynaptic membrane (Wirtz et al., 2010) enhancing the 
influx of Ca2+ through the presynaptic voltage-gated P/Q-type and N-type channels. This, 
in turn, facilitates the exocytosis of synaptic vesicles and the quantal content of the endplate 
potential.  

3.1.3 Endplate AChR deficiency due to a defect in agrin 

Neural agrin released from the nerve terminal is a key mediator of synaptogenesis at the 
NMJ. A reported homozygous G1709R agrin mutation, however, did not cause AChR 
deficiency but mutations in agrin are potential causes of AChR deficiency by interfering 
with the activation of MuSK and by impeding synaptic maturation.  

The patient harboring the G1709R mutation was a 42-year-old woman with right lid ptosis 
since birth, no oculoparesis, and mild weakness of facial, hip-girdle and anterior tibial 
muscles, and refractoriness to pyridostigmine or 3,4-diaminopyridine (Huze et al., 2009). The 
mutation is in the laminin G-like 2 domain, upstream of the neuron-specific y and z exons 
that are required for MuSK activation and AChR clustering. AChR and agrin expression at 
the endplate were normal. Structural studies showed endplates with misshaped synaptic 
gutters partially filled by nerve endings and formation of new endplate regions. The 
postsynaptic regions were preserved. Expression studies in myotubes using a mini-agrin 
construct revealed the mutation did not affect MuSK activation or agrin binding to -
dystroglycan. Forced expression of the mutant mini-agrin gene in mouse soleus muscle 
induced changes similar to those at patient endplates. Thus, the observed mutation perturbs 
the maintenance of the endplate without altering the canonical function of agrin to induce 
development of the postsynaptic compartment. 
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3.1.4 Endplate AChR deficiency due to defects in MuSK 

MuSK and LRP4 form a heteromeric receptor for agrin. Five MUSK mutations have been 
reported in three papers. The first report describes heteroallelic frameshift (220insC) and 
missense (V790M) mutations in a patient with respiratory distress in early life, mild ptosis, 
decreased upward gaze, and fatigable weakness of the cervical and proximal more than 
distal muscles. The symptoms were worsened by pregnancy. Treatment with 
pyridostigmine and 3,4-diaminopyridine was ineffective (Chevessier et al., 2004). The 
frameshift mutation prevents MuSK expression and the missense mutation decreases MuSK 
expression and impairs its interaction with Dok-7. Forced expression of the mutant protein 
in mouse muscle decreased AChR expression at the endplate and caused aberrant axonal 
outgrowth (Chevessier et al., 2004). Interestingly, mice homozygous for MuSK V789M 
(which corresponds to the human MuSK V790M) are normal but mice hemizygous for 
V789M are severely affected suggesting that MuSK V790M in humans is a haploinsufficient 
only when accompanied by a null mutation (Chevessier et al., 2008).  

A second report describes heteroallelic M605I and A727V mutations in MuSK in a patient 
with severe myasthenic symptoms since early life that improved after puberty but 
worsened after menstrual periods. The MEPP and MEPC amplitudes in anconeus muscle 
were reduced to about 30% of normal and the EPP quantal content was half-normal. 
Synaptic contacts were small and electron microscopy showed simplified postsynaptic 
regions with too few secondary synaptic clefts. The patient failed to respond to 
pyridostigmine, ephedrine or 3,4-diaminopyuridine but responded partially to albuterol 
(Maselli et al., 2010). 

A third report describes a homozygous P31L mutation in the extracellular domain of MuSK 
in 5 patients in a consanguineous Sudanese kinship. The findings included ptosis from an 
early age, partial ophthalmoparesis, and weakness of torso and limb girdle muscles. 
Pyridostigmine therapy gave only slight benefit (Mihaylova et al., 2009). 

3.1.5 Endplate AChR deficiency due to defects in Dok-7 

Phosphorylated MuSK recruits a noncatalytic adaptor protein, Dok-7. Recruited Dok-7 
further facilitates phosphorylation of MuSK (Okada et al., 2006). Dok-7 is highly expressed at 
the postsynaptic region of skeletal muscle and in heart. It harbors an N terminal pleckstrin 
homology domain (PH) important for membrane association, a phosphotyrosine-binding 
(PTB) domain, and C-terminal sites for phosphorylation. The PH and PTB domains are 
required for association with and phosphorylation of MuSK. Phosphorylation of two C 
terminal residues is a requisite for Dok-7 activation by Crk and Crk-L (Hallock et al., 2010).  

Numerous mutations have been identified in DOK7 (Beeson et al., 2006; Muller et al., 2007; 
Anderson et al., 2008; Selcen et al., 2008; Vogt et al., 2009; Ben Ammar et al., 2010). Nearly all 
patients carry a common 1124_1127dupTGCC mutation in exon 7. This and other mutations 
upstream of the C-terminal phosphorylation sites abrogate the ability of Dok-7 to associate 
with Crk1/Crk1L and hence its activation (Hallock et al., 2010; Wu et al., 2010). Mutations 
disrupting or eliminating the PH and PTB domains of Dok-7 prevent dimerization and 
association of Dok-7 with MuSK (Bergamin et al., 2010). 
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3.1.6 Endplate AChR deficiency due to defects in plectin 

Plectin, encoded by PLEC, is a highly conserved and ubiquitously expressed intermediate 
filament-linking protein concentrated at sites of mechanical stress, such as the postsynaptic 
membrane of the endplate, the sarcolemma, Z-disks in skeletal muscle, hemidesmosomes in 
skin, and intercalated disks in cardiac muscle. Pathogenic mutations in PLEC result in 
epidermolysis bullosa simplex, a progressive myopathy (Smith et al., 1996), and, in some 
patients, myasthenic syndrome (Banwell et al., 1999; Selcen et al., 2011). We reported two 
cases of CMS associated with plectin deficiency (Banwell et al., 1999; Selcen et al., 2011). The 
dystrophic changes in muscle are attributed to dislocation of the fiber organelles no longer 
anchored by the cytoskeletal intermediate filaments and to sarcolemmal defects allowing 
Ca2+ ingress into the muscle fibers. The myasthenic syndrome is attributed to destruction of 
the junctional folds lacking adequate cytoskeletal support. 

3.1.7 Endplate AChR deficiency due to defects in glutamine-fructose-6-phosphate 
aminotransferase 1 (GFPT1) 

Glutamine-fructose-6-phosphate transaminase 1, encoded by GFPT1, catalyzes transfer of an 
amino group from glutamine onto fructose-6-phosphate, yielding glucosamine-6-phosphate 
and glutamate. GFPT1 is a rate-limiting enzyme that controls the flux of glucose into the 
hexosamine biosynthesis pathway. GFPT1 thus initiates formation of UDP-N-
acetylglucosamine (UDP-GlcNAc), which is a source of multiple glycosylation processes 
including addition of N-acetylglucosamine to serine or threonine residues (O-linked 
GlcNAc) (Wells et al., 2001). The disease gene was discovered by linkage analysis and 
homozygosity mapping of 13 kinships with a limb-girdle CMS often associated with tubular 
aggregates in skeletal muscle (Senderek et al., 2011). Immunoblots of muscle of affected 
patients revealed decreased expression of O-linked GlcNAc, but the responsible molecule(s) 
causing CMS remain elusive. 

3.2 Slow-channel congenital myasthenic syndrome (SCCMS) 

The second class of postsynaptic CMS due to mutations in the AChR subunit genes is 
SCCMS. SCCMS is an autosomal dominant disorder, in which a gain-of-function mutation 
on a single allele compromises the neuromuscular signal transduction (Ohno et al., 1995). 
The mutation causes prolonged AChR channel openings and increases the synaptic 
response to ACh (Fig. 2). There is a single reported case of autosomal recessive SCCMS, in 
which an L78P mutation minimally prolongs channel opening events but the mutant 
channel arising from a single allele is not sufficient to cause disease (Croxen et al., 2002). In 
general, dominantly inherited disorders, including SCCMS, tend to present after 
adolescence and have a relatively mild course. Some patients with SCCMS, however, 
present early in life and become severely disabled even in the first decade. 

In SCCMS, neuromuscular transmission is compromised by three distinct mechanisms. 
First, staircase summation of endplate potentials causes depolarization block of the 
postsynaptic membrane by rendering the voltage-gated skeletal muscle sodium channel go 
into an inactivated state and thereby inhibit action potential generation (Maselli & Soliven, 
1991). Second, some mutant AChRs are prone to become desensitized (Milone et al., 1997), 
which reduces the number of AChRs that respond to the released ACh quanta. Third, 
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prolonged opening of AChR causes excessive influx of extracellular calcium, which results 
in focal degeneration of the junctional folds as well as apoptosis of some of the junctional 
nuclei (Groshong et al., 2007). In normal adult human -AChR, 7% of the synaptic current is 
carried by Ca2+, which is higher than that carried by the human fetal -AChR or by muscle 
AChRs of other species (Fucile et al., 2006). This predisposes endplate to Ca2+ overloading 
when the channel opening events are prolonged. In addition, at least two SCCMS mutations, 
T264P (Ohno et al., 1995) and V259F (Fidzianska et al., 2005), increase the Ca2+ 
permeability 1.5- and 2-fold, respectively (Di Castro et al., 2007). 

 
Fig. 2. Slow channel CMS. (A) Schematic diagram of AChR subunits with SCCMS 
mutations. (B) Single channel currents from wild-type and slow channel (V249F) AChRs 
expressed on HEK293 cells. (C) Miniature endplate current (MEPC) recorded from 
endplates of a control and a patient harboring V249F. The patient’s MEPC decays 
biexponentially (arrows) due to expression of both wild-type and mutant AChRs. 

Slow channel mutations can be divided into two groups. The first group includes mutations 
at the extracellular domain like G153S (Sine et al., 1995), as well as at the N-terminal part of 
the first transmembrane domain like N217K (Wang et al., 1997) and L221F (Hatton et al., 
2003). These mutations increase the affinity for ACh binding, probably by retarding the 
dissociation of ACh from the binding site, which gives rise to repeated channel openings 
after a single event of ACh binding. The second group includes mutations at the second 
transmembrane domain (M2) that lines the ion channel pore. These mutations mostly 
introduce a bulky amino acid into the channel lining face, but T264P (Ohno et al., 1995) 
introduces a kink into the channel pore, whereas V266A (Shen et al., 2003) and εV265A 
(Ohno et al., 1998) introduce a smaller amino acid into the pore. Mutations in M2 retard the 
channel closing rate  and variably enhance the channel opening rate . Some mutations in 
M2 also increase affinity for ACh, which include V249F (Milone et al., 1997), L269F (Engel 
et al., 1996), and T264P (Ohno et al., 1995). 
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SCCMS can be treated with conventional doses of long-lived open channel blockers of 
AChR, such as the antiarrhythmic agent quinidine (Fukudome et al., 1998; Harper & Engel, 
1998) and the antidepressant fluoxetine (Harper et al., 2003). Quinidine reduces the 
prolonged burst duration of SCCMS to the normal level at 5 µM (Fukudome et al., 1998). As 
the concentration of quinidine in the treatment of cardiac arrhythmia is 6-15 µM, 5 µM is 
readily attainable in clinical practice and indeed demonstrates significant effects (Harper & 
Engel, 1998). Similarly, fluoxetine reduces the prolonged burst duration to the normal level 
at 10 µM, which is clinically attainable without adverse effects at 80 to 120 mg/day of 
fluoxetine (Harper et al., 2003). 

3.3 Fast-channel congenital myasthenic syndrome (FCCMS) 

The third class of postsynaptic CMS due to mutations in AChR subunit genes is FCCMS. 
FCCMS is kinetically opposite to SCCMS (Fig. 3). In FCCMS, the closed state of AChR is 
stabilized compared to the open state which results in abnormally brief channel opening 
events which, in turn, reduces the amplitude of the endplate potential and impair the safety 
margin of neuromuscular transmission. The resulting pathophysiology is thus similar to 
endplate AChR deficiency, but abnormally small endplate potential is a qualitative instead 
of a quantitative defect in AChR. 

FCCMS is an autosomal recessive disorder. One allele carries a missense mutation that 
confers a fast closure of AChRs, and the other allele usually harbors a low-expressor or null 
mutation, or the fast channel mutation occurs at homozygosity. As in heterozygous healthy 
parents of endplate AChR deficiency, we humans may completely lack 50% of each AChR 
subunit without any clinical symptoms. In FCCMS, a low-expressor or null mutation on one 
allele unmasks the deleterious effect of the fast-channel mutation on the second allele. 
Detailed kinetic analyses of FCCMS mutations have revealed special insights into the 
molecular architectures of the AChR subunits. Three such examples are presented here. 

The 1254ins18 mutation causes a duplication of STRDQE codons at positions 413 to 418 
close to the C-terminal end of the long cytoplasmic loop (LCP) linking the third (M3) and 
fourth (M4) transmembrane domains of the receptor. 1254ins18-AChR expressed on 
HEK293 cells opens in three different modes. The opening probabilities of normal AChRs 
are clustered into a single large peak, whereas the 1254ins18-AChR shows three different 
peaks (Milone et al., 1998). In all the three modes, the AChR is activated slowly and 
inactivated rapidly, which gives rise to an inefficient synaptic response to ACh. Another 
FCCMS mutation, A411P in the LCP also destabilizes the channel opening kinetics. The 
channel opening probabilities of A411P-AChRs are widely distributed and do not form any 
discernible peaks (Wang et al., 2000). Our analysis first disclosed that the function of LCP is 
to stabilize the open conformation of the AChR.  

N436del is a deletion of Asn at the C-terminal end of the LCP. The deletion shortens the LCP 
and shifts a negatively charged Asp residue at codon 435 against M4. N436del-AChR 
decreases the duration of channel opening bursts 2.7-fold compared to the wild type due to a 
2.3-fold decrease in gating efficiency and a 2.5-fold decrease in agonist affinity of the 
diliganded closed state. A series of artificial mutations established that the effects of N436del 
are not due to juxtaposition of a negative charge against M4 but to the shortening of the LCP. 
Deletion of the C-terminal residue of the LCP of the  and  subunits also results in fast-
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channel kinetics, but that in the  subunit dictates slow-channel kinetics. Thus, the LCPs of 
four AChR subunits contribute in an asymmetric manner to optimize the activation of AChRs 
through allosteric links to the channel and to the agonist binding sites (Shen et al., 2005). 

The mutation V285I introduces a bulky amino acid into the M3 transmembrane domain 
and causes FCCMS (Fig. 3). Kinetic studies demonstrate that the mutation slows the channel 
opening rate  and speeds the channel closing rate , resulting in a 15.1-fold reduction in the 
channel gating equilibrium constant  (= /). On the other hand, the mutation minimally 
affects affinity for ACh. The probability of channel openings decreased when we introduced 
Leu, a bulky amino acid, at position V285, but rather increased when we introduced smaller 
amino acids such as Thr and Ala. We observed similar effects when we introduced similar 
substitutions into the , , and  subunits. Thus, introduction of bulky amino acids narrows 
the channel pore, while introduction of smaller amino acids widens the channel pore. Our 
analysis thus revealed that the M3 domain backs up the channel-lining pore lined by the M2 
transmembrane domains and has stereochemical effects on channel gating kinetics (Wang et 
al., 1999). 

FCCMS can be effectively treated with anticholinesterases and 3,4-diaminopyridine. The 
pharmacologic effects of these drugs were discussed in the section of endplate AChR 
deficiency (Section 3.1.2). 

 
Fig. 3. Fast channel CMS. (A) Schematic diagram of AChR subunits with FCCMS mutations. 
(B) Single channel currents from wild-type and fast channel (V285I) AChRs expressed on 
HEK293 cells. (C) Miniature endplate current (MEPC) recorded from endplates of a control 
and a patient harboring V285I. The patient’s MEPC decays faster than that of the normal 
control. 
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3.4 CMS due to defects in skeletal muscle sodium channel, NaV1.4 

Another class of postsynaptic CMS is due to mutations in skeletal muscle sodium channel, 
NaV1.4, encoded by SCN4A (Tsujino et al., 2003). Dominant gain-of-function mutations in 
this gene cause hyperkalemic periodic paralysis (Ptacek et al., 1991), paramyotonia congenita 
(McClatchey et al., 1992; Ptacek et al., 1992), potassium-aggravated myotonia (Lerche et al., 
1993), and hypokalemic periodic paralysis type 2 (Bulman et al., 1999). On the other hand, 
loss-of-function mutations cause a CMS. 

Failure of normal-amplitude endplate potential depolarizing the resting potential to -40 mV 
in intercostal muscle of a CMS patient with episodes of apnea and myasthenic symptoms 
since birth prompted us to search for mutations in SCN4A. We identified two heteroallelic 
missense mutations, S246L and V1442E (Tsujino et al., 2003). Activation kinetics of the 
mutant NaV1.4 was normal for both S246L and V1442E, but the fast inactivation curves were 
shifted to hyperpolarization by 7.3 mV for S246L and 33.2 mV for V1442E, indicating that 
both mutations enhance fast inactivation of the NaV1.4 immediately after it is activated. 
Moreover, a high proportion of the V1442 channel was in the inactivated state even at a 
normal resting membrane potential. Recovery from the fast-inactivated state was slowed for 
both mutations. This was in contrast to gain-of-function mutations in other diseases, which 
shift the fast inactivation curves to depolarization. Neither S246L nor V1442E affected slow 
inactivation. Analysis of use-dependent inactivation in HEK293 cells by stimulating at 50 Hz 
for 3 ms revealed that wild-type and S246L channels decreased the peak current only by 5% 
and V1442E channel decreased it by 30% during the first few pulses and suggested that the 
S246L mutation is relatively benign. 

4. Synaptic CMS 

Defects in three components of the synaptic basal lamina, AChE, 2 laminin and neural 
agrin, are associated with CMS. The CMS caused by mutations in agrin was discussed above 
under the postsynaptic CMS (Section 3.1.3) because the site of action of agrin is the 
LRP4/MuSK complex at the endplate. 

4.1 Endplate AChE deficiency due to defects in collagen Q  

Three tetramers of catalytic AChE subunits are linked by a triple helical collagen Q (ColQ) to 
constitute an asymmetric ColQ-tailed AChE (Krejci et al., 1997). ColQ carries three domains 
(i) an N-terminal proline-rich attachment domain (PRAD) that organizes the catalytic AChE 
subunits into a tetramer, (ii) a collagenic domain that forms a triple helix, and (iii) a C-
terminal domain enriched in charged residues and cysteines. ColQ-tailed AChE is organized 
in the secretory pathway, excreted, and anchored into the synaptic basal lamina using two 
domains of ColQ (Fig. 4). First, the collagen domain harbors two heparan sulfate 
proteoglycan (HSPG) binding domains (Deprez et al., 2003) that bind to HSPG, such as 
perlecan (Peng et al., 1999). Second, the C-terminal domain binds to MuSK (Cartaud et al., 
2004). 

Endplate AChE deficiency is caused by congenital defects of ColQ (Donger et al., 1998; Ohno 

et al., 1998; Ohno et al., 2000). Congenital defects of ColQ cause endplate AChE deficiency. 
No mutations have been detected in a gene encoding the catalytic subunit of AChE in CMS 
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or in any other disease. There are three classes of ColQ mutations. First, mutations in the 
proline-rich attachment domain (PRAD) hinder binding of ColQ to AChE. Sedimentation 
analysis of AChE species of the patient muscle and transfected cells shows complete lack of 
ColQ-tailed AChE. Second, mutations in the collagen domain, most of which are truncation 
mutations, hinder formation of triple helix of ColQ. Sedimentation analysis of muscle and 
transfected cells demonstrate a truncated single-stranded ColQ associated with a 
homotetramer of AChE. Third, the mutations in the C-terminal domain have no deleterious 
effect on formation of the asymmetric ColQ-tailed AChE, but they compromise anchoring of 
ColQ-tailed AChE to the synaptic basal lamina as elegantly shown in vitro overlay binding 
of mutant and wild-type human recombinant ColQ-tailed AChE to the frog endplate 
(Kimbell et al., 2004). 

 
Fig. 4. ColQ anchors to the synaptic basal lamina by binding to perlecan and MuSK. 

EMG studies show a decremental response as in other CMS. In addition, most patients have 
a repetitive CMAP response on a single nerve stimulus. The repetitive CMAP decrements 
faster than the primary CMAP. It can be overlooked unless a well rested muscle is tested by 
single nerve stimuli. The prolonged dwell time of unhydrolyzed ACh in the synaptic space 
prolongs the endplate potential; when this exceeds the absolute refractory period of the 
muscle fiber action potential, it elicits a repetitive CMAP. As mentioned above, a repetitive 
CMAP also occurs in slow channel syndrome. 

Some aspects of the pathophysiology of endplate AChE deficiency resemble those of the 
SCCMS. As in the SCCMS, neuromuscular transmission is compromised by three distinct 
mechanisms. First, staircase summation of endplate potentials causes a depolarization block, 
which inactivates a proportion the voltage-gated skeletal sodium channel, NaV1.4. (Maselli 
& Soliven, 1991). Second, prolonged exposure of AChR to ACh during physiologic activity 
desensitizes a fraction of the available AChRs (Milone et al., 1997). Third, repeated openings 
of AChR cause calcium overloading to the endplate, which culminates in an endplate 
myopathy (Groshong et al., 2007). Unlike in the SCCMS, the nerve terminals are abnormally 
small and often encased by Schwann cells. This decreases the quantal content and hence the 
amplitude of the endplate potential (Engel et al., 1977). 
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Anticholinesterase medications have no effect on neuromuscular transmission and can cause 
excessive muscarinic side effects. Quinidine (Fukudome et al., 1997; Harper & Engel, 1997) and 
fluoxetine (Harper et al., 2003), which shorten the open duration of the AChR channel and 
benefit the slow-channel syndrome, can increase muscle weakness. A respirator dependent 
infant with severe endplate AChE deficiency was improved by intermittent blockade of AChR 
by atracurium, an agent that protects AChR from overexposure to ACh (Breningstall et al., 
1996). Ephedrine sulfate at a dose of 150 to 200 mg per day in adults is effective for myasthenic 
symptoms (Bestue-Cardiel et al., 2005; Mihaylova et al., 2008). Although high concentrations of 
ephedrine are able to block AChR openings (Milone & Engel, 1996), molecular bases of 
ephedrine effects in clinical practice remain elusive. As an alternative to ephedrine, albuterol 
sulfate 8 to 16 mg per day also shows benefit (Liewluck et al., in press). 

4.2 CMS due to a defect in 2 laminin 

Laminins are cruciform heterotrimeric glycoproteins composed of , , and  chains and are 
assembled from products of five , four , and three  genes. The laminin molecules are named 
according to their chain composition. For example, laminin-321 contains 3, 2, and 1 chains 
(Aumailley et al., 2005). Three laminins are present at the synaptic basal lamina, laminin-221, 
laminin-421, and laminin-521. Each contains the 2 subunit. Laminin-421 is restricted to the 
primary synaptic cleft and promotes the precise alignment of pre- and postsynaptic 
specializations. Laminin-521 lines the primary and secondary clefts, promotes presynaptic 
differentiation, and prevents Schwann cells from entering the synaptic cleft. The synaptic 
laminins provide a stop signal for axons at developing endplates and organize presynaptic 
differentiation (Sanes, 1997). Mice deficient for Lamb2 that encodes 2 laminin show reduced 
terminal branching of presynaptic motor axons, with a decreased number of active zones, no 
clustering of the synaptic vesicles above the active zones, and extension of Schwann cell 
processes into the primary synaptic cleft, and decreased spontaneous and evoked quantal 
release (Noakes et al., 1995; Patton et al., 1998). In addition to its presence at the endplate, 2-
laminin is also highly expressed in renal glomeruli and the eye. LAMB2 mutations in humans 
cause Pierson syndrome characterized by ocular malformation including small non-reactive 
pupils, loss of accommodation, and abnormalities of the lens, cornea and retina and by fatal 
nephrotic syndrome that requires renal transplantation (Zenker et al., 2004).  

Maselli and coworkers reported a 20-year-old woman with Pierson syndrome caused by 
two heteroallelic frameshifting mutations (1478delG and 4804delC) in LAMB2 who also had 
a severe CMS (Maselli et al., 2009). The nephrotic syndrome was corrected by a renal 
transplant at age 15 months. The patient had respiratory distress in infancy, delayed motor 
milestones, a decremental EMG response, limited ocular ductions, bilateral ptosis, severe 
proximal limb weakness, scoliosis, and required assisted ventilation at night and sometimes 
during the day. AChE activity was spared at the NMJ. Electron microscopy of the NMJ 
showed small axon terminal size and encasement of nerve endings by the Schwann cell, 
widening of the primary synaptic clefts with invasion of the synaptic space by processes of 
Schwann cells, moderate simplification of postsynaptic membranes, and decreased number 
of synaptic vesicles. Both morphological and microelectrode studies were similar to those 
observed in Lamb2-mice (Noakes et al., 1995). Notably, symptoms were worsened by 
pyridostigmine but were improved by ephedrine. 
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5. Presynaptic CMS 

Choline acetyltransferase (ChAT) is the only presynaptic molecule that is known to be 
defective in CMS. 

5.1 CMS with episodic apnea due to defects in choline acetyltransferase (ChAT) 

ACh released from the nerve terminal is hydrolyzed into choline and acetate by AChE at the 
synaptic basal lamina. Choline is taken up by the nerve terminal by a high-affinity choline 
transporter on the presynaptic membrane (Apparsundaram et al., 2000; Okuda et al., 2000). 
ChAT resynthesizes ACh from choline and acetyl-CoA (Oda et al., 1992). After the synaptic 
vesicles are acidified by the vesicular proton pump (Reimer et al., 1998), the resynthesized 
cationic ACh is packed into a synaptic vesicle by the vesicular ACh transporter (vAChT) in 
exchange for protons (Erickson et al., 1994). 

 
Fig. 5. Choline acetyltransferase (ChAT). (A) Genomic structure of CHAT and identified 
mutations. A gene for vesicular acetylcholine transporter (vAChT) is in the first intron of 
CHAT. (B) Kinetics of wild-type and mutant ChAT enzymes. ChAT synthesizes 
acetylcholine using choline and acetyl-CoA. L210P abrogates an affinity of ChAT for acetyl-
CoA (AcCoA), and R560H abolishes an affinity of ChAT for choline.  

We determined the complete genomic structure of CHAT encoding ChAT, and identified ten 
mutations in five CMS patients with the characteristic clinical features of sudden episodes of 
apnea associated with variable myasthenic symptoms (Ohno et al., 2001). Additional CHAT 
mutations were later reported by other groups (Maselli et al., 2003; Schmidt et al., 2003; 
Barisic et al., 2005; Mallory et al., 2009; Yeung et al., 2009; Schara et al., 2010). All of our 
patients showed a marked decrease of the endplate potential after subtetanic stimulation 
that recovered slowly over 5 to 10 min, which pointed to a defect in the resynthesis or 
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vesicular packaging of ACh at the nerve terminal. Kinetic studies of mutant ChAT enzymes 
disclosed variable decreases in affinity for choline and/or acetyl-CoA, as well as variable 
reduction the catalytic rate (Ohno et al., 2001) (Fig. 5). Moreover, some recombinant mutants 
expressed at a reduced level in COS cells. Two patients carried a functionally null mutation on 
one allele, but ChAT encoded on the other allele was partially functional. Heterozygous 
parents that carried the null allele were asymptomatic indicating that humans can tolerate up 
to but not exceeding 50% reduction of presynaptic ChAT activity. None of our patients has 
autonomic symptoms or signs of central nervous system involvement other than that 
attributed to anoxic episodes. This suggests that the ChAT activity and/or substrate 
availability are rate limiting for ACh synthesis at the motor nerve but not at other 
cholinergic synapses. Indeed, stimulated quantal release at the endplate is higher than at 
other cholinergic synapses, which points to selective vulnerability of the NMJ to reduced 
ACh resynthesis. Crystal structure of ChAT resolved at 2.2 Å revealed that some of the 
reported CHAT mutations in CMS patients are not at the substrate-binding or the catalytic 
site of ChAT. Hence these mutation exert their effect by an allosteric mechanism or render 
the enzyme structurally unstable (Cai et al., 2004). 

In most patients, anticholinesterase medications are of benefit in ameliorating the 
myasthenic symptoms and preventing the apneic crises but few patients fail to respond to 
cholinergic therapy remaining permanently paralyzed and remain respirator dependent. 
Prophylactic anticholinesterase therapy is advocated even for patients asymptomatic 
between crises. Parents of affected children must be indoctrinated to anticipate sudden 
worsening of the weakness and possible apnea with febrile illnesses, excitement, or 
overexertion. Long-term nocturnal apnea monitoring is indicated in any patient in whom 
ChAT deficiency is proven or suspected (Byring et al., 2002). 

6. Conclusions 

We reviewed the clinical and molecular consequences of defects in 11 genes associated with 
CMS. Molecular studies of CMS began with identification of a missense mutation in the 
AChR  subunit in a SCCM patient (Ohno et al., 1995). Since then, mutations in seven 
postsynaptic, three synaptic, and one presynaptic proteins have been discovered. In some 
CMS the disease gene has been elusive and await discovery. Resequencing analysis with the 
next generation sequencers may speed this effort. 
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