
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

23

SITAF: Simulation-Based
Interface Testing Automation

Framework for Robot Software Component

Hong Seong Park and Jeong Seok Kang
Kangwon National University

South Korea

1. Introduction

Many researchers in robotics have proposed a Component-based Software Engineering

(CBSE) approach to tackle problems in robot software development (Jawawi et al., 2007).

Especially in the component-based robot system, the system quality depends on the quality

of each component because any defective components will have bad effects on the system

built with them. Thus, component interface test is critical for checking the correctness of the

component’s functionality. It is especially difficult to test robot software components

because of the following two main problems.

First, the preparation of all hardware modules related to robot software and the

configuration of a test environment is labor-intensive. Second, it is difficult to define or

generate test cases for testing robot software components.

The simulation plays an important role in the process of robotic software development.
The simulation allows testing of robot software components and experimentation with
different configurations before they are deployed in real robots. Traditional simulation-
based approaches (Hu, 2005, Martin & Emami, 2006, Michel, 2004) focus on architectures
or methods (e.g., computer-based simulation, hardware-in-the-loop-simulation, and
robot-in-the-loop- simulation), rather than testing. Many software engineering researchers
(Buy et al., 1999, Bundell et al., 2000, Zamli et al., 2007, Momotko & Zalewska, 2004,
Edwards, 2001) have investigated software component testing, but they have not
considered simulation environments. Simulations can be used within a specification-
based testing regime, which helps robot software developers define and apply effective
test case. Note that the generation of test case is an important approach in the field of
automated testing.

In this paper, we propose a Simulation-based Interface Testing Automation Framework

(SITAF) for robot software components. SITAF automatically generates test cases by applying

specification-based test techniques and considering simulation-dependent parameters. SITAF

also performs the interface testing in distributed test environments by interacting with a

simulation. SITAF controls test parameters during testing, which affect the behavior of a

component under testing (CUT); examples of such parameters are simulation-dependent

Automation

454

parameters, input/output parameters of provided/required CUT interface. The main

advantage of this technique is that it identifies errors caused by interactions between the CUT

and the external environment.

The primary contribution of this paper is the integration of specification-based test into the
simulation for automatic interface testing of robot software components.

The rest of this paper is organized as follows. Section 2 presents the SITAF architecture. The
two main functions of SITAF are presented in Section 3. Section 4 discusses the evaluation of
SITAF. Finally, we have some conclusions in Section 5.

2. SITAF architecture

The main aim of SITAF is to automate as much of test process for robot software component
as is possible. To achieve this aim, the architecture of proposed framework consists of a
Web-based Interface Testing Automation Engine Server (ITAES), a Test Build Agent (TBA),
and a robot simulator and is shown in Fig. 1.

Fig. 1. Simulation-based Interface Testing Automation Framework Architecture

ITAES is the core of the framework to which the user is accessible via a Web service, and
generates test cases for interface test of robot software components. And it also generates a
test driver component, a test stub component, and a simulation control component, which
are required for the testing, and links the generated components to each other. Furthermore
ITAES manages test resources such as test cases, test applications, test results, and test logs
in a unit of test activity which is a workspace for execution of test operations. The ITAES
consists of three main modules of Interface Test Case Generator (ITCG), Interface Test
Application Generator (ITAG), and Automatic Test Build Manager (ATBM).

The ITCG module automatically generates test cases by extended test schemes based on
specification-based testing techniques such as equivalence partition (Ostrand & Balcer,

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

455

1998), boundary value analysis (Hoffman et al., 1999), random test (Ntafos, 1997, Zhu,
1997), and pairwise test (Williams, 2000). It receives the interface representation
information in the form of Interface Definition Language (IDL) or eXtensible Markup
Language (XML) and verifies the specification information for a CUT before test cases are
automatically generated. The test cases are stored as XML files in a database. The user
accesses a Web interface to modify test cases in the database and inputs the expected
result values for each test case. The ITAG module generates the source code for the test
application. The test application is composed of a test driver component, a test stub
component, and a simulation control component. All source codes are shared with TBAs.
The ATBM module connected with the distributed TBAs manages a test build which
means compilation and execution of a test application. And it provides three types of the
test time for the test build: immediate, reserved, and periodic.

An individual TBA can exist in different test environments, and communicates with the

ATBM in ITAES. TBAs are in charge of automatic building of test application. The TBA

contains three modules of Test Build Agent Manager (TBAM), Test Application Compiler

(TAC), and Test Application Executor (TAE). The TBAM module manages a TBA and

receives a test build request from the ATBM in ITAES, and then downloads the test

application and test case files. The TAC module and the TAE module automatically compile

and execute a test application. These modules upload the logs and the test results to ITAES

after the completion of compilation and execution.

The robot simulator for interface test provides a simulation control API and a virtual robot

hardware API. The simulation control API is used to control the virtual test environment in

the simulation. The simulation control component in the test application dynamically

modifies or controls a virtual test environment for each test case by using the simulation

control API. The virtual robot hardware API is used to control virtual robot hardware or to

receive data. If the test component is a hardware-related component, the component

controls the virtual robot hardware or receives data using the API for simulation. The

simulation control data is used to generate effective test cases.

3. Automatic interface test operations for robot software components

In this section, we describe two main functions of SITAF, which are the automatic
generation of interface test case and the automatic execution of interface test by simulation.

3.1 Automatic generation of interface test cases

Specification-based test techniques are applied to the generation of test cases for robot

software components by simulation. A test case for a robot software component consists of

an input vector that requires Test Data of Input (TDI), Test Data of Simulation Dependency

(TDSD), and Test Data of Test Stub (TDTS) because the behavior of CUT is affected by these

test data. TDI is an input parameter of the interface under testing. Because TDSD refers the

simulation control data for interface testing, it is the data affecting the CUT through the

simulation. TDTS is an output data from a required interface of the CUT.

The process for the automatic interface test case generation has two steps, which is shown in
Fig. 2.

Automation

456

Fig. 2. Process of the automatic interface test case generation

3.1.1 Definition of test specifications

The Interface Parser module in the Interface Test Case Generator parses the interface
representation of a CUT and the information on input test parameters of CUT is extracted.
Fig. 3 shows a simplified XML schema of the interface representation. The main elements of
the interface representation are type_name, method, and param. The type_name represents type
of the interface and the method and param describe prototype of methods in the interface.

The test specification includes valid range values, specific candidate values, pre/post-
conditions, and other values, for each test parameter. And a test model is a set of the test
specifications, as shown in Fig. 4. The essential elements of the test model are name,
input_spec_list, and order_of_combinations. The name is a name of the test model, as identifier.
The input_spec_list includes test specifications of TDI, TDSD, and TDTS. The
order_of_combinations is a number of interaction strength for pairwising the each test
parameters.

In Fig. 4, the plus sign (+) indicates that the element further consists of test_element which is
used to generate the test data values. The test_element is a key element in the test
specification, which contains information on a test parameter such as type of the parameter,
specific candidate value, and the method for test data generation. The type in test_element
presents the type of a test parameter such as TDI, TDSD, and TDTS. The test_spec describes a
method and additional information for generating test data, and has different XML schema
for each type of test_spec, as shown in Fig. 5, Fig. 7, and Fig. 8.

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

457

<xs:schema>
<xs:element name="service_port_type">

<xs:complexType>
 <xs:sequence>

<xs:element name="type_name" type=”NCName”/>
<xs:element ref="method" maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="method">

<xs:complexType>
 <xs:attribute name="name" type="xs:NCName" use="required"/>
 <xs:attribute name="return_type" type="xs:NCName" use="required"/>
 <xs:attribute name="call_type" type="xs:NCName" default="blocking"/>

<xs:sequence>
<xs:element maxOccurs="unbounded" ref="param"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="param">

<xs:complexType>
 <xs:sequence>

<xs:element name="type" type="xs:NMTOKEN"/>
 <xs:element name="name" type="xs:NCName"/>

</xs:sequence>
 <xs:attribute name="index" type="xs:integer" use="required"/>

</xs:complexType>
</xs:element>

</xs:schema>

Fig. 3. Simplified XML Schema of an interface representation

<xs:schema>
<xs:element name=”test_model”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”name” type=”xs:string” use=”required” />

 <xs:element name=”description” type=”xs:string/>
+ <xs:element ref=”pre_condition_spec_list” />
+ <xs:element ref=”input_spec_list” use=”required”/>
+ <xs:element ref=”output_spec_list” />
+ <xs:element ref=”post_condition_spec_list” />

<xs:element name=”order_of_combinations” type=”xs:integer”
 use=”required”/>

</xs:sequence>
 </xs:complexType>
</xs:element>
<xs:element name=”test_element”>
 <xs:complexType>
 <xs:sequence name=”name” type=”xs:string” use=”required”/>

<xs:sequence name=”type” type=”xs:string” use=”required”/>
<xs:sequence name=”description” type=”xs:string”/>

 <xs:sequence ref=”test_spec” use=”required” />
 <xs:sequence ref=”user_value_list” />
<xs:attribute name=”abstract_type” type=”xs:string” use=”required” />
<xs:attribute name=”real_type” type=”xs:string” use=”required”/>

 </xs:complexType>
</xs:element>

</xs:schema>

Fig. 4. Simplified XML Schema of a test model

Automation

458

3.1.2 Generation of test cases

The Test Data Generator (TDG) module in the ITCG generates the test data satisfying the
test specification for each test parameter. The TDG automatically generates the numeric test
data by applying an equivalence partitioning scheme (ECP), a boundary value analysis
scheme (BVA), and a random testing scheme. Furthermore this paper generates the test data
of string type using BVA and random testing scheme.

The ECP scheme (Ostrand & Balcer, 1998) is a software testing technique that divides input
data for a software unit into partitions of data from which test cases cane be derived. In
principle, test cases are designed to cover each partition at least once. This technique aims to
define test cases and uncover classes of errors, thereby reducing the total number of test
cases that must be developed. Additionally this paper defines types of equivalence class,
listed in Table 1. The TDG automatically generates test data by each type of equivalence
class. Fig. 5 shows simplified XML schema of test_spec element for ECP.

Type of equivalence class Description

NEC_NUMERIC_ONE_BOUDARY
The type includes just one boundary.
If x < 10, there are two equivalence classes,
x<10 and x>10.

NEC_NUMERIC_TWO_BOUDARY
The type includes two boundaries.
If -1 < x < 10, there are three equivalence
classes, x<-1, -1<x<10, x>10.

NEC_BOOLEAN
If x=true, there are two equivalence classes,
x=true, x=false.

NEC_NUMERIC_CONSTANT
If x=3, there are two equivalence classes,
x=3, x!=3

NEC_NUMERIC_SET
If x={-1,0,1}, there are two equivalence classes,
x={-1,0,1}, x!= {-1,0,1}.

Table 1. Types of equivalence class for ECP scheme

<test_spec type="ECP" >
<xs:complexType>

 <xs:element ref=” equiv_class” />
</xs:complexType>
<xs:element name=”equiv_class”>

<xs:attribute name=”type” use=”required”>
<xs:simpleType>

<xs:restriction base=”xs:string”>
<xs:enumeration value=” NEC_NUMERIC_ONE_BOUDARY”/>
<xs:enumeration value=” NEC_NUMERIC_TWO_BOUDARY”/>
<xs:enumeration value=” NEC_BOOLEAN”/>
<xs:enumeration value=” NEC_NUMERIC_CONSTANT”/>
<xs:enumeration value=” NEC_NUMERIC_SET”/>

</xs:restriction>
</xs:simpleType>

 </xs:attribute>
 …….

</xs:element>
</test_spec>

Fig. 5. Simplified XML schema of test_spec element for ECP scheme

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

459

The BVA scheme (Hoffman et al., 1999) is a software testing technique that designs tests
including representatives of boundary values. Values on the minimum and maximum edges
of an equivalence partition are tested. The values could be input or output ranges of a
software component. Boundaries are common locations for errors that result in
software faults, so they are frequently explored in test cases. Furthermore this paper defines
the offset value of boundary for generation of elaborate test data, as shown in Fig. 6. This
paper automatically generates the test data by the BVA such as the values of
min_low_off_set, minimum boundary, min_high_off_set, max_low_off_set, maximum
boundary, max_high_off_set, and additionally a middle value.

Fig. 6. Offset and test data of BVA scheme

In the BVA, there are just two types of equivalence class because the scheme needs range
values, as shown in Fig. 7.

<test_spec type="BVA" offset=”” >
<xs:complexType>

 <xs:element ref=” equiv_class” />
</xs:complexType>
<xs:element name=”equiv_class”>

<xs:attribute name=”type” use=”required”>
<xs:simpleType>

<xs:restriction base=”xs:string”>
<xs:enumeration value=” NEC_NUMERIC_ONE_BOUDARY”/>
<xs:enumeration value=” NEC_NUMERIC_TWO_BOUDARY”/>

</xs:restriction>
</xs:simpleType>

 </xs:attribute>
 …….

</xs:element>
</test_spec>

Fig. 7. Simplified XML schema of test_spec element for BVA scheme

A random testing scheme (Ntafos, 1997, Zhu, 1997) is a strategy that requires the “random”
selection of test cases from the entire input domain. For random testing, values of each test
case are generated randomly, but very often the overall distribution of the test cases has to
conform to the distribution of the input domain, or an operational profile. In this paper, the

Automation

460

scheme is used to generate test data of numeric and string types. In particular, we combine
the random testing scheme and the BVA scheme for generation of test data of string type.
This paper analyses the boundary value of minimum and maximum length of string, and
then randomly generates test data, which is satisfied with the options such as alphabet,
number, special character, space, and negative character, as shown in Fig. 8.

<test_spec type="RANDOM_STRING">
<xs:complexType>
 <xs:sequence>
 <xs:element name=”min_length” type=”xs:integer” use=”required” />

<xs:element name=” max_length” type=”xs:integer” use=”required” />
<xs:element name=” alphabet” type=”xs:boolean” use=”required” />
<xs:element name=” number” type=”xs: boolean” use=”required” />
<xs:element name=” special_char” type=” xs:boolean” use=”required” />
<xs:element name=” space” type=”xs:boolean” use=”required” />
<xs:element name=” negative_char_list” type=”xs:string” />

 </xs:sequence>
</xs:complexType>

</test_spec>

Fig. 8. Simplified XML schema of test_spec element for random string scheme

The Test Data Combinator (TDC) module in ITCG combines the test data using a pairwise
scheme (Williams, 2000) for reducing the number of test cases. The pairwise scheme is an
effective test case generation technique, which is based on the observation that most faults
are caused by interactions among input vectors. The TDC enables two-way combination,
three-way combination, and all possible combinations of the test data, which allows the user
to remove overlapping test cases from pairs of parameter combinations. The combined test
cases are stored in an XML file, as shown in Fig. 9. The case_param_info describes name and
type of a test parameter and the case_list consists of values of the test case.

<xs:schema>
<xs:element name=”test_suite_data”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”name” type=”xs:string” use=”required” />

 <xs:element name=”description” type=”xs:string/>
 <xs:element name=”test_ model_name” type=”xs:string” />

+ <xs:element ref=”case_param_info” />
+ <xs:element ref=”case_list” />
</xs:sequence>

 </xs:complexType>
</xs:schema>

Fig. 9. Simplified XML schema of the test cases

3.2 Automatic test execution by simulation

The test application performs testing by interacting with the robot simulator, as shown in
Fig. 10. This paper automatically generates skeleton source codes for test applications and
links the components to each other for simplifying testing.

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

461

Fig. 10. Structure and operation sequence of a test application

The test application consists of a Test Driver (TD) component, a Simulation Control (SC)
component, a Test Stub (TS) component, and a CUT, as shown in Fig. 10. The TD component
controls the overall operation of test. During the testing, the TD component reads test cases,
and sets the simulation environment and the required interface of the CUT. After the end of
testing, the component stores the test results in a file. The SC component sets the simulation
environment through the simulation control API in the robot simulator. TS component
provides virtual interfaces of the same type as the required interface of the CUT. The TS
component simulates the behavior of CUT-dependent software components. Thus, the
component is used instead of an actual software component which is needed for execution
of the CUT.

The test application and the robot simulator are connected to each other and the following
operations shown in Fig. 10 are performed to test the CUT: 1) Read test case file, 2) Call the
interface of SC component for control to the simulation environment, 3) Set up the TS
component using the TDTS values, 4) Call the interface of the CUT, 5) Save the test results in
a file.

The TD component reads a test case file and divides it into the TDI, the TDSD, and the
TDTS. The TD component calls the interface of SC component using the TDSD values for
setting the simulation environment. The SC component changes the virtual test

Automation

462

environment through the simulation control API using TDSD values. After the virtual test
environment setup is completed, the TD component set up the output of the required
interface of the CUT via the TS component interface using the TDTS. After the
configuration of the simulation environment and the TS component are completed, the TD
component calls interface of the CUT using the TDI as the input parameters. The CUT
calls the interface of the TS component and requests or receives data via the robot
hardware API during the simulation. When the operation is completed, the value
resulting from the operation may be returned to the TD component. The TD component
compares the actual resulting value with the expected resulting value and saves the test
result in a file. After all of the testing, the TBA uploads the test result file and the test log
file to ITAES. The test log file contains log information on compilation and execution of
the test application.

Fig. 11 shows simplified XML schema of the test result descriptor. The summary consists of
the number of pass and fail, and information on processing times of the interface of the CUT
such as a minimum time, a maximum time, an average time, and a standard deviation time.
The test_result_list contains detailed information on the test result, such as expected and
actual test results and a processing time of the interface of the CUT, for each test case. The
ITAES reads the test result file and log files, and then shows the information through web
interfaces which are table-based view and graphic-based view, for easily analysing the test
result of the CUT.

<xs:schema>

<xs:element name=”test_result_descriptor”>

 <xs:complexType>

 <xs:sequence>

<xs:element name=”name” type=”xs:string” />

+ <xs:element ref=”summary” />

+ <xs:element ref=”test_result_list” />

</xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Fig. 11. Simplified XML schema of a test result descriptor

4. Evaluation

In this section, the proposed framework is evaluated using an example of the test of the
Infrared Ray (IR) sensor component interface.

This paper implements the Interface Testing Automation Engine Server (ITAES) and Test
Build Agent (TBA) in Java and Flex. And the robot simulator used in this paper is OPRoS
simulator (http://www.opros.or.kr/). This paper develops the test simulation environment
for testing shown in Fig. 12. The environment consists of an IR sensor robot which has some
virtual IR sensors linked to the IR sensor simulation API and an obstacle which can move by
the obstacle distance control API.

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

463

Fig. 12. Application for testing the IR component interface

We tested an Open Platform for Robotic Service (http://www.opros.or.kr/) with the
Infrared Ray (IR) sensor component interface, named GetInfraredData interface, which had
two input parameters of IndexOfSensor and NumOfSensor. The function of the interface is to
get a distance value using IR sensors. This paper defines a new test parameter for TDSD,
named “Distance”, to control the virtual obstacle in the test simulation environment. Thus,
there are two input test parameters and one simulation-dependent parameter, which are
shown in Table 2.

Automation

464

Name Type Test Specification Description

IndexOfSensor TDI 1 <= IndexOfSensor <= 7,
The offset value is 1.

It is index of IR sensor.

NumOfSensor TDI 1 <= NumOfSensor <= 7,
The offset value is 1.

It is the number of IR sensor.

Distance TDSD 0.0 <= #Distance <= 10.0,
The offset value is 0.5.

It is a distance between an IR
sensor and an obstacle in the
test simulation environment.
The obstacle is moved using
the value of the distance test
parameter.

Expected
Return Value

 If all test parameter are valid
values, the value is same of
the distance value.
If the test parameters are
not valid values, the value
is -1.

-1 means the operation is
failed.

Table 2. Test Specifications and an expected test result of GetInfraredData Interface

The test application contains the Test Driver (TD) component, OPRoS IR sensor component,

and the virtual obstacle control component. The test application does not have a test stub

component because the OPRoS IR sensor component does not have a required interface.

First the TD component moves the virtual obstacle in the simulation via the virtual obstacle

control component using the value of Distance test parameter. Then the TD component calls

the interface of the IR sensor component using values of the IndexOfSensor and the

NumOfSensor test parameter. If the return value of the interface of the IR sensor component

is same of Distance value, the test case is a success.

We validate three functions of proposed framework, which are the creation of test activity,

the automated test case generation, and the automatic test execution by simulation.

The process of the creation of test activity has four steps, which are shown in Fig. 13(a) – Fig.

13(d). In the creation of the test activity, the information on the IR sensor component such as

component profile, dll file, and interface profile, external library (optional), and the type of

the skeleton test code are used.

Fig. 13(e) shows the generated directory of the test activity after completion of the process.

The directory includes the test profile, the test driver component, the test stub component,

and the concrete test driver.

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

465

Fig. 13. Process of creating the test activity for IR sensor component

The process of automatic test case generation has four steps, which are shown in Fig. 14(a) –

Fig. 14(d). We input the test specifications through the web user interface, which are the

IndexOfSensor, the NumOfSensor, and the Distance. We analyse valid range value of each test

parameter using BVA scheme. And then we select “2-way”, as order of combination for

pairwise. After completion of the process, 60 test cases are generated as shown in Fig. 15.

Then we input the expected test result into each test case.

Automation

466

Fig. 14. Process of automatic test case generation of GetInfraredData interface

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

467

Fig. 15. Test Case list of GetInfraredData interface

We perform and evaluate the example of test application for the IR sensor component in the
test simulation environment, as shown in Fig. 12. Finally we compare the return value of the
interface of the IR sensor component with the value of expected test result. Fig. 16 shows
C++ code of test driver component used in this evaluation.

Fig. 16. Test driver code for testing GetInfraredData Interface

Automation

468

Two types of test result view are provided and shown in Fig. 17. The table-based view
shows the test result of each test case. And the graphic-based view shows the summary test
result, including the percentage of test success and the processing time of the IR sensor
component. The example used shows that the proposed framework is working well.

Fig. 17. Test result views of GetInfraredData interface

SITAF: Simulation-Based Interface Testing Automation Framework for Robot Software Component

469

5. Conclusions and future works

This paper proposes and develops the interface testing framework, SITAF, based on
simulation and specification-based test for robot software components and develops the
automatic test case generation technique for interface testing. SITAF uses three types of the
test parameters, which are the input parameter, the test stub parameter, and the simulation
dependent parameter and applies specification-based test techniques. SITAF also performs
the automatic interface testing to identify errors caused by CUT interactions with an
external environment.

SITAF is evaluated via the example of the test of the IR sensor component used in the
distance measurement. The example shows that the SITAF generates test cases and performs
the automatic interface testing by interactive simulation.

As future works, are considering an automatic regression test by applying software
configuration management, and the mixed test environment of a simulation-based
environment and a real environment for testing robot software component.

6. References

A. Martin, A. & Emami, M. R. (2006). An Architecture for Robotic Hardware-in-the-Loop
Simulation, Proceedings of the International Conference on Mechatronics and
Automation, pp.2162-2167, June 2006

Bundell, G. A.; Lee, G., Morris, J. & Parker, K. (2000). A Software Component Verification
Tool, Proceedings of the Conf. Software Methods and Tools, pp. 137-146, 2000

Buy, U.; Ghezzi , C., Orso , A., Pezze, M. & Valsasna, M. (1999). A Framework for Testing
Object-Oriented Components, Proceedings of the 1st International Workshop on Testing
Distributed Component-Based Systems, 1999

Edwards, S. H. (2001). A framework for practical, automated black-box testing of
component-based software, International Journal of Software Testing, Verification and
Reliability, Vol. 11, No. 2, pp. 97-111, June, 2001

Hoffman, D.; Strooper, P. & White, L. (1999). Boundary Values and Automated Component
Testing, Journal of Software Testing, Verification, and Reliability, Vol. 9, No. 1, 1999, pp.
3–26,

http://www.opros.or.kr/
Hu, X. (2005). Applying Robot-in-the-Loop-Simulation to Mobile Robot Systems, Proceedings

of the 12th International Conference on Advanced Robotics, pp. 506-513, July 2005
Jawawi, D.N.A.; Mamat, R. & Deris, S. (2007). A Component-Oriented Programming for

Embedded Mobile Robot Software, International Journal of Advanced Robotics
Systems, Vol.4, No.2, 2007, pp.371-380, ISSN 1729-8806

Michel, O. (2004). Webots: Professional Mobile Robot Simulation, International Journal of
Advanced Robotic Systems, Vol. 1, No. 1, 2004, pp. 39-42, ISSN 1729-8806

Momotko, M. & Zalewska, L. (2004). Component+ Built-in Testing: A Technology for
Testing Software Components, Foundations of Computing and Decision Sciences, pp.
133-148, 2004

Ntafos, S. (1998). On Random and Partition Testing, Proceedings of International Symposium on
Software Testing and Analysis (ISSTA), 1998, pp. 42–48

Automation

470

Ostrand, T.J. & Balcer, M.J. (1998). The Category-Partition Method for Specifying and
Generating Functional Tests, Communications of the ACM, Vol. 31, No. 6, 1988, pp.
676–686

Williams, A.W. (2000). Determination of test configurations for pair-wise interaction
coverage, Proceedings of the 13th Conf. Testing of Communicating Systems, pp. 59-74,
August 2000

Zamli, K. Z.; Isa, N. A. M., Klaib, M. F. J. & Azizan, S. N. (2007). A Tool for Automated Test
Data Generation(and Execution) Based on Combinatorial Approach, International
Journal of Software Engineering and Its Applications, Vol. 1, No. 1, pp. 19-35, July, 2007

Zhu, H.; Hall, P.& May, J. (1997). Software Unit Testing Coverage and Adequacy, ACM
Computing Surveys, Vol. 29, No. 4, December 1997, pp. 366–427

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

