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Control of Redundant Robotic Manipulators  

with State Constraints  
 
 

Mirosław Galicki 

 

1. Introduction  

Recently, redundant manipulators have attracted much attention due to their 
potential abilities which are interesting from both a theoretical and practical 
point of view. Redundant degrees of freedom make it possible to perform so-
me useful objectives such as collision avoidance in the work space with both 
static and moving obstacles, joint limit avoidance, and/or avoidance of singu-
lar configurations when the manipulator moves. Most of practical tasks, for 
example, inserting a shaft into co-operating elements (bearing, sleeve, or rat-
chet-wheel), require the knowledge of geometric paths (given in the work 
space) and a proper tolerance of matching that specifies the corresponding ac-
curacy of the path following. In many other industrial tasks such as laser cut-
ting or arc welding, the accuracy of path following is vital, and it is reasonable 
to assume that designers and manufacturers will specify precision using an 
absolute tolerance on tracking error. The application of redundant manipula-
tors to such tasks complicates their performance, since these manipulators in 
general do not provide unique solutions. Consequently, some objective criteria 
should be specified to solve the robot tasks uniquely. The minimization of per-
formance time is mostly considered in the literature . Several approaches may 
be distinguished in this context. Using the concept of a regular trajectory and 
the extended state space, the structure of path-constrained time-optimal 
controls has been studied in the works (Galicki, 1998b; Galicki, 2000) for kine-
matically redundant manipulators. Moreover, the efficient numerical procedu-
res able to find such controls were also proposed in the works (Galicki, 1998a; 
Galicki & Pajak, 1999). Nevertheless, these algorithms require full knowledge 
of manipulator Jacobian  matrix and robot dynamic equations, too. 

Although all the aforementioned algorithms produce optimal solutions, they 
are not suitable to real-time computations due to their computational comple-
xity. Therefore, it is natural to attempt other techniques in order to control the 
robot in real-time. Using on-line trajectory time scaling, a dynamic and com-
puted torque laws respectively, a nearly time-optimal path tracking control for 

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m



500       Industrial Robotics: Theory, Modelling and Control 

non-redundant robotic manipulators with partially uncertain dynamics has  
been presented in works (Dahl, 1994; Kiefer et al., 1997). However, these algo-
rithms require the solution of inverse kinematic problem along the path. A 
technique which avoids solving an inverse of robot kinematic equations and 
uses the exact Jacobian matrix, has been offered in  (Galicki, 2001; Galicki 2004) 
for determining a collision-free trajectory of redundant manipulators opera-
ting in both a static environment (Galicki, 2001) and in a dynamic one (Galicki, 
2004). Recently, a generalized transpose Jacobian controller with gravity com-
pensation and a non-linear (saturating) derivative term has been introduced in 
(Galicki, 2006a) to generate robot controls subject to geometric path and  actua-
tor constraints. 
As is known, many robotic controllers have been proposed to solve both a set 
point control problem (a regulation task) (Takegaki & Arimoto, 1981; Arimoto, 
1996; Canudas de Wit et al., 1996; Sciavicco & Siciliano, 1996; Arimoto, 1990; 
Kelly, 1999; Galicki, 2002; Galicki, 2005) and the trajectory tracking (Slotine & 
Li, 1987; Slotine &Li, 1991; Feng & Palaniswami, 1992; Berghuis et al., 1993; 
Lewis et al., 1993; Tomei, 2000), respectively. However, most of these control-
lers have assumed full knowledge of manipulator kinematic equations. Re-
cently, several approximate Jacobian setpoint controllers have been proposed 
(Cheach et al., 1999; Yazarel & Cheach, 2002; Cheach et al., 2003) to tackle un-
certainties in both robot kinematics and dynamics. The controllers proposed 
do not require the exact knowledge of Jacobian matrix and dynamic equations. 
However, the results in (Cheach et al., 1999; Yazarel & Cheach, 2002; Cheach et 
al., 2003)  are applicable  only to a setpoint control of a  robot. 
This paper, which is based on our recent work (Galicki, 2006b), introduces a 
new class of adaptive path following controllers  not requiring the full know-
ledge of both kinematic and dynamic equations in the control laws. Conse-
quently, they are suitable for controlling uncertain robotic manipulators. Mo-
tivated in part by the dissipativity and adaptivity methodology (Slotine & Li, 
1987), we develop path following controllers whose structure is composed of 
transpose adaptive Jacobian controller plus a non-linear term including an 
estimated control. Under the assumption of the full rank  adaptive Jacobian 
matrix, the proposed control scheme has been derived based on the Lyapunov 
stability theory.   By using sensory feedback of the end-effector position, it is 
also shown that the end-effector is able to follow a prescribed geometric path 
for robots with both uncertain kinematics and dynamics. Furthermore, new 
adaptive laws extending the adaptive algorithm from (Slotine & Li, 1987) to 
tackle kinemetic uncertainties too, are proposed. It is to notice that approxima-
te Jacobian setpoint controllers from (Cheach et al., 1999; Yazarel & Cheach, 
2002; Cheach et al., 2003)   can not be directly applicable to our task. The rea-
son is that approximate Jacobian matrix in (Cheach et al., 1999; Yazarel & 
Cheach, 2002; Cheach et al., 2003)  does not include kinematic parameters to be 
adapted and the error of approximation is a'priori bounded. On the other 
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hand, the controller proposed in our work adaptively varies both kinematic 
parameters of the Jacobian matrix and the dynamic ones in such a way as to 
stably follow by the end-effector a geometric path. The paper is organized as 
follows. Section 2 formulates the robotic task to be accomplished in terms of a 
control problem. Section 3 describes how to employ the Lyapunov stability 
theory to determine controls (if they exist). Section 4 provides us with a com-
puter example of generating the robot controls in a two dimensional task space 
for a planar redundant manipulator comprising three revolute kinematic pairs. 
Finally, some conclusions are drawn. 
 

2. Formulation of the adaptive control problem 

The control scheme designed in the next section is applicable to holonomic 
mechanical 
systems comprising both non-redundant and redundant manipulators consid-
ered here which are described, in general, by the following dynamic equations, 

expressed in generalized co-ordinates (joint co-ordinates) 
1

T n

nq (q ,...,q ) R= ∈   

 

( ) ( ) uqGqqqCqqM =++ )(, $$$$  (1) 

 

where )(qM  denotes the nn×  inertia matrix; ( )qqqC $$,  is the n -dimensional 

vector representing centrifugal and Coriolis forces; )(qG  stands for the n -

dimensional vector of gravity forces; ( )Tnuuu ,...,1=  is the vector of controls 

(torques/forces); n  denotes the number of kinematic pairs of the V-th class. In 
most applications of robotic manipulators, a desired path for the end-effector 
is specified in task space such as visual space or Cartesian space. The aim is to 
follow by the end-effector a prescribed geometric path (given in the m -
dimensional task space) described by the following equations 
 

0)()( =Θ− sqp  (2) 

 

where  mn
RRp →:  denotes an m -dimensional, non-linear (with respect to vec-

tor q ) mapping constructed from the kinematic equations of the manipulator; 

( )Tm qpqpqp )(),...,()( 1= ; ( )Tm sss )(),...,()( 1 ΘΘ=Θ  stands for a given geometric 

path; s  is the current parameter of the path (e.g. its length); ],0[ maxss∈ ; maxs  is 

the maximal path length. The mapping Θ  is assumed to be bounded together 

with the first and second derivatives and not degenerated, i.e. 0>
Θ

ds

d . 



502       Industrial Robotics: Theory, Modelling and Control 

It should be: The kinematic equations of a manipulator are independent 

¶p
rank = m

¶q

⎛ ⎞
⎜ ⎟
⎝ ⎠

. In general (i.e. when 
¶p

rank £ m
¶q

⎛ ⎞
⎜ ⎟
⎝ ⎠

, we should require that 

¶p ¶p dΘ
rank = rank

¶q ¶q ds

⎛ ⎞⎛ ⎞ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎝ ⎠ ⎣ ⎦⎝ ⎠

 in order to guarantee consistency of the robotic 

task (2).  
The problem is to determine control u  which generates manipulator trajectory 

)(tqq =  and path parameterization )(tss =  satisfying the equation (2) for each 

],0[ Tt∈ , where T  denotes an (unknown) time horizon of task performance. It 

is natural to assume that at the initial moment 0=t , for which 0)0( =s , a given 

(by definition) initial configuration  0)0( qq =  satisfies (2), i.e.  

 

0)0()( 0 =Θ−qp  (3) 

 
Final path parameterization fulfils the equality 
 

0)( max =− sTs  (4) 

 
Furthermore, at the initial and the final time moment, the manipulator and 
path velocities equal zero, i.e. 
 

0)()0( == Tqq $$  (5) 

 
and 
 

0)()0( == Tss $$  (6) 

 
As is known, task space velocity p$  is related to joint space velocity q$  as fol-

lows 
 

( )qYqJp $$ ,=
 (7) 

 

where ∂
=

∂

p
J( q,Y )

q
 is the  ×m n  Jacobian matrix; Y  stands for an ordered set 

of kinematic parameters ( )TkYYY ,...,1=  such as link lengths, joint offsets; 

k denotes the number of kinematic parameters. Several important properties 
of dynamic equations (1) may be derived (Spong & Vidyasagar, 1989) 
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1. The inertia matrix ( )M q   is symmetric and positive definite for all ∈ n
q R   

2. Matrix 
2

−
$

$M( q )
C( q,q )  is skew-symmetric so that 

 

0
2

⎛ ⎞
∀ ∈ − =⎜ ⎟

⎝ ⎠

$
$ $n M( q )

v,q,q R v, C( q,q v  (8) 

 

where , is the scalar product of vectors. 

 
3. The dynamic equations (1) are linear with respect to an ordered set of physi-

cal parameters   1= T

dX ( X ,...,X ) , i.e. 

  

( ) ( ) ( )XqqqqDqGqqqCqqM $$$$$$$$ ,,,)(, =++  (9)

 

where where ( )qqqqD $$$$ ,,,  is called the ( )dn×  dynamic regressor matrix; 

d stands for the number of the physical parameters such as link masses and 
inertias.  
 

Differential equation (7) has the following property. 
 
4. The right hand side of (7) is linear with respect to e Y . Consequently, equa-

tion  (7) can be expressed as follows 
 

( )YqqKqYqJp $$$ ,),( ==  
(10)

 
where $K( q,q ) is called the ×( m k )kinematic regressor matrix.  

In order to simplify further computations maxs  is assumed to be equal to 1, 

i.e. 1maxs = . Let us define errors e  and  1+me of path following (task errors) as  

 

( ) ( )
.1

,...,)()(,...,

1

111

−=

Θ−Θ−=Θ−==

+ se

ppsqpeee

m

T

mm

T

m

 

(11)

 
Many commercial sensors are available for measurement of end-effector 
position p , such as vision systems, electromagnetic measurement systems, 

position sensitive detectors or laser tracking systems. Hence, path following 
error e  in (11) is also assumed to be available (for a given s ) from meas-
urement. For revolute kinematic pairs, considered here, mapping p(.)  is 

bounded. Consequently, we have the following property. 
 



504       Industrial Robotics: Theory, Modelling and Control 

5. Boundedness of mappings  p( ),Θ( )⋅ ⋅ ,  implies that task error e  is bounded. 

Expressions (1)-(6) formulate the robot task as a control problem. The fact that 
there exist state equality constraints makes the solution of this problem diffi-
cult. The next section will present an approach that renders it possible to solve 
the control problem (1)-(6) making use of the Lyapunov stability theory. 
 

3. Adaptive path control of the manipulator 

Our aim is to control the manipulator such that the end-effector fulfils (2)-(6). 
Therefore, we propose adaptive Jacobian path following controllers for robots 
with both uncertain kinematics and dynamics. In our approach, the exact 
knowledge of both robot dynamic equations and Jacobian matrix  is not requi-
red in updating the uncertain parameters. 
In the presence of kinematic uncertainty, the parameters of the Jacobian matrix 
are uncertain and hence equality (10) can be expressed as follows 
 

( )YqqKqJ ˆ,ˆ $$ =  
(12)

 
 

where ×= ∈ m nˆ ˆJ J( q,Y ) R  is an adaptive Jacobian matrix and Ŷ  stands for the 

vector of estimated kinematic parameters. In order to show the stability of the 
path following control system in the presence of both kinematic and dynamic 
uncertainties, we define an adaptive joint-space sliding vector z  as 
 

qeJz
T $+= ˆλ  

(13)
 

 
where λ is a positive scalar coefficient. The adaptivity of vector z  is under-
stood in the sense that the parameters of the adaptive Jacobian matrix will be 
updated by a parameter update law, defined later. Differentiating equation 
(13) with respect to time yields 
 

qeJeJz
TT $$$$ ++= ˆˆ λλ  (14)

 
 
Based on equations (1) and (13)-(14), we can easily express robot dynamic e-
quations by means of vector z  and its time derivative, as 
 

( ) ( ) uqGqqqCqqMzqqCzqM rr =++++ )(,)(,)( $$$$$$
 (15)
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Where ( ) eJeJqqq
TTT

nrrr $$$$$$$$ ˆˆ,..., ,1, λλ −−==  and ( ) eJqqq
TT

nrrr
ˆ,..., ,1, λ−== $$$    

Moreover, we know from property 3., that the last three terms of equation (15) 
become linear with respect to vector X  and hence they can be written as fol-
lows 
 

( ) ( ) .,,,)(,)( XqqqqDqGqqqCqqM rrrr $$$$$$$$ =++ (16)
 

 
Inserting the right hand side of (16) into (15), robot dynamic equations  (15) 
take the following form 
 

( ) ( ) uXqqqqDzqqCzqM rr =++ $$$$$$ ,,,,)( (17)
 

 

Based on (13), (14) and (17) , lets propose the following adaptive Jacobian con-
troller 
 

( )XqqqqDeJkkzu rr
T

P
ˆ,,,ˆ $$$$+−−=  

(18)
 

 

where X̂ stands for the estimated physical  parameter vector defined below; 

k  and pk   are some positive scalars which could be replaced by diagonal ma-

trices of positive constants without affecting the stability results obtained fur-
ther on (this should lead to improved performance). Here, scalar constants are 
chosen for simplicity of presentation. In order to measure error e , path param-

eterization s s(t )=  is required which is computed by solving the following 

scalar differential equation 
 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
−+−+

Θ
−−−=

2
1

2

1
)1(

)(
, s

ds

d
s

ds

sd
eksks Ps

γ
γ$$$ (19)

 
 

where sk   denotes a positive coefficient; γ  is assumed to be a strictly positive 

function { }( ) 0inf γ >  of s  with bounded first and second derivatives for any 

{ }
01
γ

inf γs ≤ + , where ( )0
0γ γ=   (as will be seen further on, 

0
γ  determines 

the upper bound on the accuracy of the path following and may be specified 
by the user). 

The choice of function γ  is crucial for computational effectiveness of control 

scheme (18), (19). One possibility is γ γ(s)=  with 0
dγ
ds

> . An alternative choi-
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ce could be ( )2γ γ e= , where γ  attains its maximum for 0e =  and smoothly 

decreases as e   increases. For simplicity of further considerations, we take the 

first form of γ .  

Assumption 1. Function γ  is required not to satisfy differential equation  
 

( )
1

1 0
2

dγγ s
ds

+ − =  

 

As will be seen further on, Assumption 1. results in an asymptotic convergence 
of s  to 1 .  
Let us note, that the first two terms from (18) present an adaptive transpose Ja-

cobian controller with adaptively varying kinematic parameter vector Ŷ . The 
last term in dependence (18) is an estimated control based on equation (16). Es-

timated kinematic parameters Ŷ  of the adaptive Jacobian matrix ( )ˆĴ J q ,Y=  

are updated according to the following law 
 

( )eqqKkwY
T

Pk $$
,ˆ =  

(20)
 

 

and  estimated physical parameters X̂  of the dynamic equations are updated 
by 
 

( )zqqqqDwX rr
T

d $$$$$
,,,ˆ −=  

 

(21)
 

 

where k , dw w ,  are, similarly as before, positive gains (scalars) which could be 

replaced by diagonal matrices of positive constants without affecting the sta-

bility of controller (18). Although some kinematic parameters appear in X̂ , we 

should adapt on them separately inŶ   to preserve linearity. 

Estimated kinematic parameters Ŷ  (updated according to  rule (20)) are then 

used to compute adaptive Jacobian Ĵ  and its time derivative Ĵ
$

 using for this 

purpose the right hand side of (20) which is only a mapping of q,e ,  and q$ . 

Having obtained the adaptive Jacobian matrix and its time derivative, we de-

termine quantities rq$  and rq$$ . It is worth noticing, that their computation does 

not require any pseudoinverse of matrix Ĵ  which results in numerical stability 

of controller (18). Finally, based on rq,q,q$ $ ,  , and rq$$ , we may determine dy-

namic regressor matrix ( )r rD q,q,q ,q$ $ $$ , which is then used to update estimated 

physical parameter vector X̂ . 
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Let us note, that setpoint controllers proposed in works (Cheach et al., 1999; 
Yazarel & Cheach, 2002; Cheach et al., 2003) , which are computationally so-
mewhat simpler, can not be applicable to our task. The reason is that the error 
of approximation in (Cheach et al., 1999; Yazarel & Cheach, 2002; Cheach et al., 
2003) is bounded by a constant and  approximate Jacobian matrix does not inc-
lude parameters to be adapted. Due to adaptation law (20), one can not gua-
rantee in our task to satisfy assumption regarding the approximation error 
made in works (Cheach et al., 1999; Yazarel & Cheach, 2002; Cheach et al., 
2003) .  
 
The closed-loop error dynamics is obtained by inserting the right hand side of 
equation (18) into  equation (17) 
 

( ) ( )

( )

( )zqqqqDwX

eqqKkwY

e
ds

d
e

ds

sd
ekeke

e
ds

sd
qYqJe

eJkkzXqqqqDzqqCzqM

rr
T

d

T
Pk

mmPmsm

m

T
Prr

$$$$$
$$

$$$

$$$

$$$$$$

,,,
~

,
~

2

1)(
,

)(
),(

ˆ~
,,,,)(

2
1111

1

−=

=

⎟
⎠

⎞
⎜
⎝

⎛
++

Θ
−−−=

Θ
−=

−−+−=

++++

+

γ
γ

 

(22)

 

 

where YYY −= ˆ~
;  XXX −= ˆ~

.  Applying the Lyapunov stability theory, we 
derive the following result. 
 

Theorem 1. If there exists a solution to the problem (1)-(6) and adaptive Jaco-

bian matrix Ĵ  is non-singular along end-effector path (2) and functionγ   fulfils 

Assumption 1., then control scheme (18) generates manipulator trajectory 

whose limit point ( ) )0,0,0,0()(),(),(),( 11 =∞∞∞∞ ++ mm eeeq $$ ,i.e. satisfying state 

constraints (2)-(6), is asymptotically stable. 
 
Proof. Consider a Lyapunov function candidate 
 

.
~1~1

,
2

1 22
1

2
1

22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++= ++ ekekeY

w
X

w
zMzV PmPm

kd

γ$
 

 
(23)

 
 

The time derivative of V  is given by 



508       Industrial Robotics: Theory, Modelling and Control 

.
2

1
,

~
,

~1~
,

~1
,,

2
,

1
2

111111 +++++++ ++
Θ

−+

+++++=

mmPmmPmPmm

kd

T
P

ee
ds

d
keeke

ds

d
ekee

YY
w

XX
w

qeJkzz
M

zMzV

$$$$$$

$$$
$

$$

γ
γ

 
 

(24)
 

 

Substituting 
1mMz,.e,.e ,Y+

$#$ $ $$  and X$#  from V$  for the right-hand sides of closed-

loop error dynamics (22) and using the skew-symmetric property of matrix 

2

M
C−

$
  [property 2. eqn. (8)], we obtain after simple calculations, that 

 

.,ˆˆ, 2
1+−−−= ms

T
P ekeeJJkzzkV $$

 
 

Since 0V ≤$ , function V  is bounded. Therefore, z,X# , and Y#   are bounded 

vectors. This implies that X̂  and Y#  are bounded, too. Consequently, it follows 
from (13), that  q$  is also bounded. Moreover, s  and s$  are bounded, too. As can 

be seen, V$  is negative for all ( )1
0mz,e ,e + ≠$  and is zero only when 

( )1
0mz,e,e + =$ , which implies (using LaSalle-Yoshizawa invariant theorem 

(Krstic et al., 1995) that ( )1mz,e,e +
$  tends asymptotically to zero, i.e. 

( )0 0z(T ) ,e T→ → ,  and 
1

0me ,as.T+ → → ∞$ , as. By differentiating 
1me +

$$  in  (22) 

with respect to time, it is also easy to see, that 
3

1

3

md e

dt
+   is bounded function by 

assumptions regarding Θ   and γ .  This means, that 
1me +

$$  is uniformly continu-

ous. Hence, ( )1
0me T ,+ →$$ , as T ,→ ∞ , too. The convergence of path velocity and 

acceleration yields the following equation 

 

.0)(
2

1
)( 2

11 =∞+∞ ++ mm e
ds

d
e

γ
γ

 

 
(25)

 
 

Consequently, ( )1
0me + ∞ =  or ( )1

1
0

2
m

dγγ e
ds

++ ∞ = . On account of Assumption 

1, the second equality is not fulfilled. Thus, ( )1
0me + ∞ =   (or equivalently 

( ) 1s ∞ = ). On account of (13), 0q(T ) →$ , as T → ∞ , too. Consequently, 

boundary conditions (4)-(6)  are (asymptotically) fulfilled and limit point 

( ) ( ) ( ) ( )( )1 1m mq ,e ,e ,e+ +∞ ∞ ∞ ∞$ $  ( )0 0 0 0, , ,= is asymptotically stable. Finally, it 

should be emphasized, that the chosen Lyapunov function does not guarantee 

convergence of parameter estimations X̂  and Ŷ  to their true values.  
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On account of (3)-(6), we have 
2 2

00 0

0
2 2 2

pt t
t

d k

k γX Y
V

w w
= =

= = + +
##

. 

 

 For sufficiently large dw  and  kw , the first two terms in this equality may be 

omitted. Hence, we obtain  
0

0
2

p

t

k γ
V = ≅  

 SinceV$   is not positive, function V  fulfils the inequality 
0

2

pk γ
V ≤ . 

Consequently,  the following bound on e  may easily be obtained, based on 

(23) and the last dependence 
 

0
e γ≤   (26) 

 
An important remark may be derived from the proof carried out. Namely, 
Inequality (26) presents an upper bound (path independent) on the accuracy of 
path following by the end-effector according to the control law (18). Let us no-
te that estimation of the upper bound on path following error (26) is very con-

servative. Consequently, control gains dw   and kw  do not require large values 

to achieve a good path following accuracy, as the numerical simulations (given 
in the next section) show. 

Moreover, several observations can be made regarding the control strategy 
(18). First note, that the proposed control law requires, in fact no information 
concerning the robot kinematic and dynamic equations. Second, the choice of 

controller parameters p sk ,k ,k ,  dw   and kw  according to dependencies (18)-(21) 

guarantees asymptotic stability of the closed-loop error dynamics (22) during 
the manipulator movement. 

Moreover, the transpose of Ĵ  (instead of a pseudoinverse) in control scheme 

(18) does not result in numerical instabilities due to (possible) kinematic singu-
larities met on the robot trajectory. Nevertheless, (18) has been derived under 
the assumption of full-rank adaptive Jacobian matrix along the path. Further-
more, controller (18) does not require the knowledge of task space velocity. 
Due to conservative  estimation of the path following accuracy, control algo-
rithm (18) results in a better  accuracy of the path following as compared to 
upper bound given from (26), as the numerical computations carried out in the 
next section show. In order to prevent control (torque) oscillations at the very 
beginning of time histories (caused by e.g. the non-zero initial path following 

error) sk  from (19) should be a bounded, quickly decreasing time dependent 

function  as t → ∞  (see the next section). 
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Due to real-time nature of robot controller (18), we shall try to estimate the 
number of arithmetic operations required to implement the algorithm presen-
ted in this section. The dimension of the robot task space is assumed in estima-

tion to be constant. Operations required for computation of sin,cos ,  and 

( )Θ ⋅  functions are not taken into account. Furthermore, matrices Ĵ , K  and D  

are assumed in estimation to be given. Moreover, estimations are carried out at 
any time instant of the robot task accomplishment. It follows from (13) and 

(18) that terms T

p
ˆkz,k J e ,  require ( )O n  operations. Computation of the right 

hand sides (19) and (20) involves ( )1O  and ( )O n  operations, respectively as-

suming that ( )k O n= . Computational complexity for the right hand side of 

(21) equals 2O(n )  by assumption that ( )d O n= . Computation of estimated 

control r r
ˆD(q,q ,q ,q )X$ $ $$ requires also the same order of complexity, i.e. 2O(n )  

operations.  Finally, computational complexity of the whole robot controller 

(18) is of the order 2O(n ) . 

4. A numerical example 

The aim of this section is to illustrate the performance of the proposed adapti-
ve 

control algorithm using a dynamic three-joint direct-drive arm 3(n )=  of 

SCARA-type robotic manipulator operating in a two-dimensional 2(m )= task 

space. Kinematic scheme of this manipulator and the task to be accomplished 
is shown in Fig. 1. In the simulations, SI units are used. The components of 
dynamic equations 
of this manipulator are as follows (Spong & Vidyasagar, 1989): 
 

[ ]
3,1 ≤≤

=
jiijMM

 
 

where 
11 1 4 6

2 23 3M X X c X c= + + ; ( )ici=cos q , ; ( )isi=sin q , ; i jcij=cos(q +q ) ; 

( )ji qqs += sinij
; 

( )kji qqqc ++= cosijk
; 

( )kji qqqs ++= sinijk
;  

232 54221 cXcXXM ++= ; 331 XM = ; 32 6222 cXXM += ; 36332 cXXM += ; 

333 XM = ; 2112 MM = ; 3113 MM = ; 3223 MM = . 
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Figure.1 A kinematic scheme of the manipulator and the task to be accomplished 

 

[ ]
3,1 ≤≤

=
jiijCC

 
where 

( ) ( ) 36525411 1313122 qsXsXqsXsXC $$ +−+−= ;  

( )( ) ( ) 365215412 1212122 qsXsXqqsXsXC $$$ +−++−= ;  

( )( )3216513 1212 qqqsXsXC $$$ ++−+= ;  

( ) 3615521 3122 qsXqsXsXC $$ ++= ;  

( ) 36522 1212 qsXsXC $+−= ;  

( )321623 33 qqqsXC $$$ ++−= ;  

( ) 2615431 3122 qsXqsXsXC $$ −+= ;  

( )21632 3 qqsXC $$ += ;  

033 =C . 

( )TGGGG 321 ,,=  
 
where 

123121 9871 cXcXcXG ++= ; 12312 982 cXcXG += ; 12393 cXG = . 

 Parameters iX , 1 9i :=  take the following nominal values: 
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1956.11 =X , 

3946.02 =X , 

0512.03 =X , 

4752.04 =X , 

1280.05 =X , 

1152.06 =X , 

( )glmlmlmX c 1312117 ++= , 

( )glmlmX c 23228 += , 

glmX c339 = , 
 

where g stands for the gravity acceleration; i im ,l ,  and cil , 1 3i := denote link 

mass, length and location of the mass center which is assumed to be equal to  
 

2/ici ll = ; 4.01 =l ; 36.02 =l ; 3.03 =l ; 6.31 =m ; 6.22 =m ; 23 =m .  
 

Jacobian matrix J(q ,Y )   equals 

 

⎥
⎦

⎤
⎢
⎣

⎡
+++

−−−−−−
=

12312312123121

12312312123121

332321

332321

cYcYcYcYcYcY

sYsYsYsYsYsY
J

 
 

Where 1 3i iY l ; i := = ;  

 
and the kinematic regressor matrix takes the following form 
 

( ) ( )
( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+++

++−+−−
=

321211

321211

123121

123121

qqqcqqcqc

qqqsqqsqs
K

$$$$$$
$$$$$$

 
 

The end-effector position 
1 2

Tp ( p p )=  (see Fig. 1) represents in the simulations 

the task space coordinates 2(m )= . The upper bound on the accuracy of the 

path following in all the computer simulations, is assumed to be equal to 

0
0 06γ .= , where 2 70 002 0 002 , sγ(s) , , e= + . Let us introduce  path following 

errors 
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to evaluate the performance of the robot controller  (18). In order to examine 
the effects of both kinematic and dynamic uncertainties, initial values for vec-

tors X̂  and Ŷ  were set in the simulations as 0 32110 80 5302010 TX̂( ) ( . . )= , 

0 0 550 450 4 TŶ( ) ( . . . )= . The task of the robot is to transfer the end-effector a-

long the geometric path (the dotted line in Fig. 1), expressed by the following 
equations 
 

ss

ss

2.17.0)(

24.036.0)(

2

1

+−=Θ

+=Θ

 
 

where, [ ]0 1s ,∈ . The initial configuration 
0

q  equals 
0

2 2 2 Tq ( π / π / π / )= − −  

Parameters 10 3000 1pk ,.k ,.λ= = =  and ( )106 9 1 100 30t

sk , e−= + +  have been 

chosen experimentally to achieve practically reasonable time horizon of task 

performance and relatively small controls with ( )101010kw diag=  and 

( )4 854 854 854 854 854 854 858 554 76dw diag . . . . . . . . .= .  The results of computer 

simulation are presented in Figs 2-20.  
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Figure 3. Path following error 
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Figure 7. Input torque 
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Figure 20. Manipulator motion along the geometric path 
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As might be expected, the path following errors from Figs 2-3 are much smal-
ler than those obtained from the conservative dependence (26). Moreover, as 

one can observe from Figs 2-7, the time dependent damping function sk  de-

creases (eliminates) errors and torques oscillations at the very beginning of 

time histories.  Furthermore, as seen from Figs 8-19, estimations X̂ , Ŷ  do not 
converge to their real (nominal) values. 
 
 

5. Conclusion 

This study has presented an  adaptive robot controller for the path following 
by the end-effector. The control generation scheme has been derived using the 
Lyapunov stability theory. An advantage of the proposed control law (18)  is 
that it requires, in fact no information regarding the parameters of the robot 
dynamic equations. The control strategy (18) is shown to be asymptotically 
stable (by fulfilment of practically reasonable assumptions). The proposed ro-
bot controller has been applied to a planar redundant manipulator of three re-
volute kinematic pairs operating in a two dimensional task space. Numerical 
simulations have shown that the results obtained are in accordance with the 
theoretical analysis. The novelty of the strategy proposed lies in its relative 
simplicity in design, program code and real-time implementation. The appro-
ach presented here will also be in future directly applicable to cooperating ki-
nematically redundant manipulators.  
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