
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

15

Genetic Algorithm Based Automation
Methods for Route Optimization Problems

G. Andal Jayalakshmi
Intel,

Malaysia

1. Introduction

Genetic Algorithms (GA) are robust search techniques that have emerged to be effective for

a variety of search and optimization problems. The primary goal of this chapter is to explore

various Genetic Algorithm (GA) based automation methods for solving route optimization

problems. Three real world problems: Traveling Salesman, Mobile Robot Path-Planning and

VLSI global routing are considered here for discussion. All the three problems are Non-

deterministic Polynomial (NP)-complete problems and require a heuristic algorithm to produce

acceptable solutions in a reasonable time.

The basic principles of GAs were first laid down by Holland. GAs work with a population of
individuals each representing a solution to the problem. The individuals are assigned a
fitness value based on the solution’s quality and the highly fit individuals are given more
opportunities in the reproduction. The reproduction process generates the next generation
of individuals by two distinct processes named ‘crossover’ and ‘mutation’. The new
individuals generated by crossover share some features from their parents and resemble the
current generation whereas the individuals generated by mutation produces new characters,
which are different from their parents. The probability of crossover operation is usually very
high compared to the probability of mutation operation due to the nature of their
operations. The reproduction process is carried out until the population is converged which
usually takes hundreds of iterations for complex real world problems. The time taken for
convergence is dependent on the problem and it is the progression towards increasing
uniformity among the individuals of a population.

A standard GA described by Goldberg uses binary encoding for representing the individuals,
one-point crossover for reproduction which exchanges two consecutive sets of genes and
random mutation which randomly alters the selected gene. The probability for applying
crossover typically ranges from 0.6 to 1.0 and the probability for mutation operation is
typically 0.001. Generally crossover enables the rapid exploration of the search space and
mutation provides a small amount of random search to ensure that no point in the search
space is given zero probability of being examined.

Traditional GAs are generally not the successful optimization algorithms for a particular
domain as they blindly try to optimize without applying the domain knowledge. L.Davis
states in the “Handbook of Genetic Algorithms”, that the “Traditional genetic algorithms

Automation 294

although robust are generally not the most successful optimization algorithms on any
particular domain”. Davis argues that the hybridization will result in superior methods.
Hybridizing the genetic algorithm with the optimization method for a particular problem
will result in a method which is better than the traditional GA and the particular
optimization method. In fact this will produce a more superior method than any of the
individual methods. The standard GA can be improved by introducing variations at every
level of the GA component including the encoding techniques, the reproduction
mechanisms, population initialization techniques, adaptation of genetic parameters and the
evolution of the individuals. These thoughts have resulted in a class of genetic algorithms
named ‘Hybrid Genetic Algorithms’ (HGA). These are the customized genetic algorithms to fit
the traditional or simple GA to the problem rather than to fit the problem to the
requirements of a genetic algorithm. The HGAs use real valued encodings as opposed to
binary encodings and employs recombination operators that may be domain specific.

We will explore further on the use of HGA by discussing a solution to the Traveling Sales
Person (TSP) problem. The TSP problem has been a typical target for many approaches to
combinatorial optimization, including classical local optimization techniques as well as
many of the more recent variants on local optimization, such as Simulated Annealing, Tabu
Search, Neural Networks, and Genetic Algorithms. This problem is a classic example of Non
deterministic Polynomial hard problem and is therefore impossible to search for an optimal
solution for realistic sizes of N. The HGA that is described here is as proposed by Jayalakshmi
et. al. which combines a variant of an already existing crossover operator with a set of new
heuristics. One of the heuristics is for generating the initial population and the other two are
applied to the offspring either obtained by crossover or by shuffling. The heuristics applied
to the offspring are greedy in nature and hence the method includes proper amount of
randomness to prevent getting stuck up at local optimum.

While the hybrid GAs exploit the domain knowledge, in many realistic situations, a priori
knowledge of the problem may not be available. In such cases, it is fortunately possible to
dynamically adapt aspects of the genetic algorithm’s processing to anticipate the
environment and improve the solution quality. These are the ‘Adaptive GAs’ which are
distinguished by their dynamic manipulation of selected parameters or operators during the
course of evolving a problem solution. In this chapter we will see an adaptive GA solution
to the mobile robot path planning problem which generates collision free paths for mobile
robots. The problem of generating collision-free paths has attracted considerable interest
during the past years. Recently a great deal of research has been done in the area of motion
planning for mobile robots as discussed by Choset et al. Traditional planners often assume that
the environment is perfectly known and search for the optimal path. On the other hand on-line
planners are often purely reactive and do not try to optimize a path. There are also approaches
combining offline planers with incremental map building to deal with a partially known
environment such that global planning is repeated whenever a new object is sensed and added
to the map. The developments in the field of Evolutionary Computation (EC) have inspired the
emergence of EC-based path planners. However traditional EC-based planners have not
incorporated the domain knowledge and were not adaptive and reactive to the changing
environments. Recent research has offered EC-based planners for dynamic environments.

The solution to the mobile robot path planning problem discussed here is as proposed by
Jayalakshmi et. al, which incorporates domain knowledge through domain specific operators

Genetic Algorithm Based Automation Methods for Route Optimization Problems 295

and uses an initialization heuristics to convert infeasible paths into feasible ones. The fitness
of the solution is measured based on the number of fragments, acute edges and the angle
between the turns in the path. The algorithm plans the path for the current environment and
the robot travels in that direction. If an obstacle is found in its path, the robot senses the
presence of the obstacle before the critical time to avoid collision and calls the path planner
algorithm again to find the new path from that point onwards.

The CHC genetic algorithm proposed by Eshelman has emerged as an alternative to resolve the

perennial problem with simple GAs which is the premature convergence. The simple GA

allows a sub-optimal individual to take over a population resulting in every individual being

extremely alike and thus causing premature convergence. The consequence of premature

convergence is a population which does not contain sufficient genetic diversity to evolve

further. The CHC genetic algorithm uses crossover using generational elitist selection,

heterogeneous recombination by incest prevention and cataclysmic mutation to restart the

search when the population starts to converge. The CHC GA has a very aggressive search by

using monotonic search through survival of the best and offset the aggressiveness of the search

by using highly disruptive operators such as uniform crossover.

In this chapter we will also explore a solution to the VLSI global routing problem using CHC
GA. One of the most important VLSI Design Approaches is the Macro Cell design. Macro
cells are large, irregularly sized parameterized circuit modules that are generated by a
silicon compiler as per a designer’s selected parameters. Usually the physical design process
for macro cells is divided into Floor Planning/Placement, Global Routing and Detailed
Routing. Floor Planning/Placement constructs a layout indicating the position of the macro
cells. The placement is then followed by routing, which is the process of determining the
connection pattern for each net to minimize the overall routing area. Before the global
routing process begins, a routing graph is extracted from the given placement and routing is
done based on this graph. Computing a global route for a net corresponds to finding a
corresponding path in the routing graph. Each edge represents a routing channel and the
vertex is the intersection of the two channels. First the vertices that represent the terminal of
the net are added to the routing graph and then the shortest route for the net is found. Both
the placement and routing problems are known to be NP-complete. Thus it is impossible to
find optimal solutions in practice and various heuristics are used to obtain a near optimal
solution. There has been a lot of work on optimization for routing, including Simulated
Annealing algorithms and Genetic Algorithms.

The details of the genetic algorithm solutions to each of these problems are described in the

following sections.

2. Design of a hybrid GA for TSP

A heuristic approach employs some domain knowledge in providing a solution to the
problem. A good heuristics can be devised provided one has the knowledge of the problem
being solved. In cases, where there is no knowledge of the problem, it is best to use a more
general heuristic, often called a meta-heuristic. Meta-heuristics are sometimes also called
black-box optimization algorithms or simply, general-purpose optimization algorithms.
Coding complex data structures by simple lists of bits or real values leads to the problem
that has no one-to-one correspondence between these lists and the problem instances. Hence

Automation 296

problem knowledge is necessary either to repair operators to deal with invalid solutions or
to design special operators tailored to the problem.

Of the present evolutionary algorithms, hybrid genetic algorithms have received increasing
attention and investigation in recent years. This is because of the reason that the hybrid GAs
combine the global explorative power of conventional GAs with the local exploitation
behaviours of deterministic optimization methods. The hybrid GAs usually outperform the
conventional GAs or deterministic methods in practice. To hybridize the genetic algorithm
technique and the current algorithm, the following three principles are suggested by Davis:

 Use the current algorithm’s encoding technique in the hybrid algorithm. This
guarantees that the domain expertise embodied in the encoding used by the current
algorithm will be preserved.

 Hybridize where possible by incorporating the positive features of the current method
in the hybrid algorithm.

 Adapt the genetic operators by creating new crossover and mutation operators for the
new type of encoding by analogy with bit string crossover and mutation operators.
Incorporate domain based heuristics on operators as well.

Theoretical work as well as practical experience demonstrates the importance to progress
from fixed, rigid schemes of genetic algorithms towards a problem specific processing of
optimization problems.

This section explores how a HGA is used to solve the TSP problem. The TSP is probably the
most studied optimization problems of all times. In the Travelling Sales Person problem,
given a set {c1 , c2 , . . . , cn} of cities, the goal is to find an ordering of the cities that
minimizes the quantity

 d(c(i),c(i+1))+d(c(n),c(1)) 1 i n-1

Where d (ci,cj) is the distance associated with each pair of distinct cities <ci,cj>. This quantity
is referred to as the tour_length, since it is the length of the tour a salesman would make
when visiting the cities in the order specified by the permutation, returning at the end, to
the initial city. The Euclidean Travelling Sales Person problem involves finding the shortest
Hamiltonian Path or Cycle in a graph of N cities. The distance between the two cities is just
the Euclidean distance between them.

In a symmetric TSP, the distances satisfy d(ci,cj) = d(cj,ci) for 1i, jN. The symmetric traveling
salesman problem has many applications, including VLSI chip fabrication X-ray
crystallography and many other. It is NP-hard and so any algorithm for finding optimal
tours must have a worst-case running time that grows faster than any polynomial. This
leaves researchers with two alternatives: either look for heuristics that merely find near-
optimal tours, but do so quickly, or attempt to develop optimization algorithms that work
well on ‘real-world’ rather than worst-case instances. Because of its simplicity and
applicability the TSP has for decades served as an initial proving ground for new ideas
related to both these alternatives.

2.1 The hybrid GA solution

The HGA proposed by Jayalakshmi et al. to solve the TSP problem use heuristics for
initialization of population and improvement of offspring produced by crossover. The

Genetic Algorithm Based Automation Methods for Route Optimization Problems 297

Initialization Heuristics algorithm is used to initialize a part of the population and the
remaining part of the population is initialized randomly. The offspring is obtained by
crossover between two parents selected randomly. The tour improvement heuristics:
RemoveSharp and LocalOpt are used to bring the offspring to a local minimum. If cost of the
tour of the offspring thus obtained is less than the cost of the tour of any one of the parents
then the parent with higher cost is removed from the population and the offspring is added
to the population. If the cost of the tour of the offspring is greater than that of both of its
parents then it is discarded. For shuffling, a random number is generated within one and if
it is less than the specified probability of the shuffling operator, a tour is randomly selected
and is removed from the population. Its sequence is randomized and then added to the
population.

2.1.1 The crossover operator

The initial city is chosen from one of the two parent tours. This is the current city and all the
occurrences of this city are removed from the edge map. If the current city has entries in its
edgelist then the city with the shortest edge is included in the tour, and this becomes the
current city. Any ties are broken randomly. This is repeated until there are no remaining
cities. An example is given below:

Let the distance matrix be

0 10 4 15 5 20

10 0 5 25 5 10

4 5 0 13 6 2

15 25 13 0 6 10

5 5 6 6 0 20

20 10 2 10 20 0

Let the genotype p1 be equal to (2,3,4,5,0,1) which encodes the TSP tour (2,3,4,5,0,1,2) and p2
be equal to (2,3,1,4,0,5) which encodes the TSP tour(2,3,1,4,0,5,2). The combined edge map
M12 contains the combined edge relationships from both the parents. The first gene value in
p1 i.e. 2 is added to the child c1. Then the gene value 2 is removed from the edge map. The
combined edge map before and after are given below:

Gene
value

Edge
map
(p1)

Edge
map
(p2)

Combined
Edge map
M12 (before)

Combined
Edge map
M12 (after)

0 5,1 4,5 1,4,5 1,4,5

1 0,2 3,4 0,2,3,4 0,3,4

2 3,1 3,5 1,3,5 1,3,5

3 2,4 2,1 1,2,4 1,4

4 3,5 1,0 0,1,3,5 0,1,3,5

5 4,0 0,2 0,2,4 0,4

Table 1. Combined edge map

Automation 298

Now |E(2)| = 3 therefore an edge j is chosen such that j E(2) and |<2,j,>| is minimum and
is added to the child c1. In this example j is 5. Now j is removed from the edge map, and the
same procedure is followed until the child c1 is filled with all the genes. For the example the
child c1 will become (2,5,0,4,1,3).

2.1.2 The Initialization Heuristics

The Initialization Heuristics (IH) initializes the population based on a greedy algorithm which
arranges the cities depending on their x and y coordinates. The tours are represented in linked-
lists. First an initial list is obtained in the input order which is the Input List. The linked-list
that is obtained after applying the Initialization Heuristics is the “Output List”. During the
process of applying the Initialization Heuristics all the cities in the “Input List” will be moved
one by one to the “Output List”. Four cities are selected, first one with largest x-coordinate
value, second one with least x-coordinate value, third one with largest y-coordinate and fourth
one with least y-coordinate value. These are moved from the “Input List” to the “Output List”.
The sequence of the four cities in the Output List is changed based on minimum cost. The
elements in the Input List are randomized and the head element is inserted into the Output
List at a position where the increase in the cost of the tour is minimal. This process is repeated
until all the elements in the Input List are moved to the Output List.

Figure 1(a) shows a 8-city problem. Figure 1(b) shows the Boundary Tour formed from four
extreme cities. Figure 2 (a), (b), (c) & (d) shows the four possible tours that can be formed
when city 'E' is moved to the “Output List”. It is obvious from the figures that the Tour in
Figure 2(a) will result in minimum increase in the cost of the tour in the “Output List”.
Similarly other cities will be moved one by one to the “Output List”.

Fig. 1. (a) Input cities and (b) boundary tour formed by four extreme cities

(a) (b) (c) (d)

Fig. 2. Various possible tours, which can be formed by moving city ‘E’ to the output list

Genetic Algorithm Based Automation Methods for Route Optimization Problems 299

2.1.3 The Removesharp heuristics

The RemoveSharp algorithm removes sharp increase in the tour cost due to a city, which is
badly positioned. It rearranges the sequence of a tour by considering the nearest cities of a
badly positioned city such that the tour_cost is reduced. A list containing the nearest m cities
to a selected city is created. The selected city from the tour is removed and a tour with N-1
cities is formed. Now the selected city is reinserted in the tour either before or after any one
of the cities in the list previously constructed with m nearest cities and the cost of the new
tour length is calculated for each case. The sequence, which produces the least cost, is
selected. This is repeated for each city in the tour.

An example is given below:

(a) (b)

Fig. 3. (a) A tour with a badly positioned city and (b) The tour after RemoveSharp is applied

In Figure 3(a) the city E is in between the cities A and D, while it is obvious that the nearest
cities to it are city C and B. RemoveSharp will move city E between the cities C and D,
resulting in a decrease in the tour cost as shown in Figure 3(b).

2.1.4 The local heuristics

The heuristics finds a locally optimal tour for a set of cities, by rearranging them in all
possible orders. The LocalOpt algorithm will select q consecutive cities (Sp+0 , Sp+1 , , Sp+q-

1) from the tour and it arranges cities Sp+1 , Sp+2 , , Sp+q-2 in such a way that the distance is
minimum between the cities Sp+0 and Sp+q-1 by searching all possible arrangements. The
value of p varies from 0 to n-q, where n is the number of cities. In Figure 4(a) it is quite clear
that the distance between the cities A and G can be reduced if some rearrangements are
made in the sequence of the cities between them. LocalOpt will make all possible
rearrangements and replace them to the sequence as shown in Figure 4(b).

(a) (b)

Fig. 4. (a) A bad tour and (b) The tour after LocalOpt is applied

Automation 300

2.2 Results

The results for the HGA solution for 3 standard TSP problems are compared with the results
for GA and SA solutions. The best integer tour_length and the best real tour_length (in
parenthesis) are tabulated below in Table 2. NA represents "Not Available".

The heuristics with which Hybrid GA is compared here are GA and SA as reported by
Whitley. D et al. and TSPLIB. The difference between integer and real tour length is that in
the first case distances are measured by integer numbers, while in the second case by
floating point approximations of real numbers. In TSPLIB website only Eil51 and Eil76 are
available which have an additional city to Eil50 and Eil75 respectively.

Problem name HGA GA SA
Eil50
50-city problem

426
(428.871)
{for Eil51}

428
(NA)

443
(NA)

Eil75
75-city problem

538
(544.36)
{for Eil76}

545
(NA)

580
(NA)

KroA100
100-city problem

21282
(21285.44)

21761
(NA)

NA
(NA)

Table 2. Comparison of HGA with other heuristics on geometric instances of the symmetric
TSP.

3. Design of an adaptive GA for mobile robots

Adaptive Genetic algorithms dynamically manipulate selected parameters or operators
during the course of evolving a problem solution. Adaptive GAs are advantageous over
SGAs in that they are more reactive to unanticipated characteristics of the problem and can
dynamically acquire information about the problem characteristics and exploit them. As
described by Davis, adaptive GAs can be categorized based on the level at which the
adaptive parameters operate. Population-level techniques dynamically adjust parameters that
are global to the entire population. Individual-level adaptive methods modify a particular
individual within the population depending on how it is affected by the mutation operators.
Component-level adaptive GAs dynamically alter the individual components depending on
how each individual will be manipulated independently from each other. The operator
probabilities play a major role in determining the solution quality and the convergence rate.
Since the range of potential applications of genetic algorithms is infinite, it is difficult to
measure the goodness of the parameter values. This suggested the idea of adapting the
operator probabilities during the evolution of the GA.

The path planner proposed by Jayalakshmi et al. incorporates domain knowledge in the
algorithm through domain specific operators. An initialization heuristics is used to convert
infeasible paths into feasible ones. The fitness is measured based on the number of
fragments, acute edges and the angle between the turns in the path. The algorithm plans the
path for the current environment and the robot travels in that direction. If an obstacle is
found in its path, the robot senses the presence of the obstacle before the critical time to
avoid collision and calls the path planner algorithm again to find the new path from that
point onwards. The following sections describe the solution.

Genetic Algorithm Based Automation Methods for Route Optimization Problems 301

3.1 The adaptive GA solution

The path planner algorithm design has four major phases. The first phase is the design of
the Initialization Heuristics (IH), which includes the Backtrack and Change_Y operators. The
algorithm initializes the population randomly and then repairs the population by applying
these two operators. This leaves the initial population free of any infeasible solutions and
reduces the search region considerably. The heuristics is discussed in detail in a later
section.

The second phase is the design of domain specific genetic operators End_New, Mid_New,
Shake and Adjacent to change the characteristics of the path. The operators tune the path
generated by removing the sharp edges, inserting adjacent segments in the path and
introducing new vertices. The operators are discussed in detail in section 3.1.4.

The third phase is the design of the objective function which is designed to include the
smoothness factors of the path in calculating the fitness value. This ensures that the path is
not only optimal in length but also smooth without any sharp turns. The objective function
is discussed in detail in section 3.1.5. The fourth phase of the algorithm is the design of the
adaptive rules to evolve the operator probabilities. The operator probabilities are adapted
based on the smoothness factors. The adaptive rules are discussed in section 3.1.6. The
binary tournament selection scheme is used to select a parent chromosome and the
reproduction is carried out by refining the paths in the previous generation using the
domain specific genetic operators described in section 3.1.4. The complete algorithm is given
below:

Adaptive_Path_Planner()

Begin

 Initialize the population using the heuristics

 Calculate the objective function and evaluate the population

 While not convergence do

 Begin

 Repeat

 Select the parent using binary tournament selection

 Apply the domain specific genetic operators with the optimal

 probability and produce offspring

 Replace the parent with the offspring

 Until the next generation is filled

 Evaluate the population based on the objective function

 Tune the operator probability

 End

End

Automation 302

3.1.1 The chromosome structure

A chromosome in a population represents a feasible/infeasible path for the robot to reach

the goal location. It consists of the starting point followed by the intersection points of the

line segments of the path, and finally the goal position or the ending point. A path can have

a varied number of intermediate nodes. And hence the length of the chromosomes will be a

variable. An initial population of chromosomes is randomly generated such that it has a

random number of intermediate edges with random coordinates. A sample path and its

representation are given below:

Fig. 5. Example path and its equivalent chromosome

3.1.2 The selection scheme

The binary tournament selection scheme is used to select a parent chromosome. In binary
tournament selection, pairs of individuals are picked at random from the population;
whichever has the higher fitness is copied into a mating pool. This is repeated until the
mating pool is full. In this, the better individual wins the tournament with probability p,
where 0.5 < p < 1. By adjusting tournament size or win probability, the selection pressure
can be made arbitrarily large or small.

3.1.3 The initialization heuristics

Each chromosome shall represent a feasible or an infeasible path. A random initialization

generally leads to a large number of infeasible paths and hence a heuristics is used to

convert infeasible paths to feasible ones. The heuristics involve two operators: Change_Y and

Backtrack. The Change_y operator is used to change the value of Y coordinate of the vertex

which when included leads to an infeasible path. This makes the robot go up a step to take

a different path so that the collision with the obstacle is avoided. The Backtrack operator is

used to take a different path when the path already taken by the robot leads to an obstacle. It

allows the robot to go back by two steps in the original path and take up a new path. It is

designed to go back two steps because when the robot realizes an obstacle, it will be very

nearer to the obstacle and going back one step may not lead to a feasible path.

3.1.4 The genetic operators

The traditional genetic operators Mutation and Crossover cannot be used as such here,

hence they are given new forms to accommodate the requirements of the problem to be

solved. The operators are designed having in mind the nature inspired actions, a person

shall take to avoid collisions with obstacles. The operators are described below:

Genetic Algorithm Based Automation Methods for Route Optimization Problems 303

Mid_New: A vertex is chosen randomly and the edges connecting it to the previous and the

next vertices are altered so that any steep increase in the path can be eliminated. The mid

points of the edges are considered recursively until a feasible path is found. This helps to

take up a closer but safer path around the obstacle

End_New: A vertex is chosen randomly and is removed from the path provided the resultant

path is feasible. This operator helps to reduce the number of fragments in a path.

Shake: This operator chooses a vertex randomly and changes its Y coordinate by either

adding or subtracting a constant value. This works like a mutation operator.

Adjacent: This operator changes the original path by interchanging a segment of a path with

a parallel segment by either adding or subtracting a constant value with the Y coordinate of

each vertex in that segment.

3.1.5 The evaluation function

The fitness of a chromosome is calculated based on the following factors:

 Length

 Feasibility

 Number of acute edges

 Number of bends

 Number of fragments

Two objective functions are designed; one based on length and the other on smoothness.

The objective function Simple_Obj calculates the fitness of a path on the basis of the length of

the path and its feasibility. The objective function Smooth_Obj calculates the fitness based on

the smoothness of the path. The objective functions are described in the following sections.

3.1.5.1 The objective function based on length and feasibility

The fitness is calculated based on the length and feasibility. The feasibility is measured by

checking whether the next node on the path generated so far leads to a collision with any of

the obstacles. The length_constant is a large integer value which when divides the path

length will give high fitness value for the path with minimal length.

	 	 	 ∗

Where K l is the length_constant (a large integer value) and Kf is the feasibility_constant
(an integer value). total_length path 	 		length 	i	, i 1 	, 1	i		n, n	 	No. of	nodes 1, 	 	 					 1	, 	 	 	

3.1.5.2 The objective function based on smoothness

The objective function Simple_Obj discussed above takes into account only the path length
and the feasibility factor whereas the Smooth_Obj takes into account the other factors such as

Automation 304

the number of acute increases/decreases, turns with angle 90 and the number of fragments
in the path. The new objective function Smooth_Obj is given below:

	 _ 	 ∗ 50 ∗100 40 ∗100 10 ∗100

where

1 _ ∗ 100

1 _ ∗ 100
 	 	 ∗ 100

And NF is the number of Fragments

The Acute_Count is the number of sharp increases / decreases in the path, the Bend_Count is

the number of rectangular turns and the Ideal_Fragments is the minimum number of

fragments of all the paths that occur in a generation. Since the number of acute edges affects

the smoothness of the path largely, its contribution is 50% in the calculation of the fitness

value. The number of bends is given 40% share and the fragments 10% share in the

calculation of the fitness value.

3.2 The dynamic environment

The robot travels in an environment where the obstacles may get introduced suddenly in the

path planned by the robot for travelling. In such situations the robot has to decide at every

step whether to take up the already planned path or a new path. The robot is assumed to

travel at a fixed speed and has a sensor in it to detect the existence of any obstacle. When an

obstacle is recognized by the robot it calls the dynamic path planner algorithm and plans its

path from that position onwards. The sensor is assumed to sense the existence of any

obstacle before the robot reaches the region and the path planner returns the path within the

critical time. Now the new path is taken up from that position and the same procedure is

repeated until the robot has reached the destination.

3.3 Results

A sample output for the adaptive GA solution is given below. The Robot is assumed to

travel in a dynamic environment of dimension (5,5) to (400,400) with different kinds of

obstacles placed randomly. A dynamic environment is created by adding new obstacles on

the path planned by the robot.

The path planning algorithms for dynamic environments are computationally intensive and

hence will take longer time to converge for an environment with non-rectilinear obstacles.

Genetic Algorithm Based Automation Methods for Route Optimization Problems 305

Faster genetic operators and multi-threading methods might help to speed up the path

planning process in these environments.

(a) (b)

Fig. 6. (a) A dynamic obstacle in the planned path and (b) the final generation of paths from
the point of intervention

4. Design of a Hybrid CHC GA for VLSI routing

The Minimum Rectilinear Steiner Tree (MRST) problem arises in VLSI global routing and

wiring estimation where we seek low-cost topologies to connect the pins of signal nets. The

Steiner tree algorithm is the essential part of a global routing algorithm. It has been an active

field of research in the recent past. This section presents a Hybrid CHC (HCHC) genetic

algorithm for global routing. The Minimum Rectilinear Steiner Tree problem is to construct a

tree that connects all the n points given in the Euclidean plane. If the edges in this tree are to

be selected from all possible edges that are from the complete graph on the points, it is the

familiar problem of finding a spanning tree in an undirected graph. If the edges of the tree

must be horizontal and vertical, the additional points where the edges meet are called the

Steiner points, and the resulting tree is a Rectilinear Steiner Tree [RST]. A shortest such tree

on a set of given points is a minimum rectilinear Steiner tree.

4.1 Construction of Minimum Spanning Tree

The Spanning tree algorithm presented here is based on the shortest path heuristic as

described by Ellis Horowitz et al. A simple genetic algorithm is used for the construction of a

Minimum Spanning Tree (MST), which is then used in the generation of the Steiner minimal

tree. The spanning tree is generated by initializing the population with random solutions.

The random solutions are then repaired using a repair heuristics. The offspring are

generated by applying one point crossover and exchange mutation which exchanges edges

in an individual. The exchange of edges may lead to a totally different tree, thus justifying

the purpose of mutation. The new population is evolved and the same procedure is repeated

until convergence.

The algorithm for the construction of the minimum spanning tree is given below.

Automation 306

Minimal_Spanning_Tree()

Begin

Initialize parameters: generation count, crossover and mutation probabilities

 Initialize parent population randomly

 Apply repair heuristics to the parent population

 While termination condition not reached

 Begin

 Select parents based on the total length of the Spanning tree

 Apply crossover and mutation

 Evolve new population

 Replace previous population by new population

 End

End

The repair heuristics removes cycles and repeated edges from the population and makes it a
set of feasible solutions. The vertices of the graph are stored in separate sets, so that it can be
later combined whenever an edge is included in the final spanning tree. The union algorithm
unions two sets containing Vi and Vj respectively when an edge E <Vi, Vj> is added to the
final spanning tree. The find algorithm verifies whether a particular vertex belongs to a set.
The union algorithm combines all vertices that are connected, in to a single set. When a
particular edge is selected for addition into a partially constructed spanning tree, it is
checked whether the vertices of that edge are already present in the same set using the find
algorithm. If they are in the same set, then the inclusion of this edge will lead to a cycle. The
repeated edges can be checked easily with the adjacency matrix.

4.2 Construction of minimum steiner tree

The Steiner tree problem can be defined as the subset of minimum spanning tree problem.
In minimum spanning tree construction, a tree is constructed with vertices V1,V2,…Vn
connected without loops at the lowest cost. In the Steiner tree problem, extra vertices are
added besides the existing vertices V1,V2,…Vn, to construct a lower cost tree connecting
V1,V2,….Vn. The extra vertices are called the Steiner points. There are various heuristics
available to construct a MRST, and most of them use MST as a starting point. The I-Steiner
algorithm as discussed by Kahng A.B et al., constructs the MRST by evaluating all possible
Steiner points for their impact on MST cost. The algorithm operates on a series of passes, in
each pass the single Steiner point which provides the greatest improvement in spanning tree
cost is selected and added to the set of demand points. Points are added until no further
improvement can be obtained.

The heuristics used here for the construction of MRST is the “BOI” or “edge-removal
technique” of Borah, Owen and Irwin. The algorithm constructs the Steiner tree through
repeated modification of an initial spanning tree as discussed by Jayalakshmi et al. An edge

Genetic Algorithm Based Automation Methods for Route Optimization Problems 307

and a vertex pair that are close to each other in an MST are determined. For each vertex Vi,
edge Ei pairing of the spanning tree, an optimal Steiner point is found to merge the
endpoints of the edge Ej with vertex Vi. This will create a cycle, so the longest edge on this
cycle is found and a decision is made about removing this edge from the cycle based on the
cost. Among all possible eliminations, whichever leads to the lowest cost is removed and
the tree is modified. The edges are removed and new connections are inserted until no
improvements can be obtained. The resulting tree is the minimum Steiner tree. The
approach has low complexity with performance comparable to that of I-Steiner. The
algorithm for the construction of the minimum Steiner tree is given below:

Steiner_Tree()

Begin

 Build the routing graph G

 For each net do

 Begin

 Initialize weights for edges

 Find the minimum cost spanning tree T

 For each <vertex,edge> pair of the spanning tree

 Begin

 Find the optimum Steiner point to connect this edge to the vertex
 at a suitable point

 Find the longest edge on the generated cycle

 Compute the cost of the modified tree and store the pair in a list
 if the cost is less than the MST

 End

 While the list is not empty do

 Begin

 Remove the pair from the list which results in lowest cost

 Re-compute the longest edge on the cycle and the cost of the tree

 If the edges to be replaced are in the tree and the cost is less then
 modify the tree

 End

 End

End

Automation 308

4.3 Results

The HCHC solution for four standard test problems B1, B3 B6 and B9 from the problem sets

of J.E.Beasley are given below in Table 3. A simple GA with one point crossover and

exchange mutation is compared with the HCHC solution. In HCHC, Uniform crossover and

External mutation are used for reproduction.

Test
problem

Optimum
Solution Error Generations

SGA HCHC SGA HCHC SGA HCHC

B1 82 187 95 105 13 150 200

B3 138 145 140 7 2 150 200

B6 122 128 125 6 3 400 250

B9 220 241 224 21 4 150 200

Table 3. The solutions obtained by SGA and HCHC for Beasley’s test problems B1, B3,B6
and B9

For HCHC algorithm the maximum error is for the test problem B1 and for the rest of the

problems the error is less than 6. And SGA has performed very poorly for B1 and B9. For the

other problems, SGA has performed moderately well with error less than 10.

5. Summary

With Genetic Algorithms emerging as strong alternative to traditional optimization

algorithms, in a wide variety of application areas, it is important to find the factors that

influence the efficiency of the genetic algorithms. The simple GAs are found to be ineffective

for most of the real world problems. Hence there arises the need for the customization of the

traditional GAs. This chapter explored the variants of the simple genetic algorithm and their

application to solve real world problems. TSP is a problem of a specific domain and

required hybridization for quicker convergence. In particular the local search algorithm

chosen has a determining influence on the final performance. The heuristics used were

simple and easy to implement when compared to other algorithms. The solution to the

mobile robot path planning problem explored the design of different operators and showed

that the adaptation of operators has a significant impact in improving the solution quality. A

hybrid CHC algorithm was used to solve the VLSI global routing problem. And this

example showed that the simple GA could only find a sub optimal solution and could not

go beyond certain values due to the lack of techniques that avoid premature convergence.

6. References

Beasley.J.E. (1989). An SST-Based Algorithm for the Steiner Problem in Graphs, Networks,

Vol.19, pp.1-16, l989.

Borah.M, R. M. Owens & M. J. Irwin. (1994). An edge-based heuristic for Steiner routing,

IEEE Trans. Computer-Aided Design, vol. 13, pp. 1563–1568, Dec. 1994.

Genetic Algorithm Based Automation Methods for Route Optimization Problems 309

Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., & Kavraki, L. E. (2005).

Principles of robot motion: theory, algorithms, and implementations. Boston, MIT

Press.

Davis.L, (Editor). (1991). “Handbook of Genetic Algorithms “, Van Nostrand Reinhold.

Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran. (2007). Computer Algorithms, Silicon

Pr.

Eshelman,L.J. (1991). The CHC Adaptive Search Algorithm: How to have safe search when

engaging in nontraditional genetic recombination, Rawlins G.(Editor), Foundations of

Genetic Algorithms, Morgan Kaufmann, pp.265-283.

Goldberg, David E. (1989). Genetic Algorithms in Search Optimization and Machine Learning,

Addison Wesley, ISBN 0201157675.

Goldberg, David E. (2002). The Design of Innovation: Lessons from and for Competent Genetic

Algorithms, Addison-Wesley, Reading, MA.

Holland, John H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor.

Hu.J & Sapatnekar.S.S. (2001). Performance driven global routing through gradual

refinement, IEEE Int. Conf.on Comp Design, 2001, pp.481-483

Jayalakshmi.G.A, S. Sathiamoorthy & R. Rajaram. (2001). A Hybrid Genetic Algorithm – A

New Approach to Solve Traveling Salesman Problem, International Journal of

Computational Engineering Science, Volume: 2 Issue: 2 p.339 – 355.

Jayalakshmi, G.A, Prabhu. H, & Rajaram. R. (2003). An Adaptive Mobile Robot Path Planner

For Dynamic Environments With Arbitrary-Shaped Obstacles, International Journal

of Computational Engineering Science(2003),pp. 67-84

Jayalakshmi, G.A., Sowmyalakshmi.S & Rajaram.R (2003). A Hybrid CHC Genetic

Algorithm For Macro Cell Global Routing, Advances in Soft Computing Engineering

Design and Manufacturing Benitez, J.M.; Cordon, O.; Hoffmann, F.; Roy, R. (Eds.)

pp. 343 – 350, Springer-Verlag, Aug 2003

Kahng.A.B and G.Robins. (1992). A new class of iterative Steiner tree heuristics with good

performance, IEEE Trans on Computer Aided design of Integrated circuits and

systems, 11(7), pp.893-902.

Li-Ying Wang, Jie Zhang & Hua Li. (2007). An improved Genetic Algorithm for TSP,

Proceedings of the Sixth International Conference on Machine Learning and Cybernetics,

Hong Kong, 19-22 August 2007.

TSPLIB: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html retrievable as of 3rd

Feb 2012

Whitley.D, Lunacek.M & Sokolov.A. (2006). Comparing the Niches of CMA-ES, CHC and

Pattern Search Using Diverse Benchmarks, Parallel Problem Solving from Nature

Conference (PPSN 2006), Springer.

Whitley.D, T. Starkweather & D. Shaner .(1991). The Traveling Salesman and Sequence

Scheduling: Quality Solutions Using Genetic Edge Recombination. The

Handbook of Genetic Algorithms. L. Davis, ed., pp: 350-372. Van Nostrand

Reinhold.

Automation 310

Zhou.H. (2004). Efficient Steiner Tree Construction Based on Spanning Graphs, IEEE

Transactions on Computer-Aided Design of Integrated Circuits And Systems, Vol.

23, No. 5, May 2004, pp:704-710.

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

