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1. Introduction 

Nowadays, more than 1100 pesticides are possibly used in various combinations and at 

different stages of cultivation and during postharvest storage to protect crops against a 

range of pests and fungi and/or to provide quality preservation. Pesticide residues in cereals 

samples, which might pose a potential risk for human health due to their sub acute and 

chronic toxicity, could possibly end up in the final products of crops. Contaminants of 

animal feed can cause harmful health effects in the animals and may be harmful to people 

through secondary exposure of consumers to products deriving from these animals. 

Contamination of feedstuffs may include both naturally occurring and synthetic toxic 

compounds [1]. 

International regulatory agencies have placed emphasis on the control of pesticides such 

that shall not contain residues of individual pesticides at levels exceeding regulatory 

maximum residue limits (MRLs), for example, 10 µg kg-1. To analyzed a large number of 

pesticides in various food commodities consistently remain a challenge for analytical 

chemists [2]. 

Pesticides can be analyzed by gas chromatography (GC) with electron capture detection, 

flame ionization detection, or nitrogen-phosphorus detection and/or liquid chromatography 

(LC) with ultraviolet, diode array, fluorescence, or electrochemical detection. However, 

these techniques may lack the selectivity and/or sensitivity required to meet the 

requirements for analysis of residues due to the complexity of food matrices. These 

techniques have been largely replaced by GC and LC coupled to mass spectrometric 

techniques, especially they using tandem mass spectrometry [3]. 
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The aim of this chapter is to present an overview about recent advances in sample 

preparation techniques that were developed for the determination of pesticide residues in 

cereals and feedstuffs by gas or liquid chromatographic methods. The different extraction 

and cleanup procedures were pointed out in this chapter with several applications related to 

the analysis of cereals and feedstuffs. 

1.1. Pesticides residues in cereals and feedstuffs 

During cultivation cereals are attacked by a great variety of pests, diseases and weeds. A 

key challenge to the protection of current production is the emergence of new pests and 

diseases, in addition to the spread of current diseases. Crop protection through pesticides 

has made a significant contribution to growth the cereals productivity since the 1950s. 

However, losses due to pests globally are still high. The extensions of these losses vary 

between countries and crops, but one estimate suggests an overall loss of around 40 per 

cent. Another more recent assessment suggests losses of 26 to 29% for soybean and wheat, 

and 30 to 40% for maize and rice. The same study suggests that losses for wheat could be as 

high as 50 per cent without effective plant protection, and even higher for other crops. 

Improved crop protection in the face of new pests and diseases, as well as resistant strains of 

current diseases, will rely on a variety of approaches. The well-managed use of different 

classes of pesticides (herbicides, fungicides, insecticides, etc) must continue to play a key 

role. In face of this, particular attention should be addressed to pesticide residues due to the 

common use of these compounds in agriculture [4]. 

Plant protection products may be ingested or absorbed by livestock in three ways: (1) 

following direct application of the product to the animal, (2) through residues in feeding 

stuff, (3) as a result of treatment of their accommodation. The usual source of residues is 

through the legitimate use of pesticides (herbicides, insecticides and fungicides) in the 

production of crops used in preparation of feeds. The need for information relevant to the 

conduct of risk profiles or for management of residues will always remain. Published data 

about pesticides residues on feed are very scattered and not easy to find. The results are not 

necessarily published and a compilation of feed monitoring data is still in the early stages 

[1]. The analysis of undesirable contaminants in various food and feed samples is nowadays 

a problem of primary concern for quality control laboratories due to human and animal 

health risks associated with the accumulation of these substances. Contaminants in animal 

feeding stuff can cause harmful health effects in the animals and may be harmful to humans 

through secondary exposure of consumers to contaminants deriving from these animals. In 

the European Union and also in several countries, feeding stuffs are subject to legislation 

covering their composition, manufacture, storage, transport and usage. 

1.2. Aspects of analytical methods 

In the last years, one of the current trends in analytical chemistry is the method 

development for optimized many tools used in classical methods. Fast analysis, 

consumption of small amounts of samples and reagents, high sensitivity and automation are 
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some of the most important goals desired to be achieved. For many years a large number of 

research laboratories and analytical instrument manufacturing companies have been 

investing their efforts in this field, which includes new sample preparation methods and 

rapid analysis. Nowadays, improved pesticides multiresidue analysis methodologies with 

high sensitivity and expanded scopes, which include as many compounds and commodities 

as possible in a single method, are always required for checking compliance with MRLs 

and/or for risk assessment of consumer exposure to pesticides. Otherwise, the multiresidue 

method development is difficult due to the fact that compounds of different polarity, 

solubility and volatility have to be extracted and analyzed simultaneously [5]. In practice, 

multiresidue methods consist of the following basic steps [6]:  

i. isolation of residues from a representative sample (extraction);  

ii. separation of co-extracted matrix components (cleanup);  

iii. identification and quantification of target analytes (quantitative step), and if the need is 

important enough, this is followed by next step; 

iv. confirmation of results by an additional analysis.  

The choice of sample treatment applied depends heavily on the complexity of the matrix. 

Water, in general, represents a less complicated matrix than air, sediment, soil or food 

samples. This choice is also related to the detection method. The more sensitive and 

detection method is used, the less stages of sample treatment will be required. Modern 

analytical strategies tend towards automatization and integration of sample pretreatment in 

the chromatographic systems as far as possible. Development of solventless (or at least with 

low solvent consumption) sample preparation techniques constitute a pillar of green 

analytical chemistry and have taken a rapid development during last year’s. The great 

interest in this approach is due to toxicological, environmental and economical aspects [7]. 

For extraction, although different organic solvents, and mixtures of organic solvents, have 

been used to extract a wide range of compounds with different physico-chemical properties 

from food, the use of acetone, ethyl acetate, and acetonitrile has predominated in 

multiresidue methods. These solvents provide high pesticide recoveries over a wide polarity 

range; however, at the same time a lot of matrix components are co-extracted. To achieve 

required performance characteristics, cleanup techniques, are commonly employed for their 

removing. These procedures lead to increasing overall cost of the method, extending 

analysis time and requiring additional labor [6].  

The difficulties of pesticide residue analysis in cereals and animal feed samples are caused 

by the needed of the elimination of chemically non-related main matrix components (e.g., 

organic matter, lipids, proteins) and, then, if required, by removal of other chemically 

related analytes that could interfere in the instrumental determination of the investigated 

compounds [8]. Feedstuffs are also burdened with large quantities of other components 

after extraction as animal feeds can be complex mixtures that include constituents such as 

grains, milling by products, added vitamins, minerals, fats, and other nutritional and energy 

sources. Even simpler cereal matrices contain much more co-extractants than typical 

matrices of high water content such as fruits and vegetables [1]. This fosters the 
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development of strategies to isolate/extract the pesticide fraction from the whole fatty 

matrix. In fact, it is very difficult to avoid the co-extraction of fatty material, even more, 

taking into account that some of the pesticides which are usually targeted are fat-soluble 

non-polar compounds (e.g. organochlorine), and tends to concentrate and remain in the fat. 

Since, high recoveries of most multiclass pesticides must be obtained in an ideally fat-free 

extract, an additional clean-up step is usually included prior to subsequent steps in the 

analytical process. Additionally, the exact composition of the sample is often unknown to 

the testing laboratory [9]. 

2. Sample preparation 

Despite advances in the sensitivity of analytical instrumentation for the end-point 

determination of analytes in food samples, a pre-treatment is usually required to extract and 

isolate the target analytes from the food matrix, thus facilitating their determination [9]. 

Extraction of pesticides from food depends on their polarity and the type of matrix. 

Generally, it comprises homogenization of the sample with an organic solvent alone or 

mixed with water or pH adjusted, using an ultrasonic bath, a blender or a homogenizer [10]. 

In most cases, although the analytes of interest are isolated from the bulk matrix, several 

contaminants may also be co-extracted, as well as part of the matrix, which could interfere 

in the determination step of the analysis. After the extraction process, generally a clean-up 

procedure is carried out in order to remove the co-extracted compounds that may act as 

interferences during chromatographic analysis, causing problems in detection and 

quantitation of the analytes [11]. The clean-up step aims at the isolation of the target 

analytes from potential interfering co-extractives as well as discarding the extraction solvent 

and preparing the target analytes in an appropriate chemical form for its characterization 

and quantification. Therefore, pesticide residue analysis protocols involve two main stages: 

the isolation of the pesticides from the matrix (sample treatment) and the analytical method 

for the determination. Sample treatment, which involves both the extraction of the pesticides 

and the purification of the sample extract obtained, still remains as the bottleneck of the 

entire procedure, despite much progress on automation has been accomplished [9]. In food 

analysis, traditional methods for sample preparation are laborious, time consuming and 

usually involve large amounts of solvents, which are expensive, generate considerable 

waste, contaminate the sample and can enrich it for analytes. In addition, usually more than 

one clean-up stage prior to detection is required [12]. As a result, modern sample 

preparation procedures have been developed or improved to overcome the drawbacks of 

the traditional approaches. Growing concern over food safety necessitates more rapid and 

automated procedures to take into account the constant increase in the number of samples 

to be tested, so interest in procedures that are fast, accurate, precise, solventless, inexpensive 

and amenable to automation for on-line treatment is ongoing. Today special attention is 

paid to such analytical sample preparation procedures which ensure reduction of the 

amount of liquid solvents used or their complete elimination in the course of the analytical 

procedure. A great increase in interest in the so-called solventless method is the result of 
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both ecotoxicology (dumping residual solvents, usually highly toxic, into the environment) 

and economics (high purity solvents are expensive) [12].  

Different studies have been described in the literature about the sample preparation and 

chromatographic determination of pesticide residues in food and feedstuffs and these 

results are described in this chapter. 

2.1. Solid-liquid extraction 

The first step in the pesticide residues analysis from semisolid and solid samples is usually 

the exhaustive extraction of the target compounds from the matrix in which they are 

entrapped. The essentially non-selective character of this initial treatment makes mandatory 

the subsequent purification of the obtained extract, first by elimination of matrix [8]. In the 

last decades, one of the most applied pesticide extraction technique from cereals was solid–

liquid extraction (SLE). Before the SLE, solid samples are transformed into fine and 

homogeneous particles by mechanical grinding, mixing, rolling, agitating, chopping, 

crushing, macerating, mincing, pressing, or pulverizing. The homogenized solid samples are 

repeatedly extracted with an immiscible organic solvent, and the extracts are then 

centrifuged, concentrated and/or purified before the final analysis [10]. An important step in 

the preparation of food samples prior to final analysis is isolation and/or enrichment. The 

procedures consist of the transfer of analytes from the primary matrix into the secondary 

one with a concurrent purging of interfering substances (isolation) and increasing the 

analytes concentrations to a level above the detection limit for a given analytical technique 

(enrichment). In the case of organic contaminants, such as pesticides, in cereals samples, it is 

necessary to replace the solid matrix with a liquid one. For this purpose, an appropriate 

extraction method should be used. Conventional extraction of organic analytes from food 

samples usually begins with a homogenization step, followed by solvent extraction aided by 

shaking is based on the partitioning of analytes between liquid and solid phases [9]. When 

considering this technique, there are many inherent disadvantages, e.g., it is laborious and 

time-consuming, expensive and apt to form emulsion, it requires the evaporation of large 

volumes of solvents and the disposal of toxic and flammable chemicals. Moreover, a 

relatively large amount of matrix is required. Smaller sample sizes become important when 

dealing with real life problems, such as consumer complaints and alleged chemical 

contamination. Recent regulations pertaining to the use of organic solvents have made 

classical SLE unacceptable because of very large amounts of solvents used in this technique. 

For these reasons (to reduce the usage of solvents), many innovations can be found in 

analytical processes that can be applied to food preparation for extraction [13, 14]. This has 

resulted in the recognition that SLE can now be replaced with faster and less expensive 

techniques. These new approaches in pesticides residues extraction from cereals and 

feedstuffs samples were showed in the next reviewed sections.  

2.2. QuEChERS 

The QuEChERS (quick, easy, cheap, effective, rugged and safe) method was introduced by 

Anastassiades et al. [15] as a new approach to extract a wide range of pesticides from 
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different food matrices with high water content. This basic procedure is based on a liquid 

partitioning with acetonitrile followed by a dispersive solid phase extraction (d-SPE) 

cleanup with primary secondary amine (PSA). This procedure has been applied with 

success in several nonfatty (<2%) and low-fat (2–20%) food matrixes. In this method 

anhydrous magnesium sulphate is use to reduce water in the sample, along with either 

sodium chloride [16]. 

Since 2003, modifications to the original method to ensure efficient extraction of pH 

dependent compounds (by using different buffers solutions, e.g. acetate or citrate) [17, 18] or 

addition of water to dry samples (e.g. cereals) in order to obtain the necessary moisture have 

been introduced [19]. To remove matrix components in the clean-up step, modifications of 

the original d-SPE step by using graphitized carbon black (GCB) and C18 sorbent, SPE in 

cartridge or Florisil cartridges have been used. The QuEChERS method is particularly 

popular for determination of polar, middle polar and non-polar pesticide residues in 

various food matrices because of its simplicity, inexpensiveness, amenability to high 

throughput, and relatively high efficiency results with a minimal number of steps, enabling 

a laboratory to process significantly larger number of samples in a given time as compared 

to the earlier methods, e.g. liquid-liquid extraction (LLE) methods [7, 20]. QuEChERS offers 

several advantages over most conventional techniques because it does not require glassware 

or auxiliary equipment (e.g. vacuum manifolds), uses low volumes of solvent, generates 

little solvent waste and provides high recovery of analytes [21]. When compared with other 

sample preparation methods, it is clear that it is extremely fast and inexpensive. It has 

already received world wide acceptance because of its simplicity and high through put 

enabling a laboratory to process a high number of samples in a short period of time [20]. 

The Table 1 summarizes the results described below and another applications based on 

QuEChERS extraction method for pesticides residues determination in cereals and 

feedstuffs. 

Walorczyk [22] employed a buffered QuEChERS method to prepare samples of cereals grain 

and some dry feedstuffs prior to the determination of 122 pesticides by GC-MS/MS. A 5 g 

finely ground sample was placed in centrifuge tube and 10 mL water were added. Later, 15 

mL acetonitrile were added and the mixture shaken vigorously. Further, 0.5 g disodium 

hydrogen citrate sesquihydrate, 1 g trisodium citrate dihydrate, 4 g anhydrous magnesium 

sulphate, and 1 g sodium chloride were added, and the mixture was hand-shaken, then 

centrifuged. Afterwards, a 7.5 mL aliquot of the supernatant was transferred to a centrifuge 

tube (15 mL) containing 0.75 g anhydrous magnesium sulphate, 0.5 g C18 and 0.125 g PSA. 

The tube was vortexed and centrifuged. A 3 mL aliquot of the supernatant was transferred 

into a glass test tube, the extract was evaporated to nearly dryness under a stream of  

nitrogen and the residue was re-dissolved in 1.5 mL toluene prior to its injection into the 

GC-MS/MS system. Despite the fact that the method was found to be useful for the purpose 

of multiresidue screening as it permitted detection at low levels (0.01 mg kg-1) for  

approximately 68% of the target pesticides, many recoveries and RSD values were not as 

good as required for validation in compliance with the criteria established by the European 

Union. 
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Analytes Sample 
Analytical 

technique 

LOD 

(µg kg−1)

Recovery 

(%) 

(RSD %)

References 

140 multiclass 

pesticides 

wheat, bran, 

feedstuffs
GC-MS/MS - 

70.0-120.0

(≤ 20)
[1] 

24 multiclass 

pesticides 

wheat, bran, 

flour
GC-MS 2.5 

70.0-120.0

(≤ 20)
[18] 

122 multiclass 

pesticides 

wheat, bran, 

feedstuffs
GC-MS/MS ≤ 10.0 

73.0-129.0

(1.0-29.0)
[22] 

80 multiclass 

pesticides 
wheat flour 

GC-MS/MS 

and 

LC-MS/MS

- 
70.0-110.0 

(≤ 10) 
[23] 

171 multiclass 

pesticides 
wheat flour LC-MS/MS - 

70.0-120.0

(≤ 20)
[24] 

simeconazole 

enantiomers 

wheat and 

rice
GC-MS/MS 0.4-0.9 

101.1-93.7

(2.4-5.7)
[25] 

13 phenoxyacid 

pesticides 
rice LC-MS/MS ≤ 13.3 

45.0-104.0

(≤ 13.3)
[26] 

180 multiclass 

pesticides 

corn, oat, rice, 

wheat 

GC-TOF-

MS and 

UHPLC-

MS/MS

- 
70.0-120.0 

(≤ 20) 
[27] 

41 multiclass 

pesticides 
maize GC-MS 8.0-55.0

70.0-120.0

(≤ 20)
[28] 

90 multiclass 

pesticides 
wheat LC-MS/MS - 

70.0-120.0

(≤ 20)
[29] 

42 multiclass 

pesticides 
polish rice LC-MS/MS 0.07-4.0

70.0-120.0

(≤ 20)
[30] 

151 multiclass 

pesticides 

barley, 

basmati rice, 

rice flour, 

popcorn, 

wheat, seven 

grains, and 

buckwheat

UHPLC-

MS/MS 
- 

81.0-110.0 

(≤ 20) 
[31] 

23 multiclass 

pesticides 

cereal based 

infant foods
LC-MS/MS - 

60.4-125.4

(≤ 29.7)
[32] 

9 organophosphate 

and 1 pyrethroid
maize and soy GC-MS 0.2-6.0 

105.0-52.0

(4.6-8.2)
[33] 

7 neonicotinoid 

pesticides 

brown rice, 

millet, oat, 

maize

HPLC-

DAD 
2.0-5.0 

76.0-123.0 

(0.9-12.6) 
[34] 

Table 1. Different methods applied for determination of pesticide residues in cereals and feedstuffs 

based on QuEChERS extraction method. 
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In a new work Walorczyk [1] improved his previous method. The most important aspects 

considered during the present work were (i) extension of the scope of the previous method 

to include as many as 144 target analytes and (ii) re-design of the GC-MS/MS acquisition 

method. The linearity of the calibration curves was excellent in matrix-matched standards, 

and yielded the coefficients of determination r2 ≥ 0.99 for approximately 96% of the target 

analytes. Average recoveries of the pesticides spiked at 0.01 mg kg-1 into a feed mixture and 

wheat grain were in the range 70–120% with associated RSD values ≤ 20% for approximately 

60 and 67% of the compounds, respectively. Base on these results, the proposed approach 

has been proven to be highly efficient and suitable for routine determinations of multiclass 

pesticides in a range of cereal and related matrices. In this study, 145 samples of matrices of 

differing complexity including cereals grain, bran, whole ears, straw, hay, feed mixtures and 

other samples such as malt, starch and dry vegetables have been analyzed. A total of 15 

different compounds have been detected, among which pirimiphos methyl, deltamethrin, 

tolylfluanid, dichlofluanid and tebuconazole were the most frequently encountered ones.  

Kolberg et al. [18] developed and validated a multiresidue approach also based on 

QuEChERS method for the determination of 24 pesticides in wheat, white flour and bran 

using triplequadrupole GC-MS in negative chemical ionization mode. The method was 

validated evaluating the following parameters: linearity, limit of detection, limit of 

quantification, matrix effect as well as precision and accuracy, evaluating the percentage of 

recovery at four different spike levels. The linear range used in the calibration curves was 

from 1.0 to 100 µg L-1 for wheat and 2.0 to 200 µg L-1 for flour and bran, both with values of 

r2≥ 0.99. The recoveries had been considered satisfactory presenting values between 70 and 

120% with RSD < 20% for the majority of compounds. 

Koesukwiwat et al. [26] modified the original QuEChERS method for the analysis of 

phenoxy acid herbicide residues in rice samples. The new approach was based on the 

extraction with 5% (v/v) formic acid in acetonitrile and inclusion of citrate buffer for helped 

partitioning of all the analytes into the acetonitrile phase. The extract was then cleaned up 

by d-SPE using C18 and alumina neutral as selective sorbents. Further optimization of 

sample preparation and determination allowed recoveries between 45 and 104% for all 13 

phenoxy acid herbicides with RSD ≤ 13.3% at 5.0 µg kg-1 concentration level. Limit of 

detections (LODs) of 0.5 µg kg-1 or below were attained for all 13 phenoxy acids. 

Quantitative analysis was done by UHPLC-MS/MS in the multiple-reaction monitoring 

(MRM) mode using two combinations of selected precursor ion and product ion transition 

for each compound. This developed method when compared with original QuEChERS 

method produced relatively higher recoveries of the acid herbicides with a smaller range of 

variation and less susceptibility to matrix effects. 

Otherwise, the main disadvantage of the QuEChERS method compared to other common 

methods is that the 1 g mL-1 final extract concentration is lower than the 2–5 g mL-1 

concentrated extract of most traditional methods. If matrix is not the limiting source of noise 

in the analysis, this leads to a higher LOQ for the same injection volume in the QuEChERS 

method [3]. This method is adaptable and can be easily tailored to cope with new matrices 
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through the selection of alternative sorbents. In fact the initial extract can be divided across 

tubes containing different sorbents to cater for problem analytes. Work in progress indicates 

that the developed extraction conditions will recover the majority of food contaminants [35]. 

Although QuEChERS has mainly been used for the determination of pesticides, some other 

compounds, such as pharmaceuticals, or veterinary drugs have been determined using 

QuEChERS in other food and environmental samples [7, 36]. 

2.3. Pressurized-liquid extraction (PLE) 

Also known as accelerated solvent extraction (ASE), pressurized fluid extraction (PFE), 

pressurized hot solvent extraction (PHSE), subcritical solvent extraction (SSE) and hot water 

extraction (HWE), the PLE utilizes solvents that are raised to the near supercritical region, 

where they show better extraction properties [37]. This effect is due the decreasing of surface 

tension and increasing of solubility and diffusion rate into the sample showed by the solvent 

at high temperatures. Pressure keeps the solvent below its boiling point and, in solid 

samples, like cereals, forces its penetration into the pores of the sample [12].  

The faster extraction process (5-10 min) is obtained by the use of high pressures (500-3000 

psi) and temperatures (50-200 °C). This technique requires smaller amounts of solvent 

compared with traditional extraction, this is a very positive advantage because reduces the 

dilution of the sample [38]. The main factor that’s affects de extraction time and efficiency of 

extraction is the temperature meanwhile the sample mass [12]. There are three ways to 

perform PLE: static, dynamic (flow-through) and mixed mode. In static mode, the sample is 

enclosed in a stainless steel vessel filled with an extraction solvent, and following extraction 

the remaining solvent is purged with N2 into a collection vial. Flow-through systems 

continuously pump solvent through the sample, but this has the disadvantage of using 

larger volumes of solvent and of diluting the extract. A desiccant, such as sodium sulphate, 

diatomaceous earth or cellulose can be added directly to the extraction cell or sorbent 

materials can be used to provide in situ cleanup [39, 40]. When compared with LLE, the PLE 

show as main advantage the low solvent consumption, but requires highly expensive and 

specialized equipment. The limitation of PLE is the presence of large amounts of co-

extracted lipids when working with fatty matrices, which means that post-cleanup of the 

extract is required to carry out lipid elimination [12]. 

The effect of sample matrix depends on sample composition. Food samples can differ 

significantly in their physical-chemical properties, type of compounds present, or 

granulation (particle diameter). The factor that mainly affects the extraction of trace 

compounds in the presence of extractable major sample components are lipids, that offers 

special problems in the subsequent determination by gas or liquid chromatography [41]. 

Carabias-Martinez et al. [37] developed a method based on pressurized liquid extraction and 

liquid chromatography–electrospray ionization mass spectrometry (LC-ESI-MS) for the 

determination in cereal samples of seven endocrine-disrupting compounds: bisphenol A 

(BPA), 4-tert-butylbenzoic acid (BBA), 4-nonylphenol (NP), 4-tert-butylphenol (t-BP), 2,4-
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dichlorophenol (DCP), 2,4,5-trichlorophenol (TCP) and pentachlorophenol (PCP). Methanol 

was selected as the extraction solvent. The recoveries achieved for the all seven compounds 

were in the 81 to 104% range, with relative standard deviations of 4 to 9%. The detection 

limits achieved in corn breakfast cereals were in the 0.003 to 0.043 µg g-1 range. 

A method based on pressurized liquid extraction and LC-MS/MS has been developed for 

determining nine benzoylureas in fruit, vegetable, cereals and animal products. Samples (5 

g) were homogenized with diatomaceous earth and extracted in a 22 mL cell with 22 mL of 

ethyl acetate at 80 °C and 1500 psi. Method LOQs were between 0.002 and 0.01 mg kg-1. 

Excellent linearity was achieved over a range of concentrations from 0.01 to 1 mg kg-1. 

Validation of the method was performed in seven different commodities (milk, eggs, meat, 

rice, lettuce, avocado, and lemon). The recoveries ranged from 58 to 97% and the RSDs from 

5 to 19% [42]. 

In order to extract eight acetanilide herbicides from cereal crops, Zhang et al. [43] evaluated 

the effect of four parameters for PLE efficiency (temperature, static time, static cycles and 

solvent). The results of final method, based on accelerated solvent extraction (ASE) and 

solid-phase extraction (SPE) for cleanup using graphitized carbon black/primary secondary 

amine (GCB/PSA), GCB, Florisil and alumina-N were compared with shake-flask extraction 

method. At 0.05 mg kg-1 spiked level, recoveries and precision values for rice, wheat and 

maize were from 82.3 to 115.8% and from 1.1 to 13.6%, respectively. For all the herbicides, 

LOD and LOQ ranged from 0.8 to 1.7 µg kg-1 and from 2.4 to 5.3 µg kg-1, respectively. 

2.4. Supercritical-fluid extraction (SFE) 

From 1960, when applications of supercritical fluid extraction have been extensively 

examined until 90 years, few researchers investigated the use of supercritical fluids in 

analytical, non-chromatographic applications. After that, commercial supercritical fluid 

extraction (SFE) instruments have been developed and the studies began to be published 

using SFE as extraction technique in combination with chromatographic techniques for 

analytical applications for analysis of pesticide residues [44, 45]. 

The unique properties exhibited by supercritical fluids have been applied for the analysis of 

pesticide residues in solid samples SFE is selective and Less solvent consuming, thus it is 

environmental friendly. The critical step in the off-line SFE methods is evaporation of 

solvent at the end of extraction to acquire high pre-concentration factor. This procedure is 

time-consuming and can contaminate the environment. Another negative factor is loses or 

degradation of collected analytes [46]. 

Carbon dioxide (critical conditions = 30.9 ºC and 73.8 bar) is the most used supercritical 

solvent, because is cheap, environmentally friendly and safe. Supercritical CO2 (SCCO2) had 

high diffusivity and easily tuneable solvent strength. Another advantage is that CO2 is gaseous 

at room temperature and pressure, which makes analyte recovery very simple and provides 

solvent-free analytes. Also, important for food and natural products sample preparation, is the 

ability of SFE using CO2 to be operated at low temperatures using a non-oxidant medium, 
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which allows the extraction of thermally labile or easily oxidized compounds. The main 

drawback of SCCO2 is its low polarity, and some modifiers as required to change the polarity 

of supercritical fluid and increase de solvent power. The modifiers can also reduce the 

analyte–matrix interactions improving their quantitative extraction [45]. 

In a typical commercial equipment, the fluid is pumped, at a pressure above its critical 

point, with the sample placed in an inert extraction cell. The temperature of the cell is 

increased to overcome the critical point of the fluid. After depressurization, the analytes are 

collected in a small volume of organic solvent or on a solid-phase filled cartridge (solid 

adsorbent trap). Extraction can be performed in three ways: static, dynamic or recirculating 

(mixed) mode: in the static extraction mode, the cell containing the sample is filled with the 

supercritical fluid, pressurized and allowed to equilibrate; using the dynamic mode, the 

supercritical fluid is passed through the extraction cell continuously; finally in the 

recirculating mode the same fluid is repeatedly pumped through the sample and, after the 

required number of cycles, it is pumped out to the collection system [47]. 

SFE is usually an efficient extraction method, primarily applicable to solid samples. However, 

as well as its numerous advantages (efficacy, selectivity, short extraction times, low solvent 

volumes) it also has serious drawbacks: difficult optimisation, high apparatus and 

maintenance cost, high blank and noise levels, co-extraction of lipidic content of samples [48]. 

With commercially equipments available SFE has been used not only for analytical 

applications in samples preparation, but mostly for food science, pharmaceutical and 

environmental science in lab or pilot scale [45]. Recently, only a few applications describing 

sample preparation for determination of pesticides in cereals were published. 

Aguilera et al. [49] used the SFE method followed by a cleanup step with aminopropyl SPE 

for the analysis of 22 pesticides in white and wild rice. The authors tested different 

experimental conditions for extraction with CO2: temperature, volume and pressure in 

order to optimize the extraction method. The authors noticed that fat extraction from rice 

was appreciable and the use of higher pressures might also increase extraction of fat and 

other non-fat material in this matrix. For the final procedure validated pesticide mean 

recoveries obtained from rice samples, at fortification levels around 0.5 mg kg-1, ranged 

between 74 and 98%, except for captafol and dimethoate for which mean recoveries lower 

than 21% were determined. 

2.5. Solid-phase extraction (SPE) 

Solid-phase based extraction techniques are widely applied to many matrices, like foods and 

include: matrix solid-phase dispersion (MSPD), solid-phase extraction (SPE), solid-phase 

microextraction (SPME) and stir-bar sorptive extraction (SBSE). In this technique a sorbent 

will retain and concentrate some target analytes from the sample solution due strong 

affinity between sorbent and analytes [12]. Solid-phase extraction involves the use of 

disposable cartridges and disks to trap analytes. As the sample solution passes through the 

activated sorbent bed, analytes concentrate on its surface, while the other sample 
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components pass through the bed or vice versa, if necessary for cleanup [50]. When 

compared with LLE, the advantages of SPE are: simultaneous removal of interfering 

substances and concentrations of analytes, multiple samples can be treated in parallel and 

the use of a relatively small quantity of solvent [12]. Before SPE can be applied to a solid 

matrix (soil, vegetables and fruits), a separate homogenization step and, often, filtration, 

sonication, centrifugation, and liquid/liquid cleanup are required. However, the presence of 

interfering substances, such as salts, humic acids, and other humic substances in water or 

proteins, lipids and carbohydrates in food makes the determination of polar or early-eluted 

pesticides, difficult or almost impossible [51]. 

An analytical method for the determination imazaquin residues in soybeans was proposed by 

Guo et al. [52] based on liquid/liquid partition strong anion exchange solid-phase extraction. 

This technique was used, in order to achieve an effective cleanup, removing the greatest 

number of sample matrix interferences. In this procedure, the combination between optimized 

chromatographic conditions and detection by ultraviolet the procedure was showed to be 

sensitive and reliable for determining the imazaquin residues in soybean samples. This 

method is characterized by recovery >88.4%, precision 6.7% RSD, and sensitivity of 0.005 mg 

kg-1. The proposed method was successfully applied to the analysis of imazaquin residues in 

soybean samples grown in an experimental field after treatments of imazaquin formulation. 

A sensitive and simple method for simultaneous analysis of acetochlor and propisochlor in 

corn and soil has been developed by Hu et al. [53]. The extraction of pesticides from soil and 

corn matrices was performed with methanol/water and acetone, respectively, followed by 

solid phase extraction (SPE) to remove co-extractives, prior to analysis by gas 

chromatography with electron capture detection (GC-ECD). Primary secondary amine 

(PSA) SPE cartridges (500 mg, 3 mL) were used for sample preparation. The elution was 

made with 5 mL petroleum ether-acetic ether (95/5, v/v) and 3 mL petroleum ether-acetic 

ether (95/5, v/v), respectively. The recoveries of two pesticides ranged from 73.8% to 115.5% 

with relative standard deviations (RSD) less than 11.1% and sensitivity of 0.01 mg kg-1. The 

method was successfully applied to determine acetochlor and propisochlor in real corn and 

soil samples. The authors related that residues of acetochlor and propisochlor residues were 

detected (<0.01 mg kg-1) in corn at harvest time with holding period of 2.5 months after 

treatments of the pesticides. 

The use of SPE in combination with HPLC-DAD was employed to determine bispyribac-

sodium residues in rice. The liquid–liquid partition and anion exchange solid phase procedures 

that were developed provide effective extraction and cleanup methods for analysis feasibility, 

with recoveries between 83.98 to 98.51% with a RSD from 0.56 to 6.36% and sensitivity of 0.01 

mg kg-1, with main advantages of high precision, accuracy and good selectivity. Another 

favorable feature is the reduction of sample processing time [54]. 

2.6. Matrix solid-phase dispersion (MSPD) 

In 1989, Barker et al. [55] introduced the MSPD, as a sample preparation technique for solid 

or semi-solid samples. It provides both a porous structure to enable the solvent to penetrate 
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the matrix and extract the analytes, but also has some functionality which can retain the 

fat/lipids [56]. MSPD can combine the procedures of homogenization, disruption, extraction 

and cleanup into one simple process. In fact, it is a sample preparation strategy that consists 

of a manual blending of samples with a bulk dispersing agent, to produce complete 

disruption of the original matrix structure, thus providing an enhanced surface area for 

subsequent sample extraction. Usually, the blended material is then transferred and packed 

into a column to perform sequential extraction and eventual cleanup with an appropriate 

solvent or a sequence of solvents [57]. 

Most applications have utilized 5–10 mL of solvent to perform analyte extraction. Evidence 

from some studies indicates that most target analytes are eluted in the first 4 mL of 

extractant, provided that 0.5 g of the sample is mixed with 2 g of the solid support [9]. In 

general, the choice of the adsorbent used depends on the polarity of the analyte and on the 

possible coextracted components of the matrix. The most usual adsorbents are Florisil and 

C18; nevertheless, there are others (e.g., diatomaceous earth, alumina, silica and C8) that 

have been used for the analysis of pesticides in food [11]. 

The main advantages of MSPD procedure compared to other extraction techniques are as 

follows: (1) the analytical protocol is simplified and shortened; (2) the possibility of 

emulsion formation is eliminated; (3) solvent consumption is substantially reduced; and (4) 

the extraction efficiency of the analytes is enhanced as the entire sample is exposed to the 

extractant. An interesting feature of the MSPD technique is that it can be used for extracting 

analytes from both solid and liquid foods. The main disadvantage is the lack of automation 

of the procedure [9]. 

Tsochatzis et al. [58] development and validation of such a method for the determination of 

eight rice pesticides penoxsulam, tricyclazole, propanil, azoxystrobin, molinate, profoxydim, 

cyhalofop-butyl and deltamethrin) and 3,4-dichloroaniline, the main metabolite of propanil. 

Pesticide extraction and cleanup was performed by an optimized MSPD protocol on neutral 

alumina (5 g) using acetonitrile as the elution solvent. Samples were analyzed by high-

performance liquid chromatography with diode array detection (HPLC-DAD). Method 

validation was performed by means of linearity, intra-day accuracy, inter-day precision and 

sensitivity. Linear regression coefficients (r2) were always above 0.9948. Limits of detection 

(LOD) and quantification (LOQ) varied from 0.002 to 0.200 mg kg−1 and 0.006 to 0.600 mg 

kg−1, respectively. Recoveries were investigated at three fortification levels and were found 

to be acceptable (74–127%) with relative standard deviations (RSD) below 12%. Application 

of the method for the analysis of five commercial rice grain samples showed that the 

pesticide levels were below the LOD. 

Michel and Buszewski [58] proposed MSPD for extraction of carbendazim residue from 

wheat grain and determination by column-switching HPLC-DAD. For extraction, a 

representative portion (200 g) of sample grain was transferred into a mill, and sample 

material disintegrated by high speed blending. A subsample of 5 g was weighed into a 

mortar of ca. 10 cm of diameter, 10 g of acidic silica gel was added and ground to obtain a 

homogeneous mixture. The extraction column was fitted with polyethylene frit, the 
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powdery sample was transferred through a wide mouth polypropylene funnel (10 cm top 

i.d.). Mortar and pestle were rinsed with 20 mL of methanol-dichloromethane (1:5, v/v), and 

the rinsings were carefully poured into the column. The carbendazim residues were 

extracted with total volume of 120 mL eluent and collected in round-bottomed flasks. The 

mean recovery rate for fortified samples was 87.3% with a RSD of 2.9%. The achieved 

method LOQ was 0.04 µg g-1. The method was applied to the determination of carbendazim 

residues in wheat grain samples from a treated field. 

MSPD method have been published also for determination of other residues and 

contaminants e.g. mycotoxins in cereal samples. Rubert et al. [60] reported a reliable and 

rapid method for the determination of 14 mycotoxins in flour samples (with different cereals 

composition). MSPD was performed weighing 200 g which were prepared using a food 

processor and mixed thoroughly. Portions of 1 g were weighed and placed into a glass 

mortar (50 mL) and were gently blended with 1 g of C18 for 5 min using a pestle, to obtain 

homogeneous mixture. The homogeneous mixture was introduced into a 100×9 mm i.d. 

glass column, and eluted dropwise with 20 ml of acetonitrile/methanol (50/50, v/v) 1 mM 

ammonium formiate by applying a slight vacuum. In a total of 49 samples investigated, 9 

mycotoxins were identified. Nivalenol and beauvericin were the mycotoxins found most 

frequently in the studied samples. The samples that presented major contamination were 

wheat flours and bakery preparations. 

Juan et al. [61] determinate ochratoxin A (OTA) in organic and non-organic cereals and 

cereal products from Spain and Portugal. A method based on extraction with matrix solid 

phase dispersion (MSPD) using octylsilica (C8) followed by liquid chromatography coupled 

with fluorescence detection (LC–FD) was used to determine OTA from the selected samples. 

Recoveries of OTA from the studied samples spiked at 10 ng g-1 level ranged from 78 to 89% 

with a RSD of 3.7%. The limits of detection and quantification of this method were 0.05 and 

0.19 ng g-1, respectively. Furthermore, LC–FD after OTA methylation was used to confirm 

the identity of OTA in all positive samples. This procedure was applied to 83 organic and 

non-organic samples including rice, wheat, barley, rye, oats and maize from Spain and 

Portugal. 

2.7. Gel-permeation chromatography (GPC) 

In the last years polystyrene divinylbenzene type gel with mixture of elution solvents as 

ethyl acetate and cyclohexane has been used in pesticide residue analysis of cereals samples 

taking advantage of GPC to isolate pesticides from co-extractants with higher molecular 

weight (600–1500 g mol-1). GPC is able to separate the pesticides from lipids, waxes and 

other low volatile larger non-polar co-extractives. Generally, in pesticide residue analysis in 

fatty food, addition of sulfuric acid or additional SPE cleaning (avoiding decomposition of 

several pesticides occurring in the former case) are desirable to offer satisfactory protection 

for the gas chromatographic capillary column [3]. 

Regarding analysis of pesticide residues in cereals and feedstuffs, Lee et al. [62] developed 

a method for the analysis of 106 compounds in cereal-based animal feed applying ethyl 
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acetate extraction, GPC and d-SPE cleanup steps, additionally determination by 

comprehensive two-dimensional gas chromatography (GC×GC) with TOF-MS detection in 

the full scan mode. The method was demonstrated to give recoveries between 70 and 

110% and RSDs below 20% at two levels of 0.01 and 0.1 mg kg-1 for the majority of the 

studied compounds. Zhang et al. [63] used GPC for the determination of pesticides in 

unpolished rice. GPC provides ideal cleanup for high molecular weight components. 

Otherwise, low molecular weight components may result in serious interferences that can 

affect the final result.  

GPC is highly effective as a post-extraction cleanup procedure in removing interferences 

with high molecular weight (e.g. lipids, proteins and pigments) prior to the analysis by 

GC or LC. GPC also increases analytical precision and accuracy. It also ex-tends the 

column life and lifetime of the instrument. This technique can provide very good results. 

However, GPC, use large columns, need long analysis times and large amounts of 

solvents. Some pesticides with high molecular mass (e.g. pyrethroids) need not be 

sufficiently separated from wide elution band of co-extractants that can result in lower 

recoveries [64]. 

3. Instrumental identification and quantification techniques 

The two main analytical techniques used in food analysis are gas chromatography (GC) and 

liquid chromatography (LC), which allow identification and quantitation of pesticide 

residues in complex matrices. 

GC is combined with different kinds of detection methods, mainly depending on the class of 

pesticides to be quantified [48]. Electron capture detection (ECD), nitrogen-phosphorus 

detection (NPD), flame-ionization detection (FID), flame-photometric detection (FPD) and 

mass-selective detection (MSD) have been employed for pesticide residue determination in 

cereal samples. GC-MS is also frequently used for determination pesticide residues in cereal 

samples and can be done by electron impact (EI), and Positive or negative chemical 

ionization (PCI, NCI). The Table 2 summarizes details of several methods developed for the 

determination of pesticide and others analytes in different cereal samples. 

LC has been used for the analysis of polar and/or non-volatile and/or thermally labile 

pesticides for which GC conditions were not suitable [65]. Most used detectors are UV, 

diode array detector (DAD) and MSD, as we can see the Table 2. Traditional UV detectors 

and DADs are often less selective and less sensitive than GC instruments but, in recent 

years, the commercial availability of atmospheric pressure ionization (API), in combination 

with MS instruments, has increased the sensitivity by several orders of magnitude [66]. LC-

MS/MS applications reported for the analysis of pesticides residues in cereal samples are 

performed with two different ionization techniques: electrospray ionization (ESI) and 

atmospheric pressure chemical ionization (APCI). Although ESI is the more often used 

when compared with APCI source. 
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Analytes Sample 
Extraction 

Procedure
Cleanup 

Analytical 

technique 

LOQ 

(µg kg−1) 

Recovery (%) 

(RSD %) 
References 

bisphenol A (BPA), 

4-tert-butylbenzoic 

acid (BBA), 4-

nonylphenol (NP), 

4-tert-butylphenol 

(t-BP), 2,4-

dichlorophenol (DCP), 

2,4,5-trichlorophenol 

(TCP) and 

pentachlorophenol 

(PCP) 

breakfast 

cereals 
PLE - 

LC–ESI-

MS 
3.0 – 43.0 

81 - 104 

(4 - 9) 
37 

benzoylureas 

fruit, 

vegetable, 

cereals and 

animal 

products 

PLE - LC-MS/MS 2.0 – 10.0 
58 - 97 

(5 - 19) 
42 

acetanilide herbicide 
rice, wheat 

and maize 
PLE SPE GC-ECD 2.4 - 5.3 

82.3 - 115.8 

(1.1 - 13.6) 
43 

22 pesticides 
white and 

wild rice 
SFE SPE 

GC-ECD 

GC-TSD 
- 

74 

98 
49 

acetochlor and 

propisochlor 
Soil and corn methanol/water/SPE GC-ECD 10.0 

73.8 - 115.5 

(< 11.1) 
53 

Bispyribac sodium rice 

liquid–liquid 

partition and anion 

exchange solid phase 

HPLC-

DAD 
10.0 

83.98 - 98.51

(0.56 - 6.36) 
54 

Penoxsulan, 

tricyclazole, propanil, 

azoxystrobin, 

molinate, profoxydim, 

cyhalofop-butyl, 

deltamethrin and  

3,4-dichloroaniline 

(the main metabolite 

of propanil) 

rice MSPD 
HPLC-

DAD 
6.0 - 600.0 

74 – 127 

(< 12) 
58 

carbendazim wheat grain MSPD 
HPLC-

DAD 
40.0 

87.3 

(3.3) 
59 

Table 2. Different methods applied to the determination of pesticide and others analytes in different 

cereal samples. 

4. Conclusions 

Although detection equipment’s are becoming more specific and sensitive, there is still a 

need for efficient sample preparation methods for pesticides residues analysis in cereals and 

feedstuffs, which are compatible with modern analytical techniques. Despite the advances in 

separation and detection of the chromatographic systems, cleanup remains important for 

obtaining reliable data. There is still a need for effective, environmentally friendly and fast 

methods for sample treatment and determination of pesticide residues in fatty food matrices 

e.g. cereals and feedstuffs. Modern sample preparation techniques should be not only 

simple, reliable, cheap and take into account chemical laboratory waste problems, but also 
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must be similar to common analytical techniques, in order to minimize errors. For these 

reasons, modern trends in analytical chemistry are towards the simplification and 

miniaturization of sample preparation, and the minimization of sample size and organic 

solvent used. The development of such procedures combined with modern 

chromatographic-mass spectrometric techniques will enable analysis at the low levels now 

required by legislation for many pesticides, but more importantly, result in methods which 

produce more reliable data to support food safety monitoring programs. This is the trend 

although it is impossible to develop a unique protocol covering such a wide range of 

compounds. Finally, multiclass multiresidue methods covering large number of pesticides 

are highly desirable, although the different nature, classes and physico-chemical properties 

of pesticides hamper the development of such methods.  
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