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1. Introduction 

Diabetes mellitus (DM) is a metabolic disorder resulting from a defect in insulin secretion, 

insulin action, or both (Kumar et al., 2002). In type 1 diabetes, the body does not produce 

insulin. Insulin is a hormone that is needed to convert sugar, starches and other food into 

energy needed for daily life. Insulin deficiency in turn leads to chronic hyperglycaemia with 

disturbances of carbohydrate, fat and protein metabolism (Kumar et al., 2002). As the 

disease progresses tissue or vascular damage ensues leading to severe diabetic 

complications such as retinopathy, neuropathy, nephropathy, cardiovascular complications 

and ulceration (Huang, Kim et al. 2002; Wallace, Reiber et al. 2002; Bearse, Han et al. 2004; 

Seki, Tanaka et al. 2004; Svensson, Eriksson et al. 2004). Thus, diabetes covers a wide range 

of heterogeneous diseases. Diabetes is the most common endocrine disorder and by the year 

2015, it is estimated that more than 200 million people worldwide will have DM and 300 

million will subsequently have the disease by 2025. Type 1 diabetes is usually diagnosed in 

children and young adults, and was previously known as juvenile diabetes.  

The diagnostic criteria and the classification of diabetes was first put forward by the World 

Health Organization (WHO) in 1965 then by the National Diabetes Data Group (NDDG) in 

1979, and the latest recommendations have been published by the American Diabetes 

Association (ADA) in 1997 and by the WHO in 1999(Genuth, Alberti et al. 2003). According 

to the ADA recommendation, the fasting glucose concentration should be used in routine 

screening for diabetes as well as epidemiological studies; the threshold for fasting glucose is 

fasting glucose = 7.0 mmol/L (126 mg/dl) and /or a 2-h glucose = 11.1 mmol/L (200 mg/dL). 

For the diagnosis of diabetes, at least one criteria must also apply: 

 Symptoms of diabetes (polyurea, polydipsia, unexplained weight loss, etc) as well as 

casual plasma glucose concentration = 11.1 mmol/L (200mg/dL). 

 Fasting plasma glucose = 7.0 mmol/L (126mg/dL), with no caloric intake for at least 8 h. 
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Diabetes Mellitus may be categorized into several types but the two major types are type 1 

and type 2. The term type 1 and type 2 were widely used to describe Insulin-Dependent 

Diabetes Mellitus (IDDM) and Noninsulin-Dependent Diabetes Mellitus (NIDDM), 

respectively. On the basis of etiology, Type 1 (DM) is present in patients who have little or 

no endogenous insulin secretory capacity and who therefore require insulin therapy. The 

two main forms of clinical type 1 diabetes are type 1a (about 90% of type 1 cases) which is 

thought to be due to immunological destruction of pancreatic beta-cells resulting in insulin 

deficiency, and type 1b (idiopathic, about 10% of type 1 diabetes), in which there is no 

evidence of autoimmunity. Type 1a is characterized by the presence of islet cell antibody 

(ICA), anti-glutamic acid decarboxylate (anti-GAD), IA-2 or insulin antibodies that identify 

the autoimmune process with beta-cell destruction. Autoimmune diseases such as Grave’s 

disease, Hashimoto’s thyroiditis and Addison’s disease may be associated with Type 1 (DM) 

(Betterle, Zanette et al. 1984; Atkinson and Maclaren 1994). There is no known etiological 

basis for type 1b diabetes mellitus. Some of Type1b patients have permanent insulinopaenia 

and are prone to ketoacidosis, but have no evidence of autoimmunity. This form is more 

prevalent among individuals of African and Asian origins. 

Type 2 diabetes is the commonest form of DM and is characterized by disorders of insulin 

secretion and insulin resistance. 

Type 1 (DM) is a multifactorial disease characterized by the autoimmune destruction of 

insulin-secreting pancreatic beta-cells causing tissue damage. The peak age of onset is about 

12 years, and from then onwards daily injections of insulin are required by affected 

individuals. With a frequency of about 0.4% in Caucasians of European descent, Type 1 

(DM) is second to asthma as the most serious chronic childhood disease in the Western 

world (Wan, Yang et al. 2010). There is a marked geographic variation of Type 1 (DM), with 

a higher incidence in the European and North American than the Asian and south American 

countries. The current global increase in incidence of 3% per year is well reported. This 

rapid rise strongly suggests that the action of the environment on susceptibility genes 

contributes to the evolving epidemiology of this disease(Wan, Yang et al. 2010). 

Type 1 (DM) shows a complex mode of inheritance, with disease susceptibility caused both 

by genetic and by environmental components. The penetrance of disease genes being 

determined by unknown environmental factors. Identical twins of affected individuals have 

a risk of developing the disease of only 36% (Owerbach and Gabbay 1996), demonstrating 

the importance of the environmental factors. Nevertheless, genetic factors are essential, as 

measured by the quantity (i.e. the ratio of the risk to siblings of patients compared with the 

population prevalence). The disease is polygenic in humans and in mice, with a number of 

different susceptibility genes each accounting for a portion of the familial clustering of the 

disease (Pharoah, Dunning et al. 2004). Around the time of clinical presentation, insulitis, a 

chronic inflammatory infiltrate of the islets affecting primarily insulin containing islets, is 

present in the majority of cases. The mononuclear cell infiltrates in the islet, which results in 

the development of insulitis (a prerequisite step for the development of diabetes) are 

primarily composed of T cells. It is now well accepted that these T cells play important roles 

in initiating and propagating an autoimmune process, which in turn destroys insulin-
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producing islet beta-cells in the pancreas (Toyoda and Formby 1998). Understanding 

insights of the mechanism of immune-mediated islet cell destruction and the interaction 

between the immune system and pancreatic islets provide new therapeutic means of 

preventing this chronic debilitating disease. 

Before safe and rational therapies can be offered in a clinical setting, a detailed 

understanding of the immune-mediated process that results in Type 1 (DM) is required, as 

is the accurate identification of those at risk of the disease. The immunogenetics of type 1 

diabetes has become the model upon which other complex disorders are studied, and in this 

chapter we focus on the importance of recent insights into the pathogenesis and natural 

history of Type 1 (DM) with consideration to current therapeutic strategies, and future 

perspective for the efficient treatment. 

2. Diabetes mellitus clinical manifestation and diagnosis 

The symptoms of diabetes are more readily recognizable in children than in adults, so it is 

surprising that the diagnosis may sometimes be missed or delayed. Those families with a 

strong family history of diabetes should suspect diabetes, especially if there is one child in the 

family with diabetes. Main manifestations are: polyuria, polydipsia, polyphagia, progressive 

cachexia, glucosuria, hyperglycemia, increasing of specific gravity of urine, blurred vision, 

fatigue, cramps and candidiasis. Diabetic retinopathy is a major complication of diabetes 

(Bakker, Tushuizen et al. 2012). Diabetes causes high blood sugar levels, which can damage 

blood vessels. The damaged vessels around the retina can leak protein and fats, forming 

deposits that can interfere with vision. The damaged blood vessels are also not as effective at 

carrying oxygen to the retina, which can also cause damage (Bakker, Tushuizen et al. 2012). 

When blood glucose concentrations increase, more glucose is filtered by the glomeruli of the 

kidneys than can be reabsorbed by the kidney tubules, resulting in glucose excretion in the 

urine. High glucose concentrations in the urine create an osmotic effect that reduces the 

reabsorption of water by the kidneys, causing polyuria (excretion of large volumes of urine) 

(Katavetin 2009). The loss of water from the circulation stimulates thirst. Therefore, patients 

with moderate or severe hyperglycemia typically have polyuria and polydipsia (excessive 

thirst). The loss of glucose in the urine results in weakness, fatigue, weight loss, and 

increased appetite (polyphagia). Patients with hyperglycemia are prone to infections, 

particularly vaginal and urinary tract infections and an infection may be the presenting 

manifestation of diabetes (Katavetin 2009). 

There are two acute life-threatening complications of diabetes: hyperglycemia and acidosis 

(increased acidity of the blood), either of which may be the presenting manifestation of 

diabetes. In patients with Type 1 (DM), insulin deficiency, if not recognized and treated 

properly, leads to severe hyperglycemia and to a marked increase in lipolysis (the 

breakdown of lipids), with a greatly increased rate of release of fatty acids from adipose 

tissue (Wajchenberg 2007). In the liver, much of the excess fatty acid is converted to the keto 

acids beta-hydroxybutyric acid and acetoacetic acid. The increased release of fatty acids and 

keto acids from adipose, liver, and muscle tissues raises the acid content of the blood, 
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thereby lowering the pH of the blood. The combination of hyperglycemia and acidosis is 

called diabetic ketoacidosis and leads to hyperventilation and to impaired central nervous 

system function, culminating in coma and death.  

Many studies have also shown that hyperglycemia causes oxidative stress in tissues that are 

susceptible to complications of diabetes mellitus, including peripheral nerves (Ziegler, Sohr 

et al. 2004). The autonomic nervous system modulates the electrical and contractile activity 

of the myocardium via the interplay of sympathetic and parasympathetic activity (Lahiri, 

Kannankeril et al. 2008). An imbalance of autonomic control is implicated in the 

pathophysiology of Type 1 (DM). Cardiovascular autonomic neuropathy, a common form of 

autonomic dysfunction found in patients with diabetes mellitus (Maser and Lenhard 2005), 

as well, and causes abnormalities in heart rate control, as well as defects in central and 

peripheral vascular dynamics. 

Symptoms are similar in both types of diabetes but they vary in their intensity. 

Longstanding Type 1 (DM) patients are susceptible to microvascular complications; and 

macrovascular disease (coronary artery, heart, and peripheral vascular diseases) (Saely, 

Aczel et al. 2004; Svensson, Eriksson et al. 2004)and end stage renal disease. Ketoacidosis is 

usually not a problem in patients with type II diabetes because they secrete enough insulin 

to restrain lipolysis. 

Symptoms in type 2 DM are similar but usually milder and insidious in onset. Geographical 

differences exist in both the magnitude of these problems and their relative contributions to 

overall morbidity and mortality.  

3. Composition of the islet infiltrates and the mechanism of beta-cell 

destruction 

The histopathology of type 1 diabetes is defined by a decreased beta-cell mass in association 

with insulitis, a characteristic lymphocytic infiltration limited to the islets of Langerhans and 

prominent in early stage disease in children. It is considered to be pathognomonic for recent 

onset disease. The infiltrate consists predominantly of T cells, in which CD8+ lymphocytes 

dominate, but may also contain CD4+ lymphocytes, B-lymphocytes and macrophages 

(Willcox, Richardson et al. 2009).  

The cellular response is accompanied by a humoral response that includes autoantibodies 

against a wide array of beta-cell antigens (which will be discussed later). However, the 

precipitating (auto)antigen against which the inflammatory response is directed has not 

been identified, nor has it been established whether the humoral response that is considered 

to be part of our current diagnostic criteria is a cause or a consequence of the disease. 

Although animal models for the disease exist, like the spontaneously non-obese diabetic 

(NOD) mouse, they are found to differ from the human disease in many key aspects and it is 

an open question whether data derived from such models will be applicable to patients. In 

fact, even after a century of research we know very little about the etiology and 

histopathology of the human disease. 
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The pancreas is a difficult organ to biopsy and most of the material is therefore post-

mortem. The islets are scattered in a matrix of exocrine tissue and thus form only 1–2% of 

the parenchymal tissue. In addition the beta-cells are not homogeneously distributed 

throughout the gland and are often located within a few lobes. In a diabetic condition, the 

lesions are mainly found in islets in which beta-cells are still present and the lesions will 

largely disappear together with the beta-cells against which the reaction appears to be 

directed. In addition, the few cases that were brought to autopsy often died in ketoacidosis, 

they may thus represent a more fulminant version of the disease that is not necessarily 

characteristic for the disease process in the rest of the population. Lastly, and perhaps most 

importantly, the histopathological lesions that we observe in cases with recent onset disease 

will only show the final stages of a process that has been going on for a long period of time, 

and until recently, we had no material available of earlier stages of the disease. Identifying 

patients with pre-clinical disease and studying the immunological processes occurring at 

this stage may prove to be indispensable for a breakthrough in our quest for the etiology of 

the disease.  

3.1. A Brief history of insulitis 

Inflammatory infiltrates in the islets of Langerhans were first described in 1902 by the 

German pathologist Schmidt (Nagler and Taylor 1963), who found foci of small-cell 

infiltration in the periphery of islets of Langerhans from a 10 year old diabetic child with an 

unknown duration of disease. This islet-specific inflammation, later termed “insulitis” by 

the Swiss pathologist von Meyenburg, was long considered to be a rare event. Cecil (Cecil 

1909) described leucocytic infiltration associated with islets in 9 out of 90 patients with 

diabetes, but often under conditions in which a more generalized pancreatitis was present; 

he observed islet-specific inflammation in only a single case, involving a young adult patient 

with recent onset disease. In 1928 Stansfield and Warren were the first to draw attention to 

the association between insulitis and the age of the patient; they described insulitis in a six year 

old girl who died in a diabetic coma two months after onset of the disease, and in an 11 year 

old girl who died in a diabetic coma within four weeks after the initiation of symptoms. In 

their view, the striking lymphocytic infiltration in the islets of both cases suggested a causal 

relationship between the inflammation and the diabetic condition in these two young patients 

with recent onset fulminant disease. On the other hand, it was clear from their studies in larger 

groups of children that insulitis was not always observed. These observations were revisited in 

1958 by LeCompte (Lecompte 1958) who collected four cases with insulitis, all involving acute 

onset disease and short duration in children. He proposed four possible explanations for the 

presence of the cellular infiltrate: a direct invasion of the islets by an infectious agent, a 

manifestation of functional overstimulation or strain, a reaction to damage by some unknown 

nonbacterial agent and lastly an antigen-antibody reaction. 

Fifty years later one could still make the same list, as none of these possibilities has been 

excluded. In a 1965 landmark study, Willy Gepts (Gepts 1965) reported the presence of the 

lesion in 15/22 (68%) recent onset cases below the age of 40 and noted that it was not present 

in patients with a disease duration of more than a year. He also noted that beta-cell mass 
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appeared to be reduced to approximately 10% of that in non-diabetic controls. Other authors 

supported the findings as well. Foulis et al (Foulis, Liddle et al. 1986) using a 25-year 

computerized survey of deaths in the UK to identify 119 young patients who died in 

ketoacidosis before the age of 20, in combination with immunohistochemistry to identify islets 

and infiltrating leucocytes, confirmed that insulitis was present in 47 out of 60 (78%) of young 

patients with recent onset disease (<1 year). These investigators, however, also pointed out that 

certain heterogeneity seemed to exist in their patient population, as it is observed that young-

adult patients with a short duration of the disease showed no evidence of insulitis and in 

which all islets contained insulin. Together it appears that insulitis exist predominantly in (pre) 

diabetic patients in which it is limited to islets that were still insulin-containing. 

3.2. Pathogenic autoantigen in type 1 diabetes 

The major autoantigens in Type 1 (DM), identified by circulating autoantibodies, are 

glutamic acid decarboxylase (GAD), tyrosine phosphatase-like insulinoma antigen and (pro) 

insulin. It is not clear, however, which if any drive pathogenic T cells. So far, no antigen has 

emerged as dominant, although both glutamic acid decarboxylase and insulin have been 

postulated to be principal autoantigens (Pugliese, Brown et al. 2001). 

With the possible exception of rare self-antigen-expressing cells in lymphoid tissue 

(Pugliese, Brown et al. 2001), proinsulin is expressed uniquely in beta-cells. Investigation on 

humans (Kent, Chen et al. 2005), and murine model (Nakayama, Abiru et al. 2005), highlight 

the pancreatic beta-cell hormone insulin as a major target for T cell attack. If insulin, or 

peptides of the β chain of insulin, is given orally (Bergerot, Fabien et al. 1994) intranasally 

(Harrison, Dempsey-Collier et al. 1996) or subcutaneously(Hutchings and Cooke 1998), 

diabetes is suppressed. In addition, when proinsulin is expressed in the NOD mice under 

the control of a MHC class II promoter, such that it is expressed on antigen-presenting cells 

and in the thymus, the incidence of diabetes is decreased (French, Allison et al. 1997). There are 

some reports demonstrating that insulin gene polymorphism is associated with predisposition 

to Type 1 (DM) (which will be discussed later). In some studies specificity of the T cell 

response was confirmed by isolation of CD4+ and CD8+ T cell clones specific for the insulin 

epitopes. The most convincing evidence of a pathogenic role of insulin specific CD4+ T cells 

came from a study in which the insulin A1–15 specific T cells were expanded from pancreatic 

lymph nodes of deceased patients affected by Type 1 (DM) (Kent, Chen et al. 2005). 

Moreover, Multiple T-cell epitopes against GAD65 (glutamate decarboxylase 65) have been 

associated with Type 1 (DM). GAD65 is expressed in the endocrine cells of the islets of 

Langerhans and in the central nervous system (Karlsen, Hagopian et al. 1991). The major 

autoantigens, in which there are evidence that are associated to the pathogenesis of Type 1 

(DM) are listed below. 

3.3. Phenotyping insulitis 

Immunophenotyping of the infiltrate showed that most cells corresponded to T cells, with T 

cytotoxic/suppressor cells being most abundant, although helper CD4+ T cells and NK cells 
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were also present (In't Veld 2011). CD8+ T lymphocytes (T cytotoxic/suppressor) were the 

main infiltrating cell type. In addition to lymphocytes, macrophages were a prominent 

feature of the infiltrate; although it is controversial and in some studies macrophages were 

not found in insulitic lesions. The composition of the cellular infiltrate is stratified according 

to the percent beta-cells present in islets collected across patients (In't Veld 2011). The 

percent beta-cells would be a surrogate marker for the stages of advent of the insulitic 

lesion, with 50–69% insulin-positive area taken as starting point and 0% insulin-positive 

area as end-stage (In't Veld 2011). In all stages, CD8+ T cells are predominant, increasing in 

number with decreasing insulin-positive area, but disappearing when insulin-positivity is 

completely lost. CD20+ B-cells were found to be the second most prominent cell type, 

following the dynamics of CD8+ cells, while macrophages were present at relatively 

constant levels becoming the most prominent infiltrating cell type in insulin-deficient islets. 

 

autoantigen Expression 
Subcellular 

location 

Involvement in 

the NOD mouse

Human T1D 

autoantibodies
CD4+ 

T cells 

CD8+ 

T cells 

Insulin β-cell, thymus
secretory 

granule 
+ + + + 

GAD 65 neuroendocrine
synaptic-like 

microvesicles 
+ + + + 

GAD 67 neuroendocrine cytosol + + + + 

IA-2 (ICA512) neuroendocrine
secretory 

granule  
+ + + 

IA-2 

β/phogrin 
neuroendocrine

secretory 

granule  
+ + + 

IGRP β-cell 
endoplasmic 

reticulum 
+ ? + + 

Chromogranin neuroendocrine
Secretory 

granule 
+ ? ? ? 

ZnT8 β-cell 
secretory 

granule 
? + ? ? 

HSP-60 

HSP-70 
Ubiquitous mitochondria + + + ? 

Glima-38 
 

secretory 

granule 
? + ? ? 

Amylin/IAPP 
 

secretory 

granule 
? ? ? + 

CD38 Ubiquitous ? ? ± ? ? 

Table 1. Autoantigens defined as recognized by T cells in human and NOD mice type 1 (DM).  
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Phenotyping the infiltrating cells in insulitic lesions is only a first step in a process to 

identify the antigen against which the infiltrate is directed. The key step will be to analyze 

their specificity. Direct analysis of insulitic T cell specificity has been reported to date is 

limited, although some studies suggest that CD4+ T cells isolated from pancreases of Type 1 

(DM) patients are specific to some parts of the insulin molecule (Kent, Chen et al. 2005). 

Although the predominantly CD3+CD8+ phenotype of the infiltrating cells is compatible 

with a cytotoxic T cell mediated beta-cell destruction, it has not yet been proven that the 

cells in the insulitic lesion are the cells that are actually responsible for the destruction of the 

beta-cell component. However many studies suggest that a cytotoxic T cell mediated 

destruction of insulin-producing beta-cells is initiated by an unknown (auto)antigen, 

leading to the destruction of beta-cell mass. 

It is equally well possible that a large part of such infiltrates are the consequence of beta-cell 

destruction rather than its cause, at least at this relatively late time point in the progression 

of the disease. What we observe at clinical presentation is the final stage of a process that 

may have been going on for a long period of time. If the presence of circulating 

autoantibodies against islet cell antigens is considered as a surrogate marker for beta-cell 

destruction, then the process may take years before the clinical threshold is reached. 

Determining the incidence and time course of insulitis prior to diagnosis and correlating it 

to the presence, and persistence of circulating immune markers, will be crucial for our 

understanding of the disease and for the development of immune intervention strategies. It 

is important to correlate such information to the regenerative capacity of the beta-cell mass. 

Not all individuals who are autoantibody-positive progress to overt disease and the process 

may well involve episodes of fulminant destruction followed by episodes of repair and 

regeneration. 

Islets with insulitis contain replicating beta-cells, indicating that beta-cells retain a sub-

stantial capacity for growth that appears to be activated under conditions of inflammation. 

It cannot be excluded that such newly formed cells attract recurrent autoimmune attack and 

that islets with a low insulin-positive area represent islets with regeneration rather than 

islets in the last stages of beta-cell destruction.  

3.4. Mechanisms of beta-cell destruction and initiation of pathogenesis 

Although the pathogenesis of Type 1 (DM) has been extensively studied, the precise 

mechanisms involved in the initiation and progression of beta-cell destruction remain 

unclear. Animal models used in the study of Type 1 (DM), such as the (BB) rat and (NOD) 

mouse, have greatly enhanced our understanding of the pathogenic mechanisms involved 

in this disease. In these animals, macrophages and/or dendritic cells are the first cell types to 

infiltrate the pancreatic islets (Yoon and Jun 2005). Macrophages must be involved in the 

pathogenesis of Type 1 (DM) early on, since inactivation of macrophages results in the near-

complete prevention of insulitis and diabetes in both NOD mice and BB rats (Yoon and Jun 

2005). The activated macrophages secrete IL-12, which stimulates Th1 type CD4+ T cells. The 
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CD4+ T cells secrete IFN-γ and IL-2. IFN-γ activates other resting macrophages, which, in 

turn, release cytokines, such as IL-1β, TNF-α, and free radicals, which are toxic to beta-cells. 

During this process, IL-2 and other cytokines induce the migration of CD8+ peripheral T 

cells to the inflamed islets, perhaps by inducing the expression of a specific homing 

receptor. The precytotoxic CD8+ T cells that bear beta-cell-specific autoantigen receptors 

differentiate into cytotoxic effector T cells upon recognition of the beta-cell-specific peptide 

bound to MHC class I molecules in the presence of beta-cell-specific CD4+ T helper cells. The 

cytotoxic CD8+ T cells then affect beta-cell damage by releasing perforin and granzyme, and 

by Fas-mediated apoptosis. In this way, macrophages, CD4+ T cells, and CD8+ T cells 

synergistically destroy beta-cells, resulting in the onset of autoimmune Type 1 (DM). 

Both direct and indirect killing of beta-cells, mediated by CD8+cytotoxic T cells and 

CD4+helper T cells respectively, are thought to occur by apoptosis following activation of 

caspases, but necrosis also might play some role (Rasche, Busick et al. 2009). Based upon 

animal models, it is now generally believed that multiple effector molecules and pathways 

are involved in beta cell killing. In addition to apoptosis being the main mechanism by 

which beta-cells are destroyed, beta-cell apoptosis has been implicated in the initiation of 

Type 1 (DM) through antigen cross-presentation mechanisms that lead to beta-cell-specific T 

cell activation (The term cross-presentation denotes the ability of certain antigen-presenting 

cells to take up, process and present extracellular antigens with MHC class I molecules to 

CD8+cytotoxic T cells). In mammals, there are 14 caspases, of which many participate in the 

apoptotic pathways. Caspase-3 is the major effector caspase involved in apoptotic pathways. 

Caspase-3 knockout mice were protected from developing diabetes in autoimmune diabetes 

model. 

As explained before, autoantibodies have turned out to be excellent diagnostic and 

predictive markers for Type 1 (DM). However, it is generally thought that they play only a 

minor role, if any, in the actual pathogenesis of the disease. Instead, the cell-mediated 

immune response is believed to be responsible for beta-cell killing as explained above. 

Inflammatory cells are found in and around the pancreatic islets. However, human studies 

show that in some individuals these inflammatory cells are present for years without clinical 

symptoms. In fact, some individuals with autoantibodies and insulitis do not go on to 

develop clinical disease. The outcome appears to be related to the amount of beta-cell 

destruction. It is estimated from animal studies that between 80 and 90% of the beta-cells 

must be destroyed before the diabetes becomes clinically apparent. In humans, however, 

the temporal and quantitative relationships between inflammatory cells, beta-cell damage, 

and clinical diabetes have been difficult to determine because pancreatic biopsies are not 

easy to be performed. Finally, much of our information about cell-mediated immune 

pathogenesis and beta-cell killing comes from animal models. These animals 

spontaneously develop an autoimmune disease similar, although not identical, to human 

autoimmune Type 1 (DM). 

The possible dysregulation of Regulatory T cells (Treg) suppressor activity is shown to 

association to Type 1 (DM) as well. 
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3.5. Immunoregulatory problems underlie loss to beta-cell tolerance 

Regulatory CD4+ T-cells (Treg), whose development and function is dictated by the Foxp3 

gene in mice and humans have the primary function of pouring a cold shower on 

inflammatory responses. They suppress and regulate the function of various immune 

responses to microbes, tumors, allergens and transplants (Sakaguchi, Setoguchi et al. 2006). 

It is suspected that defects in Treg number and activity are causally related to the 

development of Type 1 (DM). It is likely, that certain genetic predispositions, coupled with 

the possible contribution of external environmental factors or infections, could potentially 

alter regulatory T-cell function in susceptible individuals and trigger a full-scale diabetic 

autoimmune reaction in the pancreas.  

Many studies have implicated Treg cells in the control of diabetes onset and progression, 

and that reduced Foxp3+ Treg cell frequencies or functions in NOD mice, represent a 

primary predisposing factor to diabetes. Whether thymic development of Treg cells is 

normal in NOD mice has been a contentious issue. Recent studies show that thymic 

development of Treg cells seems to be normal, as thymectomy in NOD mice up to 3 weeks 

of age results in exacerbated Type 1 (DM) due to a marked reduction in Treg cells 

(Dardenne, Lepault et al. 1989). Surprisingly, the NOD background proved superior in 

generating Treg cells in the thymus relative to non-autoimmune prone strain C57/BL6, 

suggesting that central tolerance mechanisms are intact. Furthermore, the frequency and 

function of single-positive Foxp3+ Treg cells in the thymus of NOD was comparable to 

diabetes-resistant C57/BL6 mice (Tritt, Sgouroudis et al. 2008). 

It is believed that regulatory T cells may represent a kind of master switch, and by 

understanding how they are made, how they function and how they survive, we may be 

able to stop disease from occurring. The use of beta-cell specific Tregs is also leading to a 

tissue specific immunotolerance without perturbing the general immunocompetence. If 

subsequent studies show that Tregs represent a safe and efficient source for therapy, they 

could become an important weapon in the fight against immune mediated pathology. 

4. Triggers of autoimmune cascade 

A critical question, independent of the mechanism by which the immune response kills 

beta-cells, is what actually triggers the autoimmune cascade. Immunologic, genetic, and 

environmental factors have been implicated. Normally an individual’s T lymphocytes are 

immunologically anergic or tolerant to self-antigens. T lymphocyte education and selection 

takes place in the thymus. T cells that do not receive a signal from an HLA-autoantigen 

complex die by neglect. T cells that receive a signal from an HLA-autoantigen complex that 

is too strong die by apoptosis. However, T cells that receive a weak, low affinity signal from 

an HLA-autoantigen complex are positively selected. These positively selected autoantigen-

specific T cells, generally present in very low numbers, escape from the thymus and migrate 

to peripheral organs throughout the body including the pancreas. Under ordinary 

circumstances they remain dormant and are kept under strict regulatory control by still 

poorly defined regulatory mechanisms (e.g. CD4+CD25+Foxp3+ Regulatory T cells or other 
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regulatory pathway). If, however, these antigen-specific T cells come in contact with cognate 

autoantigens presented by beta-cells or APCs, through MHC-I and MHC-II respectively, in 

the pancreas and if the regulatory controls fail, these dormant, antigen-specific T cells will 

be activated and the autoimmune cascade of beta-cell killing will be initiated. Thus, immune 

dysregulation may serve as one of the triggers for autoimmunity. Genetic and 

environmental factors have been implicated as possible initiating triggers. The fact that in 

identical twins the concordance rate for Type 1 (DM) is less than 50% argues for genetic 

predisposition upon which an environmental insult is superimposed. More than 20 putative 

diabetes predisposing genes have been identified, but most of them have only a weak 

association, and in many cases the association has been difficult to confirm. The one 

exception is the HLA genes, which are thought to contribute as much as 50% of the genetic 

risk for Type 1 (DM) (Noble, Valdes et al. 2010). Although HLA genes may be necessary, by 

themselves they seem not to be sufficient to produce the disease. From a genetic point of 

view, all the evidence points to Type 1 (DM) as a complex disease involving a combination 

of several different genes. However, it may be that there is no specific “diabetes” gene(s). 

Instead, there may be the “wrong combination” of perfectly normal genes (i.e. alleles, 

haplotypes) that regulate, at the level of the beta-cell, processes such as apoptosis or antigen 

processing and presentation which, in turn, may trigger an autoimmune response.Various 

environmental triggers, e.g. certain viruses and dietary factors, are also thought to initiate 

the autoimmune process, leading to the destruction of pancreatic beta-cells and consequent 

Type 1 (DM). The major focus of the following parts is on genetic and environmental factors 

that predispose and triggers the autoimmune cascade.  

4.1 Genetic etiology of Type 1 (DM)  

To date, twelve separate chromosome regions have been implicated in the development of 

human Type 1 (DM). The major disease locus, IDDM1 in the major histocompatibility 

complex (MHC) on chromosome 6p21, accounts for about 35% of the observed familial 

clustering and its contribution to disease susceptibility is likely to involve polymorphic 

residues of class II molecules in T-cell-mediated autoimmunity (Huber, Menconi et al. 2008). 

IDDM2 is encoded by a minisatellite locus embedded in the regulatory region of the insulin 

gene. Familial clustering of disease can be explained by the sharing of alleles of at least 10 

loci. IDDM1 and IDDM2 interact epistatically. For a multifactorial disease, such as Type 1 

(DM), important information concerning the pathways and mechanisms involved can be 

gained from examining such interactions between loci, using methods that simultaneously 

take account of the joint effects of the various underlying genetic components. 

The task of identifying susceptibility genes for complex human traits can be facilitated by 

first mapping susceptibility genes in an experimental species, such as the mouse or rat, and 

then performing mapping studies in humans by examining regions of disease in an animal 

model. However the animal models might not be same as the human susceptibility genes, in 

terms of the number of genes involved, interactions between loci and the physiological 

disease processes. For IDDM, the (NOD) mouse spontaneously develops Type1 (DM) with 

remarkable similarities to the human disorder. Moreover, IDDM1, the major genetic locus 
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contributing to human IDDM in the MHC has been shown to be conserved between the two 

species of human and murine. A second locus, IDDM7 on chromosome 2q31, is homologous 

to a region containing the NOD locus, Idd5, on chromosome 1 (Copeman, Cucca et al. 1995). 

Thirdly, there is evidence that the gene region encoding the human interleukin 1 (IL-1) on 

chromosome 2q12-q21 is associated and linked to Type 1 (DM). This region would 

correspond to mouse chromosome 2, in which the region encoding IL-1 has also been linked 

to NOD diabetes (Serreze, Prochazka et al. 1994).  

A key issue in the identification of disease susceptibility genes is that of testing association 

versus testing linkage. Only through demonstrating association between specific alleles at a 

disease locus and the disease can the causal role of particular polymorphisms in the 

physiological disease processes be investigated. For mapping of disease loci, however, 

demonstration of linkage and estimation of the recombination fraction between a disease 

locus and known marker loci is required. Having mapped a disease locus to a particular 

chromosome region, the position of the disease locus can be further localized using tests of 

linkage disequilibrium between particular marker alleles and the disease, which assumes a 

founder effect for the ancestral mutation or selection of the mutation in the study 

population. 

The strongest genetic association for Type 1 (DM) is with the HLA class I and II genes, with 

a 30–50% of the genetic risk for progression of the disease. Therefor in the next section the 

contribution of HLA genes predisposing to Type 1 (DM) will be addressed more 

extensively.  

4.1.1. HLA genes predisposing to Type 1 (DM) 

From a genetic point of view, combinations of several different genes are involved in 

predisposition to Type1 (DM), and there is no specific diabetes gene(s). Human Leukocyte 

Antigen (HLA) genes are thought to contribute the massive part of the genetic risk for 

Type1 (DM). In humans, the MHC is known as the HLA complex and contains over 200 

genes. It is located on chromosome 6 and encodes HLA class I and class II molecules. The 

main function of these molecules is to present antigens that have been processed into peptides 

to antigen-specific receptors on CD4 and CD8+T lymphocytes. Class I molecules, expressed on 

most nucleated cells, are encoded by genes within the HLA-A, -B, and -C loci, whereas class II 

molecules, expressed primarily on antigen-presenting cells (e.g. macrophages and dendritic 

cells), are encoded by genes within the HLA-DP, -DQ, and -DR loci.  

HLA class I and II genes are highly polymorphic and consist of many different alleles. In 

type 1 diabetes, certain HLA class II alleles or combinations of alleles (haplotypes) show a 

strong association with the development of diabetes, whereas other haplotypes show a weak 

or even protective association. It is well established that the HLA-DR3 and HLA-DR4 genes 

at the HLA-DR locus on chromosome 6 are strongly associated with increased susceptibility 

to insulin-dependent diabetes (Field and McArthur 1987), and that the predisposition is 

greatest among individuals who possess both of these genes (HLA-DR3/4 heterozygotes). 

Furthermore, individuals with the HLA haplotype DRB1*0302- DQA1*0301, especially when 
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combined with DRB1*0201- DQA1*0501, are highly susceptible (10–20-fold increase) to 

Type1 (DM) (Pociot and McDermott 2002). In contrast, individuals with the haplotype 

DRB1*0602-DQA1*0102 rarely develop type 1 diabetes. Many other high and low risk 

haplotypes have been identified, and the frequency of specific haplotypes differs among 

ethnic groups (Pociot and McDermott 2002). Other genes within the HLA complex, 

particularly class I genes, also have been linked to type 1 diabetes, but the strongest linkage 

by far is with the DQ and DR class II genes. 

Experimental support for the importance of class II genes in the development of diabetes 

comes from a variety of sources including the deletion of specific MHC loci in mice and 

their replacement with human HLA homologs. Although the linkage of HLA class II 

molecules with Type1 (DM) is now well established and the binding of peptides to pockets 

within the groove of the HLA class II molecule understood, why the binding of peptides to 

certain HLA class II molecules, and not to others, is associated with autoimmune Type 1 

(DM) remains unresolved (concerning the fact that CD8+ T cell have the largest contribution 

in the pathogenesis of Type 1 (DM)). Regardless of mechanism, HLA typing has proved 

useful in population screening for identification and follow-up of individuals at high risk for 

disease. 

4.1.2. Non-HLA genes contributing to Type 1 (DM) 

Multiple studies have recently linked Type 1 (DM) to 50 non-HLA gene polymorphisms 

(Pociot and McDermott 2002). Major efforts have therefore been made to identify non-HLA 

genetic risk factors for Type 1 (DM). Interestingly enough, many of the genetic factors are 

important to the function of the immune system. For instance PTPN22 is a regulator of T-cell 

function and a genetic polymorphism results in a phosphatase variant that is increasing the 

risk not only for Type 1 (DM) but also for rheumatoid arthritis, juvenile rheumatoid 

arthritis, systemic lupus erythematosus, Graves’ disease, generalized vitiligo, and other 

human autoimmune diseases (Herr, Dudbridge et al. 2000). The PTPN22 polymorphism 

seems in particular to affect progression from pre-diabetes to clinical disease (Herr, 

Dudbridge et al. 2000) also in individuals with lower risk HLA genotypes. The variable 

nucleotide tandem repeat in the promoter region of the insulin gene INS VNTR seems to 

contribute to Type 1(DM) by the mechanisms of central tolerance (Takase, Yu et al. 2005). In 

newly diagnosed Type 1 (DM) patients the presence of insulin autoantibodies is associated 

with the INS VNTR polymorphism (Takase, Yu et al. 2005).  

The majority of the non-HLA genetic factors seem to be associated with the immune system. 

We have also demonstrated the association of the polymorphism of Th1 type cytokines (IL-

12, IL-18) as well as TGF-β in human patients with Type 1 (DM). It is therefore attractive to 

speculate that their contribution is related to the ability of the immune system to mount an 

autoimmune reaction specifically directed toward the islet beta-cells. 

The existence of genes predisposing to Type 1 (DM) in the region of the insulin (INS) gene 

now also established. Association analysis has demonstrated an increased frequency of class 

1 alleles of the 5' INS polymorphism in diabetics compared with controls. Interestingly, the 
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effect of INS region susceptibility on Type 1 (DM) cannot be detected by linkage analysis, 

suggesting that if a genetic marker locus is close to a disease susceptibility locus, association 

analysis may be a more sensitive method than linkage analysis for detecting the 

susceptibility locus.  

4.2. Potential environmental triggers of beta-cell autoimmunity in Type 1 (DM) 

The clinical presentation of type 1 diabetes is preceded by an asymptomatic period of highly 

variable duration. Aggressive beta-cell destruction may lead to disease manifestation within 

a few months in infants and young children, whereas in other individuals, the process may 

continue for years (in some cases, even for >10 years) before the eventual presentation of 

overt disease. 

Several lines of evidence support a critical role of exogenous factors in the pathogenesis of 

Type 1 (DM). Studies in monozygotic twins indicate that only 13–33% are pairwise 

concordant for Type 1 (DM) (Barnett, Eff et al. 1981), suggesting that there is either acquired 

postconceptional genetic discordance or differential exposure to the putative environmental 

factor(s). The geographic variation in the incidence of Type 1 (DM) in children is 

conspicuous. This difference in incidence can hardly be explained by genetic factors. A 

substantial increase in the incidence of Type 1 (DM) among children has been documented 

over the last decades, particularly in Europe—for example, in Finland, the incidence has 

increased 4.5-fold from the early 1950s (Gale 2002). Such an increase cannot be the 

consequence only of enhanced genetic disease susceptibility in the population but must 

mostly be due to changes in lifestyle and environment. As well, available data indicate that 

the incidence of Type 1 (DM) has increased in population groups who have moved from a 

low-incidence region to a high-incidence area, emphasizing the influence of environmental 

conditions (Akerblom and Knip 1998). Accumulating evidence suggests that the proportion 

of subjects with high-risk HLA genotypes has decreased over the last decades among 

patients with newly diagnosed type 1 diabetes, whereas the proportion of people with low-

risk or even protective HLA genotypes has increased (Resic-Lindehammer, Larsson et al. 

2008). These data are compatible with an increased environmental pressure resulting in 

progression to clinical diabetes with less genetic susceptibility.  

As mentioned earlier, the first signs of beta-cell autoimmunity and the autoantibodies may 

appear very early in life. Many studies have revealed that there is an unequivocal temporal 

variation in the appearance of the diabetes-associated autoantibodies reflecting the initiation 

of the disease process and paralleling the seasonal variation. Most initial autoantibodies 

appear during the cold period in the fall and winter but rarely in the spring or in the 

summer. There also seems to be some variation from one year to another in the timing and 

height of the autoantibody peaks. 

The pattern of the autoantibody appearance strongly points to the role of infectious agents 

with conspicuous seasonal variation as triggers of beta-cell autoimmunity. Such variations are 

typical for viral infections, and the pattern of laboratory-confirmed enterovirus infections. In 

addition to viral infections, one should also consider other environmental variables with 
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seasonal variation. There is definitely seasonal variation in the amount of daylight and 

sunshine hours, especially in Northern Europe, which has the highest incidence of Type 1 

(DM) in the world (Moltchanova, Penttinen et al. 2005). Without oral substitution, the sunlight-

dependent synthesis of vitamin D in the skin is the most important source of this 

immunologically active hormone. Some studies have indicated that the lack of oral vitamin D 

substitution in infancy increases the subsequent risk of type 1 diabetes. Also improved insulin 

sensitivity in the spring and summer because of more physical exercise can be taken into 

account as well. Improved insulin sensitivity diminishes beta-cell stress, as the workload on 

the beta-cells decreases. However, it is unlikely that there should be substantial seasonal 

variation in physical exercise in very young children, the target group in whom the seasonal 

variation in the appearance of the first diabetes-associated autoantibodies has been observed.  

Accordingly, we are left with viral infections as the most likely explanation for the seasonal 

variation in the emergence of the first signs of beta-cell autoimmunity. Taken into account 

the timing and profiles of the autoantibody peaks, such as enterovirus infections, appear to 

be the most probable trigger of beta-cell autoimmunity. The frequency of enterovirus 

infections has decreased over the last decades in the background population in developed 

countries, e.g., in Finland and Sweden (Viskari, Ludvigsson et al. 2005). Despite that, these 

countries have a high and increasing incidence of Type 1 (DM) among children. This 

appears to be paradoxical. The paradox can, however, be explained by the so-called “polio 

hypothesis” introduced by Viskari et al (Viskari, Koskela et al. 2000). The polioviruses 

comprise three serotypes among >60 enterovirus serotypes. When the frequency of acute 

poliovirus infections started to decrease at the beginning of the last century among the 

general population in countries with an increasing standard of hygiene, the incidence of 

paralytic polio being a complication of the acute infection began to increase. This was 

obviously the consequence of decreased levels of protective maternal poliovirus antibodies 

transferred transplacentally and through breast milk to the infant, leading to a situation 

where the risk increased that the infant would get his or her first poliovirus infection at the 

time of no maternal protection. Similarly, the decreasing frequency of enterovirus infections 

in the background population would increase the susceptibility of young children to the 

diabetogenic effect of enteroviruses. The same phenomenon may also contribute to the 

marked international variation in Type 1 (DM) incidence, because enterovirus infections 

seem to be rare in countries where the rate of type 1 diabetes is high. 

The tropism phenomenon (the characteristic of a virus to infect a particular tissue or cell 

type), in which the attachment of the virus to the viral receptors on the cell surface together 

with other interactions with cellular proteins is a central feature, is thought to explain why 

some variants of enteroviruses may be diabetogenic and others not. It has been proposed 

that pancreatic beta-cell tropic variants of the coxsackie B virus are present in the general 

population and that they are able to induce beta-cell damage in susceptible individuals. In 

vitro studies have shown that enteroviruses infect beta-cells easily and induce functional 

impairment and cell death (Roivainen, Rasilainen et al. 2000). 

Taken together, accumulated data support the hypothesis that a diabetogenic enterovirus 

infection is the likely trigger of beta-cell autoimmunity. This is supported by the observed 
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temporal variation in the appearance of the first diabetes-associated autoantibodies in 

young children, the profile of which resembles the temporal profile of enterovirus infections 

in the background population.  

Some other viruses, such as encephalomyocarditis virus, act directly by replicating in and 

destroying pancreatic beta-cells. A single amino acid substitution in the virus, presumably 

by altering its binding to beta-cells, determines whether or not diabetes develops. The 

Kilham rat virus, on the other hand, produces diabetes not by infecting beta-cells but by 

altering the immunoregulatory network of the host (Herr, Dudbridge et al. 2000). Still other 

viruses are thought to initiate or accelerate the autoimmune response through molecular 

mimicry (Copeman, Cucca et al. 1995) or by releasing sequestrated autoantigens from 

damaged beta-cells. In a transgenic autoimmune model (Serreze, Prochazka et al. 1994), the 

administration of infectious lymphocytic choriomeningitis virus (LCM) to transgenic 

animals expressing LCM viral proteins in their beta-cells results in diabetes, but the same 

LCM virus does not produce diabetes in non-transgenic animals.  

A recent study has also found evidence of Coxsackie virus infection in beta-cells in three out 

of six pancreases of patients with recent-onset Type 1 (DM). Coxsackie viruses are known to 

induce interferon alpha secretion by beta-cells and this could initiate the sequence of events 

that culminates in their autoimmune destruction. 

In summary of this part, Type 1 (DM) may be triggered by an environmental culprit at any 

age, although a majority of the processes appear to start early in childhood. Viruses have 

been the leading candidates. In animal experiments viruses have been shown to produce 

diabetes as well. In humans, case reports and sero-epidemiologic studies (Herr, Dudbridge 

et al. 2000) suggest that viruses, particularly enteroviruses, may play a role, but most likely 

as a cofactor, in individuals who already have suffered some autoimmune beta-cell loss. 

However, for the vast majority of the cases of Type 1 (DM) in humans, a viral cause has not 

been established. 

The identification of exogenous factors triggering and driving beta-cell destruction offers 

potential means for intervention aimed at the prevention of Type 1 (DM). Therefore, it is 

important to pursue studies on the role of environmental factors in the pathogenesis of this 

disease. Environmental modification is likely to offer the most powerful strategy for 

effective prevention of Type 1 (DM), since such an approach can target the whole 

population or at least that proportion of the population carrying increased genetic disease 

susceptibility and would therefore prevent both sporadic and familial type 1 diabetes if 

successful. 

5. Therapeutic interventions 

Before the isolation of insulin in the 1920s, most patients died within a short time after onset 

of Type 1 (DM). Untreated diabetes leads to ketoacidosis, the accumulation of ketones 

(products of fat breakdown) and acid in the blood. Continued buildup of these products of 

disordered carbohydrate and fat metabolism result in nausea and vomiting, and eventually 

the patient goes into a diabetic coma. 
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Treatment for diabetes mellitus is aimed at reducing blood glucose concentrations to normal 

levels. Achieving this is important in promoting well-being and in minimizing the 

development and progression of the long-term complications of diabetes. Despite the 

widespread use of exogenous insulin, morbidity and mortality caused by Type 1 (DM) 

continue to place a significant burden on society, both in terms of human suffering and cost. 

The care of diabetes on self-management is based on the patient’s clinical status and his/her 

ability to participate in self-care. Insulin replacement therapy is the mainstay for patients 

with Type 1 (DM) while diet and lifestyle modifications are also crucial for the treatment 

and management of this disease.  

Diabetics who are unable to produce insulin in their bodies receive regular injections of the 

insulin, which are often customized according to their individual and variable requirements. 

Beef or pork insulin, made from the pancreatic extracts of cattle or pigs, can be used to treat 

humans with diabetes. However, in the United States, beef and pork forms of insulin are no 

longer manufactured, having been discontinued in favor of human insulin production. 

Modern human insulin treatments are based on recombinant DNA technology. Human 

insulin may be given as a form that is identical to the natural form found in the body, which 

acts quickly but transiently, or as a form that has been biochemically modified so as to 

prolong its action for up to 24 hours. The optimal regimen of insulin administration is one 

that most closely mimics the normal pattern of insulin secretion, which is a constant low 

level of insulin secretion plus a pulse of secretion after each meal. This can be achieved by 

administration of a long-acting insulin preparation once daily plus administration of a 

rapid-acting insulin preparation with or just before each meal. Patients also have the option 

of using an insulin pump, which allows them to control variations in the rate of insulin 

administration. A satisfactory compromise for some patients is twice-daily administration of 

mixtures of intermediate-acting and short-acting insulin. Patients taking insulin also may 

need to vary food intake from meal to meal, according to their level of activity; as exercise 

frequency and intensity increase, less insulin and more food intake may be necessary. 

There are also several classes of oral drugs used to control blood glucose levels, including 

sulfonylureas, biguanides, and thiazolidinediones. Sulfonylureas, such as glipizide and 

glimepiride, are considered hypoglycemic agents because they stimulate the release of 

insulin from beta-cells in the pancreas, thus reducing blood glucose levels (Pernet, Trimble 

et al. 1985). The most common side effect associated with sulfonylureas is hypoglycemia 

(abnormally low blood glucose levels), which occurs most often in elderly patients who 

have impaired liver or kidney function. 

Biguanides, of which metformin is the primary member, are considered antihyperglycemic 

agents because they work by decreasing the production of glucose in the liver and by 

increasing the action of insulin on muscle and adipose tissues (Spaans, Kleefstra et al. 2011). 

A potentially fatal side effect of metformin is the accumulation of lactic acid in blood and 

tissues, often causing vague symptoms such as nausea and weakness. 

Thiazolidinediones, such as rosiglitazone and pioglitazone, act by reducing insulin 

resistance of muscle and adipose cells and by increasing glucose transport into these tissues 
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(Garg 2011). These agents can cause edema (fluid accumulation in tissues), liver toxicity, and 

adverse cardiovascular events in certain patients. Furthermore, oral hypoglycemic agents 

lower mean blood glucose concentrations by only about 50–80 mg per 100 ml (2.8–4.4 

mmol/l), and sensitivity to these drugs tends to decrease with time(Garg 2011). 

There are several other agents that can be highly effective in the treatment of diabetes. 

Pramlintide is an injectable synthetic hormone (based on the human hormone amylin) that 

regulates blood glucose levels by slowing the absorption of food in the stomach and by 

inhibiting glucagon, which normally stimulates liver glucose production(Riddle and 

Drucker 2006). Exenatide is an injectable antihyperglycemic drug that works similarly to 

incretins, or gastrointestinal hormones, such as gastric inhibitory polypeptide, that stimulate 

insulin release from the pancreas. Exenatide has a longer duration of action than incretins 

produced by the body because it is less susceptible to degradation by an enzyme called 

dipeptidyl peptidase-4 (DPP-4)(Sena, Nunes et al. 2008). A drug called sitagliptin 

specifically inhibits DPP-4, thereby increasing levels of naturally produced incretins. Side 

effects associated with these drugs are often mild, although pramlintide can cause profound 

hypoglycemia in patients with Type 1 (DM). 

All patients with diabetes mellitus, particularly those taking insulin, should measure blood 

glucose concentrations periodically at home, especially when they have symptoms of 

hypoglycemia. Diet and lifestyle strategies also are required to reduce weight, improve 

glycaemic control and reduce the risk of cardiovascular complications, which account for 

70% to 80% of deaths among those with diabetes.  

Research into other areas of insulin therapy includes pancreas transplantation, beta-cell 

transplantation, and generation of beta-cells from existing exocrine cells in the pancreas. 

Patients with Type I (DM) have been treated by transplantation of the pancreas or of the 

islets of Langerhans. However, limited quantities of pancreatic tissue are available for 

transplantation, prolonged immunosuppressive therapy is needed, and there is a high 

likelihood that the transplanted tissue be rejected even when the patient is receiving 

immunosuppressive therapy. Attempts to improve the outcome of transplantation and to 

develop mechanical islets are ongoing. 

Whole pancreas or islet transplantation is another treatment continues to develop and 

reduced the need for insulin, achieve better glucose stability, and reduce problems with 

hypoglycemia. The transplantation of vascularized pancreas, from a deceased donor, 

developed in the 1960s and usually performed concurrently with renal transplantation, can 

cure Type 1 (DM), as shown by results in more than 15,000 such transplants over about 30 

years. Transplantation of isolated pancreatic islets, instead of the whole organ, however, 

offers an attractive alternative that minimizes surgery and its complications. Although islet 

transplantation initially met with only modest success, recent changes in patient selection 

criteria, number and treatment of islets transplanted, and better immunosuppressive 

regimens dramatically improved the results. The development of clinical islet 

transplantation was driven by an unmet medical need within the diabetes mellitus patient 

population and was preceded by the introduction of transplantation of whole, vascularized 
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pancreas. Despite this promise, organ/islet availability remains an important limitation to 

this technology. A solution to the problem of limited materials for transplantation may be in 

the use of stem/progenitor cells. 

The presence of beta-cells in patients with long-standing Type 1 (DM), despite ongoing 

autoimmunity, implies that new formation of beta-cells may be occurring. Although an 

ambitious aim currently targeted regeneration of such beta-cells offers another strategy to 

prevent Type 1 (DM). Regeneration of beta-cells is therefore an area of major active 

investigation, with recent studies reporting differentiation of pancreatic and nonpancreatic 

progenitors as well as replication of existing islet beta-cells. In this regard some studies have 

shown that pre-existing beta-cells, rather than pluripotent stem cells, are the main source of 

new beta-cells during adult life and after pancreatectomy in mice. 

6. Cellular and molecular strategy for inhibition of the initiation and 

progression of beta-cell destruction 

Mononuclear cell infiltration into the islets of the pancreas (insulitis) is characteristic of 

autoimmune diabetes. T lymphocytes are the predominant subpopulation seen in insulitis, 

and are involved in the autoimmune process. Insulin-producing beta-cells are thought to be 

destroyed by cytotoxic T cells, cytokines or nitric oxide, and beta-cell death occurs, at least 

partly, via apoptosis. Beta-cell death induced by inflammatory cytokines can be inhibited by 

forced expression of Bcl-2 (B-cell lymphoma 2, thought to implicate in cell growth and 

survival) in those cells, suggesting its potential as a tool for gene therapy (Iwahashi, Itoh et 

al. 1998). The Fas/Fas-ligand system plays a critical role in inducing insulitis and overt 

diabetes in (NOD) mice as well. Beta-cells are destroyed by apoptosis through Fas-Fas 

ligand and TNF-TNF receptor interactions and by granzymes and perforin released from 

cytotoxic effector T cells. Therefore, the activated macrophages and T cells, and cytokines 

secreted from these immunocytes, act synergistically to destroy beta-cells, resulting in the 

development of Type 1 (DM). Preventive strategies might be developed by focusing on 

these molecules involved in beta-cell destruction.  

The feasibility of gene therapy in NOD mice by ex vivo genetic manipulation of normal 

hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice has 

been examined as an approach to treat T1D recently (10). The incidence and degree of 

insulitis was significantly reduced in recipient, and thus this molecular chimerism can 

potentially protect from destructive insulitis in an antigen-specific manner (10).  

In some studies the anti–T cell strategies were also examined to inhibit insulitis. Early 

studies of cyclosporin in the 1980s provided a proof of principal for the usefulness of 

immunomodulators in the treatment of Type 1 (DM); the adverse effects of cyclosporin, 

however, were incompatible with their widespread use. More sophisticated anti–T-cell 

strategies have been developed more recently. In the hOKT3γ1(Ala-Ala) trial, a humanized, 

modified anti-CD3 monoclonal antibody, analysis of peripheral blood samples 

demonstrated an increase in the CD8/CD4 ratio and in particular an increase in CD4+CD25+ 
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regulatory T cells (36). Most studies of regulatory T cells have focused on a subset of 

naturally occurring CD4+ cells that have the capacity to control self-reactive T cells, and 

their depletion results in autoimmunity. Strategies that target the action of regulatory T cells 

in vivo offer one of the most attractive options for therapy in Type 1 (DM). The establishment 

of screening techniques for detecting prediabetic patients is also necessary to allow 

successful intervention.  

Immunosuppressive drugs and anti-T cell antibodies have shown varying degrees of 

success in suppression of beta-cell autoimmunity in NOD mice. However, these strategies 

require repeated drug administration and may cause nonspecific harmful effects such as 

interference with normal immune system functions. A new therapeutic approach for type 1 

diabetes is based on prevention of beta-cell loss through vaccine restoration of normal 

immune system function. Traditionally, vaccination refers to prevention of an infectious 

disease by exposing the immune system to a weakened or dead infectious agent. 

Alternatively, “inverse vaccination” (the inhibition of an immune response) arrests 

autoimmunity through manipulation of the innate and adaptive arms of the immune system 

(Steinman 2010). In type 1 diabetes, vaccination with β-cell autoantigens was shown to 

induce a partial state of immunological tolerance in NOD mice (Peakman and von Herrath 

2010). Beta-cell self-antigens can induce tolerance through three possible mechanisms: (1) 

induction of T cell deletion/anergy, (2) induction of anti-inflammatory T helper 2 (Th2) cells, 

and (3) stimulation of regulatory T cell proliferation (Maldonado and von Andrian 2010). 

Insulin, GAD and some heat shock proteins are considered to be the first pancreatic 

autoantigens detected early during diabetes onset in both humans and NOD mice. 

However, the primary beta-cell antigen responsible for triggering autoimmunity in Type 1 

(DM) remains under dispute. Thus, several pancreatic autoantigens have been selected for 

development into type 1 diabetes vaccines. These results suggest that multi-component 

vaccine strategies are promising for prevention and reversal of diabetes autoimmunity in 

humans, although some antigens determined to be most immunogenic, and not successful 

in trials. 

We are still some way from developing a pill to prevent Type 1 (DM), but all the divergent 

strands of ongoing research, from epidemiology to molecular biology, immunology to 

clinical trials, appear to be converging to provide clear perspectives on the therapeutic 

interventions that are most likely to be successful. Two strategies are open to physicians 

who have patients with Type 1 (DM): the first is to prevent initiation of autoimmunity; the 

second is to reverse the effects of ongoing autoimmunity coupled with beta-cell 

regeneration. Although highly ambitious, the prevention of Type 1 (DM) could be possible 

by identifying and eliminating environmental risk factors. The next line of defense would be 

to re-educate the immune system through exposure to beta-cell antigens with the use of oral 

or nasal tolerance strategies. The observation that insulin may be the primary autoantigen 

provides support for therapies using insulin to induce tolerance. The potential to re-educate 

the immune system, or to divert it using regulatory T cells, and the rapidly expanding field 

of islet beta-cell differentiation give hope that improved strategies to manage this chronic 

disease are on the horizon. 
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7. Concluding remarks 

Type 1 (DM), formerly known as juvenile diabetes is a complex disease caused by multiple 

environmental and genetic risk factors. It is a T cell-mediated disease characterized by the 

destruction of the endocrine insulin-producing beta-cells of the pancreatic islets, resulting in 

plasma glucose dysregulation, persistent hyperglycemia and long-term complications. 

Evidence for a constant global increase of incidents is worrisome. There is a major 

international challenge for optimal intervention and prevention strategies. Thus, a better 

understanding of the events going on in the autoimmune processes and understanding the 

relative contribution of genetics and environmental factors is necessary for the ultimate 

prevention/treatment. 

Research is ongoing to discover the exact cause of Type 1 (DM), which remains unknown. 

Eepidemiological studies support the notion that viral infections play a causative role in 

Type 1 (DM). Indeed, there is a strong association between certain HLA and non-HLA 

alleles or combinations of alleles that predispose to development of Type 1 (DM). HLA 

typing is one means in screening to identify individuals at high risk as well.  

Based on experimental results from studies using NOD mice and BB rats over the past 3 

decades, the possible interactions between beta-cell autoantigens and immunocytes such as 

macrophages, dendritic cells, T cells, and their secretory products in connection with MHC 

class I and II molecules has shown in this autoimmune disease. The animal models may not 

encompass all aspects of the pathogenic mechanisms involved in autoimmune diabetes in 

humans; nevertheless, it may provide helpful information with respect to the synergistic 

destruction of beta-cells by immunocytes and their cytokines and a basis for the formation of 

new hypotheses for further investigation. 

Although rarer than type 2, Type 1 (DM) is more severe, and constitutes the fourth or fifth 

leading cause of death worldwide. There is currently no cure or preventative measure for 

Type 1 (DM). Patients are dependent for the rest of their lives on regular injections of 

insulin to control their blood sugar levels. Combined with some conservative lifestyle 

choices, insulin lets people manage their diabetes, but the control of blood sugar is never 

perfect. In the long term, tolerogenic, antigen-specific and beta-cell-specific regenerative 

agents could provide a promising platform for the development of disease-modifying 

therapies. Thus, combination therapies could be most effective in delivering the long-

sought cure.  
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