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1. Introduction 

Numerous applications of numerical optimization to various structural design problems 

have been addressed in the literature. A comprehensive survey on this issue was given in 

[1], presenting a historical review and demonstrating the future needs to assimilate this 

technology into the practicing design environment. Different approaches were applied 

successfully by several investigators for treating stress, displacement, buckling and 

frequency optimization problems. In general, design optimization seeks the best values of 

a set of n design variables represented by the vector, Xnx1, to achieve, within certain m 

constraints, Gmx1(X), its goal of optimality defined by a set of k objective functions, Fkx1(X), 

for specified environmental conditions (see Figure 1). Mathematically, design 

optimization may be cast in the following standard form: Find the design variables Xnx1 

that minimize 
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Figure 1. Design optimization process 

The weighting factors Wfi measure the relative importance of the individual objectives with 

respect to the overall design goal. Several computer program packages are available now for 

solving a variety of design optimization models. Advanced procedures are carried out by 

using large-scale, general purpose, finite element-based multidisciplinary computer 

programs [2], such as ASTROS, MSC/NASTRAN and ANSYS. The MATLAB optimization 

toolbox is also a powerful tool that includes many routines for different types of 

optimization encompassing both unconstrained and constrained minimization algorithms 

[3]. Design optimization of sophisticated structural systems involves many objectives, 

constraints and variables. Therefore, creation of a detailed optimization model 

incorporating, simultaneously, all the relevant design features is virtually impossible. 

Researchers and engineers rely on simplified models which provide a fairly accurate 

approximation of the real structure behaviour. This chapter presents some of the underlying 

concepts of applying optimization theory for enhancing the stability, dynamic and 

aeroelastic performance of functionally graded material (FGM) structural members. Such 

concept of FGM, in which the properties vary spatially within a structure, was originated in 

Japan in 1984 during the space project, in the form of proposed thermal barrier material 
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capable of withstanding high temperature gradients. FGMs may be defined as advanced 

composite materials that fabricated to have graded variation of the relative volume fractions 

of the constituent materials. Commonly, these materials are made from particulate 

composites where the volume fraction of particles varies in one direction, as shown in 

Figure 2, or several directions for certain applications. FGMs may also be developed using 

fiber reinforced layers with a volume fractions of fibers changing, rather than constant, 

producing grading of the material with favorable properties.  

 

Figure 2. The concept of material grading 

Table 1 summarizes the mathematical formulas for determining the equivalent mechanical 

and physical properties for known type and volume fractions of the fiber and matrix 

materials [4]. The factor  is called the reinforcing efficiency and can be determined 

experimentally for specified types of fiber and matrix materials. Experimental results fall 

within a band of 1<<2. Usually,  is taken as 100% for theoretical analysis procedures, 

especially in case of glass and carbon composites. The 1 and 2 subscripts denote the 

principal directions of an orthotropic lamina, defined as follows: direction (1): principal fiber 

direction, also called fiber longitudinal direction; direction (2): In-plane direction 

perpendicular to fibers, transversal direction. 

 

Property Mathematical formula* 

Young's  modulus in direction (1)  E11 Em Vm+ E1f Vf 

Young's  modulus in direction (2)  E22  Em (1 +Vf)/(1-Vf);     =(E2f –Em)/(E2f + Em) 

Shear  modulus G12    Gm (1 +Vf)/(1-Vf);    =(G12f –Gm)/(G12f + Gm) 

Poisson’s  ratio	ߴଵଶ   ߴ௠ ௠ܸ + ଵଶ௙ߴ ௙ܸ 

Mass density   m Vm+ f Vf 

*Subscripts “m” and “f” refer to properties of matrix and fiber materials, respectively. 

Assuming no voids are present, then Vm+Vf =1. 

Table 1. Halpin-Tsai semi-empirical relations for calculating composite properties [4]. 
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An excellent review paper dealing with the basic knowledge and various aspects on the use 

of FGMs and their wide applications was given in [5]. It was shown that FGMs can be 

promising in several applications such as, spacecraft heat shields, high performance 

structural elements and critical engine components. A few studies have addressed the 

dynamics and stability of FGM structures. Closed-form expressions for calculating the 

natural frequencies of an axially graded beam were derived in [6]. The modulus of elasticity 

was taken as a polynomial of the axial coordinate along the beam’s length, and an inverse 

problem was solved to find the stiffness and mass distributions so that the chosen 

polynomial serve as an exact mode shape. Another work [7] considered stability of FGM-

structures and derived closed form solution for the mode shape and the buckling load of an 

axially graded cantilevered column. A semi-inverse method was employed to obtain the 

spatial distribution of the elastic modulus in the axial direction. In reference [8], the buckling 

of simply supported three-layer circular cylindrical shell under axial compressive load was 

considered. The middle layer sandwiched with two isotropic layers was made of an 

isotropic FGM whose Young’s modulus varies parabolically in the thickness direction. 

Classical shell theory was implemented under the assumption of very small 

thickness/radius and very large length/radius ratios. Numerical results showed that the 

buckling load increases with an increase in the average value of Young’s modulus of the 

middle layer. In the field of structural optimization, reference [9] considered frequency 

optimization of a cantilevered plate with variable volume fraction according to simple 

power-laws. Genetic algorithms was implemented to find the optimum values of the power 

exponents, which maximize the natural frequencies, and concluded that the volume fraction 

needs to be varied in the longitudinal direction of the plate rather than in the thickness 

direction. A direct method was proposed in [10] to optimize the natural frequencies of 

functionally graded beam with variable volume fraction of the constituent materials in the 

beam’s length and height directions. A piecewise bi-cubic interpolation of volume fraction 

values specified at a finite number of grid points was used, and a genetic algorithm code 

was applied to find the needed optimum designs. It is the main aim of this chapter to 

present some fundamental issues concerning design optimization of different types of 

functionally graded composite structures. Practical realistic optimization models using 

different strategies for enhancing stability, structural dynamics, and aeroelastic performance 

are presented and discussed. Design variables represent material type, structure geometry 

as well as cross sectional parameters. The mathematical formulation is based on 

dimensionless quantities; therefore the analysis can be valid for different configurations and 

sizes. Such normalization has led to a naturally scaled optimization models, which is 

favorable for most optimization techniques. Case studies concerning optimization of FGM 

composite structures include buckling of flexible columns, stability of thin-walled cylinders 

subject to external pressure, frequency optimization of FGM bars in axial motion, and 

critical velocity maximization in pipe flow as a measure of raising the stability boundary. 

The use of the concept of material grading for enhancing the aeroelastic stability of 

composite wings have been also addressed. Several design charts that are useful for direct 
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determination of the optimal values of the design variables are introduced. In all, the given 

mathematical models can be regarded as useful design tools which may save designers from 

having to choose the values of some of their variables arbitrarily. 

2. Buckling optimization of elastic columns 

The consideration of buckling stability of elastic columns can be crucial factor in designing 

efficient structural components. In references [11, 12], optimization models of the strongest 

columns were developed for maximizing the critical buckling load under equality mass 

constraint. Emphasizes were given to thin-walled tubular sections, which are more 

economical than solid sections in resisting compressive loads. The given formulation 

considered columns made of uniform segments with different material properties, cross-

sectional parameters and length, as shown in Figure 3. The simplest problem of equilibrium 

of a column compressed by an axial force, P, was first formulated and solved by the great 

mathematician L. Euler in the middle of the eighteenth century. The associated 4th-order 

governing differential equation in dimensionless form: 

 
2

k k P 0 P 1 2ˆ ˆˆ ˆw w , P ˆ , k , ,....NsIEk k
       (2) 

where (  )’ means differentiation with respect to the dimensionless coordinate x̂  and Ns is 

the total number of segments. The various dimensionless quantities denoted by (^) are 

defined in Table 2. Equation (2) must be satisfied in the interval 0  x   Lk, where x  k
ˆ ˆx x . 

Its general solution is: 

 1 2 3 4  k kŵ(x) sin x cos x xa a a aP P             (3) 

 

Figure 3. General configuration of a piecewise axially graded thin-walled column 

The coefficients ai’s in Equation (3) can be expressed in terms of the state variables at both 

nodes of the Kth segment, which results in the following matrix relation: 
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 (4) 

where Sk=SinPkLk and Ck=CosPkLk. Applying Equation (4) successively to all the segments 

composing the column and taking the products of all the resulting matrices, the state 

variables at both ends of the column can be related to each other through an overall transfer 

matrix. Therefore, by the application of the appropriate boundary conditions and 

consideration of the non-trivial solution, the associated characteristic equation for 

determining the critical buckling load can be accurately obtained. The exact buckling 

analysis outlined above can be coupled with a standard nonlinear mathematical 

programming algorithm for the search of columns designs with the largest possible 

resistance against buckling. It is important to bear in mind that design optimization is only 

as meaningful as its core structural analysis model. Any deficiencies therein will certainly be 

reflected in the optimization process. 

 

Quantity   Non-dimensionalization*  

Axial coordinate x̂ x / L

Length of Kth segment kk
ˆ / LLL 

Transverse deflection   ŵ w / L

Wall thickness kk
ˆ / hhh 

Second moment of area  kk k
ˆˆ / I ( )II h   

Modulus of elasticity kk
ˆ / EEE 

Bending moment M̂ M * (L / EI)  

Shearing force 2F̂ F * ( / EI)L  

Axial force 2P̂ P * ( / EI)L  

Mass density k k
/ˆ   

Total structural mass 

1

Ns

ks kk
k

ˆˆ ˆˆM Lh


   

*Baseline design parameters: L=total column’s length, 

h=wall thickness, I= second moment of area, E=modulus 

of elasticity = (Ef+ Em)/2, =mass density= (f + m)/2. 

Table 2. Definition of dimensionless quantities 
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Therefore, the strongest column design problem may be cast in the following: 

Maximize ෠ܲcr 

Subject to 

1sM̂    

 
1

1
Ns

k
k

L̂


  (5) 

Side constraints are always present by imposing lower and upper limits on the design 

variables to avoid having odd-shaped unrealistic column design in the final optimum 

solutions. Reference [12] presented optimum patterns for cases of simply supported and 

cantilevered FGM columns constructed from unidirectional fibrous composites with 

properties given in Table 3. The case of a symmetrical simply supported (S.S.) column made 

of E-glass/epoxy and constructed from different number of segments is depicted in Figure 4. 

For the case of 6-segments, the optimum zone of the dimensionless critical buckling load 

augmented with the mass equality constraint was determined and found to be well behaved 

in the selected (VA – L)3 design space. Referring to Figure 5, three distinct regions can be 

observed: two empty regions to the left and right violating the mass equality constraint and 

the middle feasible region containing the global optimum solution. It is also seen that the 

optimal feasible domain is bounded from left and right by two heavy zigzagged lines owing 

to the fact that many contours are stuck to these borderlines and are not allowed to 

penetrate them for not violating the imposed mass constraint. The final optimum design 

point was found to be (VA, L̂ )k=1,2,3 = (0.095, 0.0875), (0.38125, 0.140625), (0.69177,0.271875) 

where (Pcr)max =11.649375. This represents an optimization gain of about 18.0% relative to the 

baseline value (2). Other types of materials were also addressed in [12] including, 

carbon/epoxy, S-glass/epoxy, E-glass/Vinyl-ester and S-glass/Vinyl-ester. In all cases the  

 

Composite material material (A) = Fibers material (B) = matrix 

A(g/cm3) EA (GPa) B(g/cm3) EB(GPa) 

E-glass/epoxy 2.54 73.0 1.27 4.3 

S-glass/epoxy 2.49 86.0 

Carbon/epoxy 1.81 235.0 

E-glass/Vinylester 2.54 73.0 1.15 3.5 

S-glass/Vinylester 2.49 86.0 

Table 3. Material properties of selected fiber-reinforced composites [12] 
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Figure 4. Optimum simply supported columns with piecewise axial material grading 

 

 

 

Figure 5. Optimum zone for a symmetrical 6-segment S.S.  columns made of E-glass/epoxy composites. 
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buckling load was found to be very sensitive to variation in the segment length. 

Investigators who use approximate methods, such as finite elements, have not recognized 

that the length of each element can be taken as a main optimization variable in addition to 

the cross-sectional properties. The increase in the number of segments would, naturally, 

result in higher values of the dimensionless critical buckling load. However, care ought to 

be taken for the corresponding increase in cost due to the resulting complications in the 

associated assembling and manufacturing procedures. 

Other cases of cantilevered columns were also investigated. The associated boundary 

conditions are: at  0x̂   0ŵ    , and at 1 0x̂ .  0ˆ ˆM F  . Figure 6 shows the attained 

optimal solutions for cantilevered columns made of unidirectional E-glass/epoxy composites 

and constructed from different number of segments (Ns). For a three-segment column, the 

global optimal solution was found to be (Pcr)max=2.90938 occurring at the design point 

(VA,Lk)k=1,2,3 = (0.70, 0.514), (0.4125, 0.2785), (0.122,0.2075). This means that the strongest 

column made of only three segments can withstand a buckling load 18% higher than that 

with uniform mass and stiffness distributions, which represents a truly optimized column 

design. In fact, the exact buckling load can be obtained for any number of segments, type of 

cross section and type of boundary conditions. The given multi-segment model has the 

advantageous of achieving global optimality for the strongest columns shape that can be 

manufactured economically from any arbitrary number of segments. Sensitivity of the 

design variables on the buckling load should be included in a more general formulation.   

 

 
 

 
 

Figure 6. Strongest cantilevered columns with axial material grading: Material (A)=E-glass fibers, 

material (B)=epoxy matrix 
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3. Stability of FGM long cylinders under external pressure 

A common application of composites is the design of cylindrical shells under the action of 

external hydrostatic pressure, which might cause collapse by buckling instability. Examples 

are the underground and underwater pipelines, rocket motor casing, boiler tubes subjected 

to external steam pressure, and reinforced submarine structures. The composite cylindrical 

vessels for underwater applications are intended to operate at high external hydrostatic 

pressure (sometimes up to 60 MPa). For deep- submersible long-unstiffened vessels, the 

hulls are generally realized using multilayered, cross-ply, composite cylinders obtained 

following the filament winding process. Previous numerical and experimental studies have 

shown that failure due to structural buckling is a major risk factor for thin laminated 

cylindrical shells. Figure 7 shows the structural model used in reference [13], where the 

effect of changing the fiber volume fraction in each lamina was taken in the formulation of 

the structural model.  

 

Figure 7. Laminated composite shell under external pressure (u displacement in the axial direction x, v 

in the tangential direction s,  w in the radial direction z) 

The governing differential equations of anisotropic rings/long cylinders subjected to 

external pressure are cast in the following [13]: 

2 ss ssssR ) p(NM N R     

 2
ss ss o ossR ( ) p( )] p[NM N w v R        (6) 

 where the prime denotes differentiation with respect to angular position , and 

o o( ) / R.v w     Two possible solutions for Eq. (6) can be obtained; one for the pre-buckled 

state and the other termed as the bifurcation solution obtained by perturbing the 

displacements about the pre-buckling solution. For laminated composite rings and long 

cylindrical shells the only significant strain components are the hoop strain ( o
ss ) and the 

circumferential curvature ( ss)  of the mid-surface. In the case of thin rings the axial and 
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shear forces (Nxx, Nxs) must vanish along the free edges. The bending and twisting moments 

(Mxx, Mxs) may also be neglected. The final closed form solution for the critical buckling 

pressure is given by the following mathematical expression: 

 

2
ani ani

3 2
ani ani

1 1 1B D3   ,          
1 2 A A
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cr

( / )D ( )( ), ( )( )p
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 (7) 

which is only valid for thin rings/cylinders with thickness-to-radius ratio (h/R) 0.1. The 

stiffness coefficients Aani, Bani and Dani are calculated, for the case of long cylinders from:  
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And for circular rings: 
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Aij are called the extensional stiffnesses given by: 

 1
1

n

k kijij k
k

A h (Q ) ( )ˆ ˆz z 


   (11) 

Bij are called the   bending-extensional stiffnesses given by: 
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1
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n

ijij k k k
k

h ˆ ˆB (Q ) (z z )
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   (12) 

Dij are called the bending stiffnesses: 

 
3

3 3
1

13

n

ijij k k k
k

h ˆ ˆD (Q ) (z z )


   (13) 

where  k k / hẑ z  is a dimensionless coordinate, and 1k kk
ˆ ˆ ˆz zh    is the dimensionless 

thickness of the kth lamina. The associated optimization problem shall seek maximization of 

the critical buckling pressure pcr while maintaining the total structural mass constant at a 

value equals to that of a reference baseline design. Optimization variables include the fiber 

volume fraction (Vfk), thickness (hk) and fiber orientation angle (k) of the individual k-th ply, 
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k=1, 2,…..n (total number of plies). Side constraints are always imposed on the design 

variables for geometrical, manufacturing or logical reasons to avoid having unrealistic odd 

shaped optimum designs. The first case study to be examined herein is a long thin-walled 

cylindrical shell fabricated from E-glass/epoxy composites with the lay-up made of only two 

plies (n=2) having fibers parallel to the x-axis (i.e. 1=2=0). Considering the case with no side 

inequality constraints imposed on the design variables, Figure 8 shows the developed ෠ܲcr -

level curves, augmented with the mass equality constraint, in (Vf1- 1ĥ ) design space.  

 

Figure 8. Optimum design space containing pcr-isobars augmented   with the mass equality constraint 

1 0M̂ . . Case of two-layer, E-glass/epoxy cylinder with fibers parallel to cylinder axis (1=2=0). 

It is seen that such a constrained objective function is well behaved in the selected design 

space having the shape of a tent with its ceiling formed by two curved lines, above which 

the mass equality constraint is violated. Their zigzagged pattern is due to the obliged 

turning of many contours, which are not allowed to penetrate the tent’s ceiling and violate 

the mass equality constraint.  The curve to the left represent a 100% fiber volume fraction of 

the outer ply, Vf2, while the other curve to the right represents zero volume fraction, that is 

Vf2=0%. Two local minima with pcr near a value of 0.90 can be observed: one to the lower left 

zone near the design point (Vfk,hk)k=1,2 = (0.15, 0.25), (0.6165, 0.75) while the other lies at the 

upper right zone close to the point (0.625, 0.745), (0.135, 0.255). This represents degradation 

in the stability level by about 10.6% below the baseline value. On the other hand, the 

unconstrained absolute optimum value of the dimensionless critical buckling pressure was 

found to be 1.7874 at the design point (1.0, 0.145), (0.415, 0.855). A more realistic optimum 

design has been obtained by imposing the side constraints: 0.25≤ Vfk≤ 0.75, k=1, 2. The 
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attained solution is (pcr)max =1.2105 at the design point (0.75, 0.215), (0.4315, 0.785), showing 

that good shell designs with higher stability level ought to have a thinner inner layer with 

higher fiber volume fraction and a thicker outer layer with less volume fraction. To see the 

effect of the ply angle, another case of study has been considered for a cylinder constructed 

from two balanced plies () with equal thicknesses and same material properties of E-

glass/epoxy composites. This type of stacking sequence is widely used in filament wound 

circular shells since such a manufacturing process inherently dictates adjacent () layers. A 

local minimum was found near the design point (Vf1,) = (0.375, 0.0) with pcr=0.9985, 

indicating a degradation in the stability level below the baseline design. The absolute 

maximum occurred at the design points (Vf1,)=(0.5,90o) with (pcr)max=3.45766, which means 

that the dimensional critical pressure, pcr=3.45766x2.865=9.906 x(h/R)3 GPa. Figure 9 depicts 

the final global optimum designs of cylinders constructed from adjacent (+) and (-) plies 

for the different types of the selected composite materials. All shall have the same optimal 

solution (Vfk,hk)k=1,2 = (0.75, 0.215), (0.4315, 0.785), independent upon the shell thickness-to 

radius ratio (h/R), a major contribution of the given formulation.  

 

Figure 9. Variation of the absolute maximum buckling pressure with ply angle for balanced (o) 

cylinders with structural mass preserved constant 

Other cases of study include optimization of two different constructions of multi-layered 

cylinders made of AS-4 carbon/epoxy composites. The first one is called a lumped-layup 

construction with the inner half of its wall composed of 90o hoop layers and the outer half 

made of 20o helically wound layers. The second type has different stacking sequence where 

the 20o layers are sandwiched in between outer and inner 90o hoop layers. Optimum 

solutions are given in Table 4, indicating that good designs shall have thicker hoop wound 

layers with higher volume fraction of the fibers near the upper limiting values imposed by 

the manufacturers. On the other hand, the sandwiched helically wound layers are seen to be 

thinner and have less fiber volume fractions. 
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(h/R) 

[900/±200] layup [900/±200/900] layup 

pcr,max=9.37x(10h/R)3 MPa 
pcr,max=36.634x(10h/R)3 

MPa 

Optimum 

value 
% gain Optimum value % gain 

1/50 0.075 17.19 0.293 26.84 

1/25 0.596 15.5 2.344 26.84 

1/20 1.171 15.6 4.579 26.91 

1/15 2.776 14.81 10.854 26.92 

 

Optimum solutions

Two helical layers 

(Vf, h, )= 

 

 

(0.25, 0.225, ±200) 

 

 

(0.2925, 0.235, ±200) 

Two hoop layers

(Vf, h, )= 

 

(0.705, 0.275, 900) 

 

(0.6835, 0.265, 900) 

Table 4. Optimum buckling design of multi-layered, AS-4, FGM composite cylinders 

4. Dynamic optimization of FGM bars in axial motion 

Elastic slender bars in axial motion can give rise to significant vibration problems, which 

assesses the importance of considering optimization of natural frequencies. These 

frequencies, besides being maximized, must be kept out of the range of the excitation 

frequencies in order to avoid large induced stresses that can exceed the reserved fatigue 

strength of the materials and, consequently, cause failure in a short time. Expressed 

mathematically, two different design criteria are implemented here for optimizing 

frequencies:  

Frequency-placement criterion:   Minimize   fi i
i

W   (14) 

Maximum-frequency criterion:    Maximize   fi i
i

W     (15) 

In both criteria, an equality constraint should be imposed on the total structural mass in order 

not to violate other economic and performance requirements. Equation (10) represents a 

weighted sum of the squares of the differences between each important frequency i and its 



 
Stability, Dynamic and Aeroelastic Optimization of Functionally Graded Composite Structures 31 

desired (target) frequency i*. Appropriate values of the target frequencies are usually chosen 

to be within close ranges (called frequency windows) of those corresponding to a reference or 

baseline design, which are adjusted to be far away from the critical exciting frequencies. The 

main idea is to tailor the mass and stiffness distributions in such a way to make the objective 

function a minimum under the imposed mass constraint. The second alternative for reducing 

vibration is the direct maximization of the system natural frequencies as expressed by 

equation (11). Maximization of the natural frequencies can ensure a simultaneous balanced 

improvement in both of stiffness and mass of the vibrating structure. It is a much better design 

criterion than minimization of the mass alone or maximization of the stiffness alone. The latter 

can result in optimum solutions that are strongly dependent on the limits imposed on either 

the upper values of the allowable deflections or the acceptable values of the total structural 

mass, which are rather arbitrarily chosen. The proper determination of the weighting factors 

Wfi should be based on the fact that each frequency ought to be maximized from its initial value 

corresponding to a baseline design having uniform mass and stiffness properties. Reference 

[14] applied the concept of material grading for enhancing the dynamic performance of bars in 

axial motion. The associated eigenvalue problem is cast in the following:  

  
2

2
2

0 0 1
ˆ ˆ ˆU dE dUdˆ ˆˆ ˆE . U ,   xˆ

ˆ ˆdx dxdx̂
        (16) 

where ෡ܷ =  .dimensionless frequency ܧ/ߩඥܮ߱= is the dimensionless amplitude and ෝ߱ ܮ/ܷ

Both continuous and discrete distributions of the volume fractions of the selected composite 

material were analyzed in [14]. The general solution of Eq. (12), where the modulus of 

elasticity and mass density vary in the axial direction, can be expressed by the following 

power series:  

  
2

1
m m

m

ˆ ˆ ˆU(x) (x)C


   (17) 

where Cm’s are the constants of integration and m’s are two linearly independent solutions 

that have the form: 

   1
m      (n m)n

m,n
n m

ˆ(x) ˆa x





    (18) 

The unknown coefficients am,n can be determined by substitution into the differential 

equation (12) and equating coefficients of like powers of x̂ . Table 5 summarizes the 

appropriate mathematical expressions of the frequency equation for any desired case, which 

can be obtained by application of the associated boundary conditions and consideration of 

nontrivial solutions. 

Variation of the volume fractions in FGM structures is usually described by power-law 

distributions. Figure 10 shows both linear and parabolic models for material grading along 

the bar span. Results given in [14] showed that, for Fixed-Fixed and Fixed-Free boundary 

conditions, patterns with higher fiber volume fraction near the fixed ends are always  



 
Advances in Computational Stability Analysis 32 

 

Fixed-Fixed Bar 

Symmetrical modes 

Unsymmetrical modes 

Boundary conditions Frequency equation ( ̂ o)i 

 

0 1 2 0ˆ ˆU( ) U ( / )   

 

2
2

3
1 12

n
n

n
(n ) ( )a

 


    

 

(π, 3π, 5 π) 

0 1 2 0ˆ ˆU( ) U( / )  1
2

2
02

n
n

n
( )a

 


  (2π, 4π, 6π) 

Fixed-Free Bar 0 1 0ˆ ˆU( ) U ( ) 
2

3
1 1n

n
(n )a




    (π, 3π, 5π) /2 

Free-Free Bar 

Symmetrical modes 

Unsymmetrical modes 

 

0 1 2 0ˆ ˆU ( ) U ( / )    
 

2
1

3
1 02

n
n

n
(n ) ( )a

 


   

 

(2π, 4π, 6π) 

0 1 2 0ˆ ˆU ( ) U( / )   1
1

3
12

n
n

n
( )a

 


   (π, 3π, 5 π) 

Table 5. Frequency equations for different types of boundary conditions. ̂ o,i are the dimensionless 

natural frequencies of the baseline design ( ̂ o=0 corresponding to the first rigid body mode of a Free-

Free bar). The notation (  )
׳
 means d/d x̂ . 

favorable. The opposite trend is true for cases of Free-Free bars. Maximization of the 

fundamental frequency alone produces an optimization gain of about 14.33% for the linear 

model with 0% and 100% volume fractions at the ends of the optimized bars with different 

boundary conditions. However, a drastic reduction in the 2nd and 3rd frequencies was 

observed. Better solutions have been achieved by maximizing a weighted-sum of the first 

three frequencies, where the parabolic model was found to excel the linear one in producing 

balanced improvements in all frequencies. Results have also indicated that the Fixed-Fixed 

bars are recommended to have concave distribution rather than convex one. The latter 

produce poor patterns with degraded stiffness-to-mass ratio levels. The opposite trend was 

observed for the free-free bars, where the convex type is much more favorable than the 

concave type. Both concave and convex shapes can be accepted for a cantilevered bar. For 

piecewise models, the developed isomerits for the case of Free-Free bar built of four 

symmetrical segments made of carbon/epoxy composites are shown in Figure 11. The global 

maximum of the fundamental frequency is located at the lower region to the left of the 

design space having a value of 1 3 45406, maxˆ .   at the optimal design point (VA, L̂ )k=1,2 

=(0.1885,0.1625), (0.650, 0.3375), which represents about 10% optimization gain. 

 

Figure 10. Symmetrical shape models of volume fraction distribution along bar length 
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Figure 11. Dimensionless frequency isomerits of free-free bar under mass constraint  

5. Material grading for improved aeroelastic stability of composite wings 

Aircraft wings can experience aeroelastic instability condition in high speed flight regimes. 

A solution that can be promising to enhance aeroelastic stability of composite wings is the 

use of the concept of functionally graded materials (FGMs) with spatially varying 

properties. Reference [15] introduced some of the underlying concepts of using material 

grading in optimizing subsonic wings against torsional instability. Exact mathematical 

approach allowing the material properties to change in the wing spanwise direction was 

applied, where both continuous and piecewise structural models were successfully 

implemented. The enhancement of the torsional stability was measured by maximization of 

the critical flight speed at which divergence occurs with the total structural mass kept at a 

(a) Fundamental frequency (Unsymmetrical mode) 

(b) Second frequency (Symmetrical mode).
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constant value in order not to violate other performance requirements. Figure 12 shows a 

rectangular composite wing model constructed from uniform piecewise panels, where the 

design variables are defined to be the fiber volume fraction (Vf) and length (L) of each panel.  

 

Figure 12. Composite wing model with material grading in spanwise direction 

The isodiverts (lines of constant divergence speed) for a wing composed from two panels 

made of carbon-AS4/epoxy-3501-6 composite are shown in Figure 13. The selected design 

variables are (Vf1,L1) and (Vf2,L2). However, one of the panel lengths can be eliminated, 

because of the equality constraint imposed on the wing span. Another variable can also be 

discarded by applying the mass equality constraint, which further reduces the number of 

variables to only any two of the whole set of variables. Actually the depicted level curves 

represent the dimensionless critical flight speed augmented with the imposed equality mass 

constraint. It is seen that the function is well behaved, except in the empty regions of the 

first and third quadrants, where the equality mass constraint is violated.  The final 

constrained optima was found to be (Vf1,L1)= (0.75, 0.5) and (Vf2,L2)= (0.25, 0.5), which 

corresponds to the maximum critical speed of 1.81, representing an optimization gain of 

about 15% above the reference value /2. The functional behavior of the critical flight speed 

divV̂  of a three-panel model is shown in Figure 14, indicating conspicuous design trends for 

configurations with improved aeroelastic performance. As seen, the developed isodiverts 

have a pyramidal shape with its vertex at the design point (Vf2, L2)=(0.5, 1.0) having divV̂
=/2. The feasible domain is bounded from above by the two lines representing cases of two-

panel wing, with Vf1=0.75 for the line to the left and Vf3=0.25 for the right line. The contours 

near these two lines are asymptotical to them in order not to violate the mass equality 

constraint. The final global optimal solution, lying in the bottom of the pyramid, was 

calculated using the MATLAB optimization toolbox routines as follows: (Vfk, Lk)k=1,2,3 = (0.75, 

0.43125), (0.5, 0.1375), (0.25, 0.43125) with divV̂ =1.82, which represents an optimization gain 

of about 16%. Actually, the given exact mathematical approach ensured the attainment of 

global optimality of the proposed optimization model. A more general case would include 

material grading in both spanwise and airfoil thickness directions. 

6. Optimization of FGM pipes conveying fluid 

The determination of the critical flow velocity at which static or dynamic instability can be 

encountered is an important consideration in the design of slender pipelines containing  
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Figure 13. Isodiverts of for a two-panel wing model 

 

Figure 14. Isodiverts of 
divV̂  in (Vf2-L2) design space for a three-panel wing model 

flowing fluid. At sufficiently high flow velocities, the transverse displacement can be too 

high so that the pipe bends beyond its ultimate strength leading to catastrophic instabilities. 

In fact maximization of the critical flow velocity can be regarded as a major aspect in 

designing an efficient piping system with enhanced flexural stability. It can also have other 

desirable effects on the overall structural design and helps in avoiding the occurrence of 

large displacements, distortions and excessive vibrations, and may also reduce fretting 

among structural parts, which is a major cause of fatigue failure. The dynamic 

characteristics of fluid-conveying functionally graded materials cylindrical shells were 

investigated in [16]. A power-law was implemented to model the grading of material 

properties across the shell thickness and the analysis was performed using modal 

superposition and Newmark’s direct time integration method. Reference [17] presented an 

analytical approach for maximizing the critical flow velocity, also known as divergence 

velocity, through multi-module pipelines for a specified total mass. Optimum solutions 
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were given for simply supported pipes with the design variables taken to be the wall 

thickness and length of each module composing the pipeline. A recent work [18] considered 

stability optimization of FGM pipelines conveying fluid, where a general multimodal model 

was formulated and applied to cases with different boundary conditions. A more spacious 

optimization model was given and extending the analysis to cover both effects of material, 

thickness grading and type of support boundary conditions. The model incorporated the 

effect of changing the volume fractions of the constituent materials for maximizing the 

critical flow velocity while maintaining the total mass at a constant value. Additional 

constraints were added to the optimization model by imposing upper limits on the 

fundamental eigenvalue to overcome the produced multiplicity near the optimum solution. 

Figure 15 shows the pipe model under consideration consisting of rigidly connected thin-

walled tubes, each of which has different material properties, cross-sectional dimensions 

and length. The tube thickness, h, is assumed to be very small as compared with the mean 

diameter, D. The pipe conveys an incompressible fluid flowing steadily with an axial 

velocity Uk through the kth module. The variation in the velocity across the cross section 

was neglected, and the pipe was assumed to be long and slender so that the classical 

engineering theory of bending can be applicable. The effects of structural damping, 

damping of surroundings and gravity were not considered. Practical designs ignoring small 

damping, which has stabilizing effect on the system motion, are always conservatives. The 

model axis in its un-deformed state coincides with the horizontal x-axis, and the free small 

motion of the pipe takes place in a two dimensional plane with transverse displacement, w.  

 

Figure 15. General configuration of a piecewise axially graded pipe conveying fluid. 

The various parameters are normalized by their corresponding values of a baseline pipe 

having the same total mass and length, material and fluid properties, and boundary 

conditions as well. The baseline pipe has uniform mass and stiffness distributions along its 

length and is made of two different materials denoted by (A) and (B) with equal volume 

fractions (V), i.e. VA=VB= 50%. The governing differential equation in dimensionless form:  
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 2 0kw w    (19) 

where  k max
k k

k k kk

UA A
U

IE A E Ik
   

  k=1,2,…,Nm   (20)  

which is valid over the length of any kth module of the pipe, i.e. 0  x  Lk, where x =x-xk  

In equation (16), U stands for the flow velocity through the pipe module having the 

maximum cross sectional area Amax and Nm is the total number of modules composing the 

pipeline. It is noted that consideration of the continuity equation provides that UkAk=UAmax 

,k=1,2,…Nm Possible boundary conditions at the end supports of the pipeline are stated in 

the following: 

(a) Hinged-Hinged        (H/H):  w(0)=w(0)=0 

                                                      w(1)=w(1)=0 

(b) Clamped-Hinged     (C/H):  w(0)=w(0)=0 

                                                      w(1)=w (1)=0   

(c) Clamped-Clamped  (C/C):  w(0)=w (0)=0 

                                                       w(1)=w(1)=0 

For a cantilevered pipeline, static instability caused by divergence is unlikely to happen. The 

non-trivial solution of the associated characteristic equation results in a vanishing bending 

displacement over the entire span of the pipeline. For such pipe configuration, dynamic 

instability (flutter) may only be considered. The state variable are defined by the vector 

 T
k k k

Z w  M F w w EIw  EIw               (21) 

At two successive joints (k) and (k+1) the state vectors are related to each other by the matrix 

equation 

 Zk+1 = [ Tk ] Zk (22) 

where [Tk] is a square matrix of order 4x4 known as the transmission or transfer matrix of 

the kth pipe module. For a pipeline built from Nm - uniform modules, Eq.(18) can be applied 

at successive joints to obtain  

 ZNm+1 = [ T ]  Z1     (23) 

where [T] is called the overall transmission matrix formed by taking the products of all the 

intermediate matrices of the individual modules. Therefore, applying the boundary 

conditions and considering only the non-trivial solution, the resulting characteristic 

equation can be solved numerically for the critical flow velocity, U. Extensive computer 

experimentation for obtaining the non-trivial solution of Eq.(19), for various pipe 

configurations, has demonstrated that the critical velocity can be multiple in some zones in 

the design space. This means that the eigenvalues cross each other, indicating multi-modal 
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solutions (i.e. Bi- Tri- Quadri- modal solutions). Such a multiplicity introduces singularity of 

the eigenvalue derivatives with respect to the design variables, which does not allow the use 

of gradient methods. Therefore, it is necessary to formulate the optimization problem with 

respect to the critical velocity connected with two, three, or four simultaneous divergence 

modes. The present formulation employs multi-dimensional, non-gradient search 

techniques to find the required optimum solutions [2, 3]. This formulation requires only 

simple function evaluations without computing any derivatives for either the objective 

function or the design constraints. The additional constraints, which ought to be added to 

the optimization problem, are [18]:  

 U1 Uj ,   j=2,3…m.   (24) 

where U1 is the first eigenvalue representing the dimensionless critical flow velocity,  Uj's 

are the subsequent higher eigenvalues and m is the assumed modality of the final optimum 

solution. All constraints are augmented with the objective function through penalty 

multiplier terms, and the number of active constraints at the optimum design point can 

automatically detect the actual modality of the problem. In the case of single mode 

optimization, none of the constraints become active at the optimal solution.  It is noted that 

the total mass and length equality constraints can be used to eliminate some of the design 

variables, which help reducing the dimensionality of the optimization problem. The 

MATLAB optimization toolbox is a powerful tool that includes many routines for different 

types of optimization encompassing both unconstrained and constrained minimization 

algorithms [3]. One of its useful routines is named “fmincon” which finds the constrained 

minimum of an objective function of several variables. Figure 16 depicts the functional 

behavior of the dimensionless critical flow velocity, Ucr,1 augmented with the equality mass 

constraint, Ms=1. It is seen that the function is well behaved and continuous everywhere in 

the design space (Vf -L)1, except in the empty region located at the upper right of the whole 

domain, where the mass equality constraint is violated. The feasible domain is seen to be 

split by the baseline contours (Ucr=) into two distinct zones. The one to the right 

encompasses the constrained global maxima, which is calculated to be Ucr=3.2235 at the 

optimal design point (Vf ,L)k=1,2 =(0.550, 0.80), (0.30, 0.20). Actually, each design point inside 

the feasible domain corresponds to different material properties as well as different stiffness 

and mass distributions, while maintaining the total structural mass constant. Figure 17 

shows the developed isodiverts (lines of constant divergence velocity, Ucr,1) in the (Vf1-Vf2) 

design space. The equality mass constraint is violated in the first and third quadrants and 

the cross lines Vf1=50% and Vf2=50% represent the isodiverts of the baseline value . For the 

case of a clamped-hinged (C/H), two-module pipe, the global maxima was calculated to be 

(Vf ,L)k=1,2 =(0.525, 0.875), (0.325, 0.125) at which Ucr,1=4.5645. Table 6 summarizes the attained 

optimal solutions for the different types of boundary conditions. Cases of combined material 

and thickness grading are also included, showing a truly and significant optimization gain 

for the different pipe configurations. More results indicated that for the case of H/H 

pipelines, good patterns must be symmetrical about the mid-span point. Therefore, it can be 

easier to cope with symmetrical configurations, which reduce computational efforts 

significantly, and the total number of variables to half. In this case, the boundary conditions 



 
Stability, Dynamic and Aeroelastic Optimization of Functionally Graded Composite Structures 39 

become w(0)=w(0)=0 and w(1/2)=w(1/2)=0. For three-module H/H pipeline, the attained 

maximum value of the critical velocity was found to be 3.7955, occurring at the design point 

(Vf, h, L)k= (0.625,0.5,0.15625), (0.7,1.1375, 0.6875), (0.625, 0.5, 0.15625). This represents about 

20.81% optimization gain above the baseline value . 

 

Support (Vf, h, L)k=1,2 Ucr,max 

 

H/H 

C/H 

C/C 

Material grading only 

(0.550, 1.0, 0.800), (0.300, 1.0, 0.200) 

(0.525, 1.0, 0.875), (0.325, 1.0, 0.125) 

(0.675, 1.0, 0.125), (0.475, 1.0, 0.875) 

 

 

3.2235

4.5645

6.3325

 

 

H/H 

C/H 

C/C 

Combined material & thickness grading

(0.70, 1.0, 0.75), (0.65, 0.75, 0.25) 

(0.70, 0.95, 0.9), (0.50, 0.85, 0.10) 

(0.70, 1.0, 0.60), (0.65, 0.85, 0.40) 

 

3.6235

5.1355

7.0965 

Table 6. Optimal solutions for two-module pipelines 

 

 

Figure 16. Effect of material grading on the critical flow velocity for a two-module, H/H pipe with 

constant total mass. 
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Figure 17. Isodiverts in the (Vf1-Vf2) design space for a two-module, H/H pipe. 

7. Conclusion 

As a major concern in producing efficient structures with enhanced properties and tailored 

response, this chapter presented appropriate design optimization models for improving 

performance and operational efficiency of different types of composite structural members. 

The concept of material grading was successfully applied by incorporating the distribution 

of the volume fractions of the composite material constituents in the mathematical 

formulation. Different optimization strategies have been addressed, including maximization 

of buckling stability of columns and cylindrical shells, natural frequencies of vibrating bars 

and critical flight speed of subsonic wings. Other stability problems concerning fluid-

structure interaction has also been addressed. The general set of design variables 

encompasses volume fraction distribution, geometry and cross-sectional parameters.  It has 

been shown that normalization of all quantities results in a naturally scaled objective 

functions, constraints and design variables, which is recommended when applying different 

optimization techniques. Piecewise models including multi-segment and multi-layered 

composite structures are implemented, where the optimized designs can be fabricated 

economically from any arbitrary number of uniform segments with material grading in a 

predetermined direction. Several design charts that are useful for direct determination of the 

optimal values of the design variables are given.  It has been confirmed that the segment 

length is most significant design variable in the whole optimization process. Some 

investigators who apply finite elements have not recognized that the length of each element 

can be taken as a main design variable in the whole set of optimization variables. The results 

from the present approach reveal that piecewise grading of the material can be promising 

producing truly efficient designs with enhanced stability, dynamic and aeroelastic 

performance. Actually, the most economic structural design that will perform its intended 

function with adequate safety and durability requires much more than the procedures that 

have been described in this chapter. It is the author's wish that the results presented in this 
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chapter will be compared and validated through other optimization techniques such as 

genetic algorithms or any appropriate global optimization algorithm. Further optimization 

studies must depend on a more accurate analysis of constructional cost. This combined with 

probability studies of load applications and materials variations, should contribute to 

further efficiency achievement. Much improved and economical designs for the main 

structural components may be obtained by considering multi-disciplinary design 

optimization, which allows designers to incorporate all relevant design objectives 

simultaneously. Finally, it is important to mention that, while FGM may serve as an 

excellent optimization and material tailoring tool, the ability to incorporate optimization 

techniques and solutions in practical design depend on the capacity to manufacture these 

materials to required specifications. Conventional techniques are often incapable of 

adequately addressing this issue. In conclusion, FGMs represent a rapidly developing area 

of science and engineering with numerous practical applications. The research needs in this 

area are uniquely numerous and diverse, but FGMs promise significant potential benefits 

that fully justify the necessary effort. 
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