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1. Introduction

One of the recurrent controversies at our Engineering Faculty concerns the orientation of
first year basic courses, particularly the subject area of mathematics, considering its role
as an essential tool in technological disciplines. In order to provide the basic courses with
technological applications, a mathematical engineering seminar was held at the Engineering
Faculty of Barcelona. Sessions were each devoted to one technological discipline and aimed
at identifying the most frequently used mathematical tools with the collaboration of guest
speakers from mathematics and technology departments.

In parallel, the European Space of Higher Education process is presented as an excellent
opportunity to substitute the traditional teaching-learning model with another where students
play a more active role. In this case, we can use the Problem-Based Learning (PBL)
method. This environment is a really useful tool to increase student involvement as well as
multidisciplinarity. With PBL, before students increase their knowledge of the topic, they
are given a real situation-based problem which will drive the learning process. Students

will discover what they need to learn in order to solve the problem, either individually or
in groups, using tools provided by the teacher or ’facilitator’, or found by themselves.

Therefore, a collection of exercises and problems has been designed to be used in the PBL

session of the first course. These exercises include the applications identified in the seminar
sessions and would be considered as the real situation-based problems to introduce the
different mathematic topics. Two conditions are imposed: availability for first year students
and emphasis on the use of mathematical tools in technical subjects in later academic years.
As additional material, guidelines for each technological area addressed to faculties without
engineering backgrounds are defined.

Some material on Electrical Engineering has been already published ((Ferrer et al., 2010)).
Here we focus on control and automation. The guidelines and some exercises will be
presented in detail later on. As general references on linear algebra see for example (Puerta,
1976) and on system theory (Kalman et al., 1974) and (Chen, 1984). For other applications, see
(Lay, 2007).

Here we describe some of the items regarding control and automation that are presented in
the guideline (Section 2).
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2 Will-be-set-by-IN-TECH

(1) The input-output description: black box, input-output signals, impulse response, linearity,
causality, relaxedness, time invariance, transfer-function matrix, time domain, frequency
domain, Laplace transform, Fourier transform, gain, phase, poles, zeros, Bode diagram,
filters, resonances.

(2) The state-variable description: the concept of state, state equation, output equation,
transfer-function matrix, linear changes, feedbacks, realizations, stability, reachable
states, controllability, control canonical form, pole assignment, observability, Kalman
decomposition.

The exercises (Section 3) related to this area cover the following topics:

• Matrices. Determinant. Rank: Composition of Systems (ex. 1), Controllability Matrix,
Controllable Systems and Controllability Indices (ex. 2), Realizations (ex. 3).

• Vector Spaces. Bases. Coordinates: States in Discrete Systems (ex. 4), Control Functions in
Discrete Systems (ex. 4).

• Vector Subspaces: Reachable States for one or several Controls and Sum and Intersection
of these Subspaces (ex. 5).

• Linear Maps: Changes of Bases in the System Equations and Invariance of the
Transfer-Function Matrix (ex. 6), Controllability Subspace and Unobservable Subspace
(ex. 7), Kalman Decomposition (ex. 8).

• Diagonalization. Eigenvectors, Eigenvalues: Invariant Subspaces and Restriction to an
Invariant Subspace (ex. 7), Controllable Subsystem (ex. 10), Poles and Pole assignment
(ex. 9).

• Non-Diagonalizable Matrices: Control Canonical Form (ex. 11)

2. Guideline for teachers

(1) External system description

Systems are considered as "black boxes" in which each input u(t) (input, control, cause,...)
causes an output y(t) (output, effect,...), both multidimensional vectors, in general. We
consider only known inputs, ignoring other ones like, for example, disturbance, noise...

u y

The most usual inputs will be piecewise continuous functions, built from the elementary
functions or standard "signals" (impulse or delta, step, ramp, sawtooth, periodics...). Simple
systems are adders, gain blocks, integrators, pure delays, filters...

In general, the aim is to analyse their behaviour without looking inside. Indeed, if we consider
the "impulse response" g(t; τ) (that is, the output when the input is an "impulse" in τ, δτ) and
the system is linear, it results

y(t) =
∫ +∞

−∞
g(t; τ)u(τ)dτ.
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The upper integration limit will be t if we assume that the system is "causal" (that is, if the
current response does not depend on the future inputs, as in all physical systems) and the
lower will be t0 (or simply 0) if it is "relaxed" at t0 (that is, y(t) = 0 for t ≥ t0, when u(t) = 0
for t ≥ t0). Finally, if it is "time-invariant", instead of g(t; τ) we can write g(t − τ), resulting in
the following expression of y(t) as a convolution product of g(t) and u(t)

y(t) =
∫ +∞

−∞
g(t − τ)u(τ)dτ = g(t) ∗ u(t),

which is the general system representation in the "time domain".

Applying Laplace transform we get the general representation in the "s-domain"

ŷ(s) = G(s)û(s),

where G(s) = ĝ(s) is called "transfer function matrix". Indeed, it is the focus of study in this
external representation.

If we do the change of variable s = jω (imaginary axis of the "complex plane") we obtain the
representation in the "frequency domain", (more usual in engineering)

y(ω) = G(ω)u(ω),

where G(ω) is called "isochronous transfer function matrix". It can be obtained directly as a
"Fourier" transform when appropriate hypotheses hold. This allows the use of tools such as
Fourier transform, Parseval theorem... if we have some basic knowledge of functional analysis
and complex variable: function spaces, norms, Hilbert spaces, integral transforms...

Its denomination shows that G(ω) indicates the system behaviour for each frequency. So,
if u(t) = A sin(ωt), then y(t) = B sin(ωt + ϕ), being the "gain" B/A the module of G(ω),
and the "phase" ϕ is its argument. A widely used tool in engineering is the "Bode diagrams"
which represent these magnitudes on the ordinate (usually, the gain is in logarithmic scale, in
decibels: dB = 20log|G|) as a function of the frequency as abscissa (also in log scale).

In generic conditions (see next section) the coefficients of G are "proper rational fractions", so
that the system’s behaviour is largely determined by its "degrees", "zeros" and "poles". So:

• The relative degree (denominator degree minus numerator degree) gives the "order of
differentiability" at the origin of the response to the input step signal.

• As already mentioned, this difference must be strictly positive (if zero, the Parseval
theorem would give infinite energy in the output signal; if negative, it would contradict
the causality), so that the gain tends to 0 for high frequencies.

• Roughly speaking, the zeros indicate filtered frequencies (of gain 0, or in practice far
below), so that in the Bode diagram place the "inverted comb pas" as "filters". On the
contrary, the poles indicate dangerous frequencies because of resonance (infinite gain).

(2) Internal system description

In addition, state variables x(t) (not univocally defined) are considered. They characterize the
state in the sense that they accumulate all the information from the past, that is, future outputs
are determined by the current state and the future inputs. Typically, the derivative ẋ(t)

173Learning Automation to Teach Mathematics
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functionally depends on x(t), u(t) and t (state equation), and y(t) as well (output equation),
although in this case we may obviate the dependence on u(t). In the linear case:

ẋ(t) = A(t)x(t) + B(t)u(t); y(t) = C(t)x(t).

From elementary theory of ordinary differential equations, it holds that for every continuous
(or piecewise continuous) control u(t), there exists a unique "solution" x(t) for every "initial
condition" x0 = x(0).

In particular, it can be applied a "feedback control" by means of a matrix F

u(t) = Fx(t).

One of the first historical (non linear) examples is the Watt regulator which controlled the
velocity of a steam engine acting on the admission valve in the function of the centrifugal
force created in the regulator balls by this velocity. Nowadays this "automatic regulation" can

be found in simple situations such as thermostats.

When this kind of feedback is applied, we obtain an autonomous dynamical system

ẋ(t) = Ax(t) + BFx(t) = (A + BF)x(t)

called a "closed loop" system. It is natural to consider if we can adequately choose F such that
this system has suitable dynamic properties. For example, for being "stable", that is, that the
real parts of the eigenvalues of A+ BF are negative. Or more in general, that these eigenvalues
have some prefixed values. As we will see later, one of the main results is that this feedback
"pole assignment" is possible if the initial system is "controllable".

If it is time-invariant (that is, A, B, and C are constant) and we assume x(0) = 0, the Laplace
transform gives

ŷ(t) = G(s)û(s); G(s) = C(sI − A)−1B

recovering the previous transfer matrix. Reciprocally, the "realization" theory constructs
triples (A, B, C) giving a prefixed G, formed by proper rational fractions: it can be seen that it
is always possible; the uniqueness conditions will be seen later.

It is a simple exercise to check that when introducing a "linear change" S in the state variables,
the system matrices become S−1AS, S−1B and CS, respectively, and G(s) do not change.

In this description it is clear that the coefficients of G(s) are proper rational fractions and in
particular its poles are the eigenvalues of A.

One of the main results is that the set of "reachable states" (the possible x(t) starting from
the origin, when varying the controls u(t)) is the image subspace Im K(A, B) of the so-called
"controllability matrix"

Im K(A, B); K(A, B) =
(

B AB . . . An−1B
)

,

that is, the subspace spanned by the columns of B and successive images for A, called

"controllability subspace". It is an interesting exercise to justify that we can truncate in n − 1,
since the columns of higher powers are linearly dependent with the previous ones. In fact we
can consider each control individually (each column of B separately), in such a way that the
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"sum and intersection of subspaces" give the reachable states when using different controls at
the same time or for each one of them.

The system is "controllable" if all the states are reachable, that is, if and only if K(A, B) has full
"rank". Hence, it is a generic condition (that is, the subset of controllable pairs (A, B) is open
and dense).

In the single input case (A, b), it can be seen that if the system is controllable it can be
transformed, by means of a suitable basis change, in the so-called "control canonical form"

Ā =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . .
0 0 0 . . . 0 1
∗ ∗ ∗ . . . ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

, b̄ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
...
0
1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Observe that Ā is a "companion" (or Sylvester) matrix. For these kinds of matrices, it can be
easily seen that the coefficients of the characteristic polynomial are the ones of the last row
(with opposite sign and in reverse order), and they are "non derogatory matrices", that is, for
each eigenvalue there is a unique linearly independent eigenvector, and therefore only one
Jordan block. Hence, if some eigenvalue is multiple, the matrix is non diagonalizable.

In the multi input case, another reduced form is used (Brunovsky, or Kronecker form), which

is determined by the so-called "controllability indices" that can be computed as a conjugated
partition from the one of the ranks of: B, (B, AB),...,K(A, B).

From these reduced forms it is easy to prove that the pole assignment is feasible, as well as to
compute the suitable feedbacks.

If the system is not controllable, it is easy to see that the subspace Im K(A, B) is "A-invariant",
and that in any "adapted basis" (of the state space) the matrices of the system are of the form:

(

Ac ∗
0 ∗

)

,

(

Bc

0

)

,

being (Ac, Bc) controllable. It is also easy to deduce that if x(0) belongs to Im K(A, B), x(t)
also belongs, for all time t and all control u(t), and that its trajectory is determined for the pair
(Ac, Bc), which enables considering the "restriction" of the system (A, B) to Im K(A, B), called
the "controllable subsystem" of the initial one.

In the same direction, the "Kalman decomposition" is obtained by considering "(Grassman)
adapted bases to the pair of subspaces" Im K(A, B) and Ker L(C, A), being

L(C, A) =

⎛

⎜

⎜

⎝

C
CA
. . .

CAn−1

⎞

⎟

⎟

⎠

that is, the "transposed matrix" of K(At, Ct). In fact there are interesting properties of "duality"
between the systems (A, B, C) and (At, Ct, Bt).

175Learning Automation to Teach Mathematics
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We remark the equivalence between the controllability of (A, B, C) and the "observability"
of (At, Ct, Bt), in the sense that the initial conditions are computable if the outputs for
determined inputs are known.

On the other hand it is interesting to note that the transfer matrix of the initial system is the
same as that of the controllable subsystem, as well as that of the "complete subsystem" (that
is, controllable and observable) obtained by means of the Kalman decomposition.

This means that, given any transfer matrix (formed by proper rational fractions), not only it
is possible to find realizations, but also "controllable realizations" and even complete ones. In
fact it can be seen that all the complete realizations are equivalent. In particular, they have
the same number of state variables. Moreover, a realization is complete if and only if it is a

"minimal realization", in the sense that there are not realizations with a smaller number of
state variables. This minimal number of state variables of the realizations is called "McMillan
degree", which coincides with the dimension of the complete realizations.

3. Exercises for students

We will present here the guideline of proposed exercises for the students and their solutions:

3.1 Proposed exercises

1. Composition of systems

A control system Σ

∑
u y

is defined by the equations

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t),

or simply by the "triple of matrices" (A, B, C). This triple determines the "transfer matrix"

G(s) = C(sI − A)−1B

which relates the Laplace transforms of u, y:

ŷ(s) = G(s)û(s).

Given two systems:

Σ1 : ẋ1 = A1x1 + B1u1; y1 = C1x1

Σ2 : ẋ2 = A2x2 + B2u2; y2 = C2x2

they can be composed of different ways to obtain a new system. For example in:

(i) Series

∑1 ∑2

u y

176 Automation
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(ii) Parallel

∑1

∑2

u y

(iii) Feedback

∑1

∑2

u y

In all these cases the new state variables are:

x =

(

x1

x2

)

(1) Deduce the following relations between the different input and output variables:

(1.i) u = u1; y1 = u2; y2 = y

(1.ii) u = u1 = u2; y = y1 + y2

(1.iii) u + y2 = u1; y1 = y = u2

(2) Deduce the expression of the triple of matrices of each composed system, in terms of
A1, B1, C1, A2, B2, C2.

(3) Deduce the expression of the transfer matrix of each composed system, in terms of G1(s)
and G2(s).

2. Controllable systems; controllability indices

A control system
ẋ(t) = Ax(t) + Bu(t), A ∈ Mn, B ∈ Mn,m

is "controllable" (that is, any change in the values of x is possible by means of a suitable control
u(t)), if and only if the rank of the so-called "controllability matrix" is full

K(A, B) = (B, AB, A2B, . . . , An−1B).

(a) Discuss for which values of α, β ∈ R the system defined by

A =

⎛

⎝

0 1 0
−2 1 0
α 0 1

⎞

⎠ , B =

⎛

⎝

1 0
0 β

0 1

⎞

⎠

is controllable.

(b) Discuss for which values of α, β ∈ R the system is controllable with only the second
control, that is, when instead of the initial matrix B we consider only the column matrix

b2 =

⎛

⎝

0
β

1

⎞

⎠.

177Learning Automation to Teach Mathematics
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(c) In general, the "controllability indices" are determined by the rank of the matrices

B, (B, AB), (B, AB, A2B), . . . , K(A, B).

Compute these ranks, in terms of parameters α, β ∈ R, for the system defined by

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1

0 1

0 1

0 1 0

0

0 0 1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0

0 0

0 γ

0 δ

1 0

0 0

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

3. Realizations

Given a matrix G(s) of proper rational fractions in the variable s, it is called a "realization" any
linear control system

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t)

which has G(s) as "transfer matrix", that is,

G(s) = C(sI − A)−1B.

In particular, the so-called "standard controllable realization" is obtained in the following way,
assuming that G(s) has p rows and m columns.

(i) We determine the least common multiple polynomial of the denominators

P(s) = p0 + p1s + . . . + prsr.

(ii) Then, G(s) can be written

G(s) =
1

P(s)

⎛

⎜

⎜

⎜

⎝

G11(s) · · · G1m(s)

· · · · · · · · ·

Gp1(s) · · · Gpm(s)

⎞

⎟

⎟

⎟

⎠

,

where Gij(s) are polynomials with degree strictly lower than r(= deg P(s)).

(iii) Grouping the terms of the same degree we can write G(s) in the form

G(s) =
1

P(s)
(R0 + R1s + . . . + Rr−1sr−1),

where R0, . . . , Rr−1 ∈ Mp,m(R).
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(iv) Then, the standard controllable realization is given by the triple of matrices (where 0m is
the null matrix of Mm(R)):

A =

⎛

⎜

⎜

⎜

⎜

⎝

0m Im 0m . . . 0m

0m 0m Im . . . 0m

. . . . . . . . .
0m 0m 0m . . . Im

−p0 Im −p1 Im . . . . . . −pr−1 Im

⎞

⎟

⎟

⎟

⎟

⎠

∈ Mmr(R), B =

⎛

⎜

⎜

⎜

⎝

0m

...
0m

Im

⎞

⎟

⎟

⎟

⎠

∈ Mmr,m(R),

C =
(

R0 . . . Rr−1

)

∈ Mp,mr(R).

We consider, for example,

G(s) =

(

1/s
1/(s − 1)

)

.

(1) Following the above paragraphs, compute the triple of matrices (A, B, C) which give the
standard controllable realization.

(2) Check that it is controllable, that is, that the matrix

K(A, B) = (B, AB, . . . , Amr−1B)

has full rank.

(3) Check that it is a realization of G(s), that is,

(

1/s
1/(s − 1)

)

= C(sI − A)−1B.

4. Reachable states; control functions

Given a linear control system

x(k + 1) = Ax(k) + Bu(k); A ∈ Mn(R), B ∈ Mn,m(R),

the h-step "reachable states", from x(0), are:

x(h) = Ahx(0) + Ah−1Bu(0) + . . . + ABu(h − 2) + Bu(h − 1)

where all possible "control functions" u(0), u(1), . . . are considered. More explicitly, if we write
B = (b1 . . . bm) and u(k) = (u1(k), . . . , um(k)), we have that:

x(h) = Ahx(0)

+ (Ah−1b1u1(0) + . . . + Ah−1bmum(0)) + . . .

+ (Ab1u1(h − 2) + . . . + Abmum(h − 2)) + (b1u1(h − 1) + . . . + bmum(h − 1))

Let

A =

⎛

⎝

2 −1 1
−2 1 −1
2 1 3

⎞

⎠ , B =

(

−1 1
1 0

)

.

179Learning Automation to Teach Mathematics
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(1) Assume that only the first control acts, that is: u2(0) = u2(1) = . . . = 0. Show that in this
case, the state x = (−1, 2, 1) is not 3-step reachable from the origin.

(2) Assume now that only the second control acts.

(2.1) Prove that x = (−1, 2, 1) is 2-step reachable from the origin.

(2.2) Compute the corresponding control function.

(3) Assume that both controls act.

(3.1) Determine the control functions set to reach x = (−1, 2, 1) from the origin, at second
step.

(3.2) In particular, check if it is possible to choose positive controls.

(3.3) Idem for u1(0) = u2(0).

5. Subspaces of reachable states

Given a linear control system

x(k + 1) = Ax(k) + Bu(k); A ∈ Mn(R), B ∈ Mn,m(R),

the h-step "reachable states", from x(0), are

x(h) = Ahx(0) + Ah−1Bu(0) + . . . + ABu(h − 2) + Bu(h − 1),

where all possible control functions u(0), u(1), . . . are considered.

(1) We write K(h) the set of these states when x(0) = 0. Show that:

(1.1) K(h) = [B, AB, . . . , Ah−1B] ⊂ R
n

(1.2) K(1) ⊂ K(2) ⊂ . . . ⊂ K(j) ⊂ . . .

(1.3) K(h) = K(h + 1) ⇒ K(h + 1) = K(h + 2) = . . .

(1.4) K(n) = K(n + 1) = . . .

This maximal subspace of the chain is called "subspace of reachable states":

K = [B, AB, . . . , An−1B] ⊂ R
n

(2) Analogous results hold when only the control ui(k) acts. In particular, the subspace of
reachable states, from the origin, with only this control is:

Ki = [bi, Abi, . . . , An−1bi] ⊂ R
n; 1 ≤ i ≤ m

where B = (b1, . . . , bm).

(2.1) Reason that the reachable states by acting the controls ui(k) and uj(k) are Ki + Kj.

(2.2) Reason that Ki ∩ Kj is the subspace of reachable states by acting any of the controls
ui(k) or uj(k).

(3) Let us consider the linear control system defined by the matrices

A =

⎛

⎝

2 −1 1
−2 1 −1
2 1 3

⎞

⎠ , B =

⎛

⎝

0 0
−1 1
1 0

⎞

⎠ .

180 Automation
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(3.1) Determine the subspaces K, K1 and K2, and construct a basis of each one.

(3.2) Idem for K1 + K2, K1 ∩ K2.

6. Change of state variables in control systems

In the linear control system

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t)

A ∈ Mn, B ∈ Mn,m, C ∈ Mp,n,

we consider a linear change in the state variables given by:

x̄ = S−1x.

(1) Prove that in the new variables the equations of the system are:

˙̄x(t) = Āx̄(t) + B̄ū(t); y(t) = C̄x̄(t)

Ā = S−1AS, B̄ = S−1B, C̄ = CS.

(2) The "controllability indices" of the system are computed from the ranks:

rank(B, AB, . . . , AhB), h = 1, 2, 3, . . .

Deduce from (1) that they are invariant under linear changes in the state variables.

(3) The "transfer matrix" of the system is:

G(s) = C(sI − A)−1B.

Deduce from (1) that it is invariant under linear changes in the state variables.

7. Controllability subspaces and unobservability subspaces

Given a linear control system

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t)

A ∈ Mn(R), B ∈ Mn,m(R), C ∈ Mp,n(R),

the following subspaces are called "controllability subspace" and "unobservability subspace",
respectively:

K = Im
(

B AB . . . An−1B
)

L = Ker

⎛

⎜

⎜

⎜

⎜

⎝

C

CA

. . .

CAn−1

⎞

⎟

⎟

⎟

⎟

⎠

.

(1) Show that they are A-invariant subspaces.
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(2) Let us consider

A =

⎛

⎜

⎜

⎝

1 1 0 0
0 1 0 0
0 0 −1 1
0 0 0 −1

⎞

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎝

1
0
0
1

⎞

⎟

⎟

⎠

, C =
(

0 1 0 1
)

.

(2.1) Compute the dimensions of K and L.

(2.2) Construct a basis of each one.

(2.3) Obtain the matrices, in these bases, of the restrictions A|K and A|L.

(2.4) Idem for the subspace K ∩ L.

8. Kalman decomposition

Given a linear control system

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t)

A ∈ Mn(R), B ∈ Mn,m(R), C ∈ Mp,n(R),

we consider the subspaces

K = Im K(A, B), L = Ker L(C, A),

where

K(A, B) =
(

B AB . . . An−1B
)

,

L(C, A) =

⎛

⎜

⎜

⎝

C
CA
. . .

CAn−1

⎞

⎟

⎟

⎠

.

A (Grassman) adapted basis to both subspaces is called a "Kalman basis". More specifically,
the basis change matrix is of the form

S =
(

S1 S2 S3 S4

)

S2 : basis of K ∩ L

(S1 S2) : basis of K

(S2 S4) : basis of L

where some of the submatrices S1, . . . , S4 can be empty.

(1) Prove that with a basis change of this form, the matrices of the system become of the form

Ā = S−1AS =

⎛

⎜

⎜

⎝

A11 0 A13 0
A21 A22 A23 A24

0 0 A33 0
0 0 A43 A44

⎞

⎟

⎟

⎠
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B̄ = S−1B =

⎛

⎜

⎜

⎝

B1

B2

0
0

⎞

⎟

⎟

⎠

C̄ = CS =
(

C1 0 C3 0
)

.

It is called "Kalman decomposition" of the given system.

(2) Consider the system given by

A =

⎛

⎜

⎜

⎝

1 1 0 0

0 1 0 0
0 0 −1 1
0 0 0 −1

⎞

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎝

1

0
0
1

⎞

⎟

⎟

⎠

, C =
(

0 1 0 1
)

.

(2.1) Determine a Kalman basis.

(2.2) Determine a Kalman decomposition.

(2.3) Check that

(A11, B1, C1) is controllable and observable,
((

A11 0
A21 A22

)

,

(

B1

B2

)

,

(

C1

0

))

is controllable,

((

A11 A13

0 A33

)

,

(

B1

0

)

,

(

C1

C3

))

is observable,

that is, that the following matrices have full rank:

K(A11, B1) =
(

B1 A11B1 . . . (A11)
n−1B1

)

,

(L(C1, A11))
t =

(

Ct
1 At

11Ct
1 . . . (At

11)
n−1Ct

1

)

,

K

((

A11 0
A21 A22

)

,

(

B1

B2

))

=

(

(

B1

B2

)

. . .

(

A11 0
A21 A22

)n−1 (
B1

B2

)

)

,

(

L

(

(

C1 C3

)

,

(

A11 A13

0 A33

)))t

=

(

(

Ct
1

Ct
3

)

. . .

(

At
11 0

At
13 At

33

)n−1 (
Ct

1
Ct

3

)

)

.

9. Pole assignment by state feedback

Given a linear control system

B

A

u ẋ x

ẋ(t) = Ax(t) + Bu(t); A ∈ Mn, B ∈ Mn,m,

183Learning Automation to Teach Mathematics



14 Will-be-set-by-IN-TECH

the eigenvalues of the matrix A are called the "poles" of the system and play an important
role in its dynamic behaviour. For example, they are the resonance frequencies; the system is
"BIBO stable" if and only if the real part of its poles is negative.
If we apply an automatic control by means of a "feedback" F (for example, a thermostat, a
Watt regulator,...)

B

A

F

u ẋ x

we obtain an autonomous dynamic system (called a "closed loop" system):

ẋ(t) = Ax(t) + BFx(t) = (A + BF)x(t)

with matrix A+ BF instead of the initial matrix A. We ask if it is possible to choose adequately

F such that the new poles (that is, the eigenvalues of A + BF) have some prefixed desired
values. For example, with negative real part, so that the automatic control is stable.

A main result of control theory ensures that this pole assignment by feedback is possible if the

initial system is controllable, that is, if rank(B, AB, A2B, . . . , An−1B) = n.

We will prove and apply that in the one-parameter case (m = 1). We will do it by transforming
the initial system in the so-called "control canonical form" by means of a suitable basis change.

In this form, the feedback computation is trivial, and finally it will only be necessary to undo
the transformation.

(1) Consider a one-parameter control system

ẋ(t) = Ax(t) + bu(t); A ∈ Mn, b ∈ Mn,1,

and let μ1, . . . , μn be the desired eigenvalues for the feedback system (each one repeated
so many times as its algebraic multiplicity). The main hypothesis is that the system is
controllable, that is, rank(b, Ab, A2b, . . . , An−1b) = n.
Then it is possible to find a linear change S in the state variables such that the new matrices
of the system have the so-called "control canonical form":

Ac = S−1AS =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . .
0 0 1 . . . 0 1
an an−1 an−2 . . . a2 a1

⎞

⎟

⎟

⎟

⎟

⎠

, bc = S−1b =

⎛

⎜

⎜

⎜

⎝

0
...
0
1

⎞

⎟

⎟

⎟

⎠

for certain coefficients a1, . . . , an.
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(1.1) Check that these coefficients are the same (with opposite sign) than the ones of the
characteristic polynomial:

Q(t) = (−1)n(tn − a1tn−1 − . . . − an−1t − an).

(1.2) Deduce that it is straightforward to find Fc such that:

eigenvalues(Ac + bcFc) = {μ1, . . . , μn}.

(1.3) Prove that F = FcS−1 is the sought feedback, that is, that:

eigenvalues(A + bF) = {μ1, . . . , μn}.

(2) Consider the particular case:

A =

⎛

⎝

0 0 1
0 1 −1
1 0 −1

⎞

⎠ , b =

⎛

⎝

1
1
1

⎞

⎠ .

(2.1) Check that the basis change

S =

⎛

⎝

−2 1 1

−2 0 1
−1 0 1

⎞

⎠

transform the initial matrices into the control canonical form.

(2.2) Compute a feedback F such that:

eigenvalues(A + bF) = {μ1, μ2, μ3}.

10. Controllable subsystem

Given a linear control system

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) (1)

A ∈ Mn, B ∈ Mn,m, C ∈ Mp,n,

the following matrix is called its "controllability matrix"

K(A, B) =
(

B AB A2B . . . An−1B
)

.

It can be seen that the subspace spanned by its columns K = Im K(A, B) is the set of reachable
states from the origin, and it is called "controllability subspace". We denote d = dim K.

(1) Prove that K is an A-invariant subspace.

We consider a basis change S in the state space adapted to K, and we denote by xc the first
d new coordinates and by xuc the remaining ones:

x̄ = S−1x =

(

xc

xuc

)

, xc ∈ Md,1.
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(2) Check that:
x ∈ K ⇔ xuc = 0

that is:

x ∈ K ⇔ x̄ = S−1x =

(

xc

0

)

.

(3) Prove that the equations of the system in the new variables are:

(

ẋc(t)
ẋuc(t)

)

= Ā

(

xc(t)
xuc(t)

)

+ B̄u(t)

Ā = S−1AS =

(

Ac ∗
0 ∗

)

, Ac ∈ Md

B̄ = S−1B =

(

Bc

0

)

, Bc ∈ Md,m

C̄ = CS =

(

Cc

Cuc

)

, Cc ∈ Mp,d.

(4) Deduce that if the initial state belongs to K, it also belongs all the trajectory, for any applied
control u(t):

x(0) ∈ K ⇒ x(t) ∈ K, ∀t, ∀u(t).

Therefore, it makes sense to consider the "restriction" to K of the initial system:

ẋc(t) = Acxc(t) + Bcu(t); yc(t) = Ccxc(t). (2)

The following paragraphs justify the interest of this subsystem and its denomination as
"controllable subsystem" of the initial one.

(5) Justify that the trajectories of system (1) in K can be computed by means of equations (2)
of the subsystem and relation (2).

(6) Prove that this subsystem is "controllable", that is, that the following matrix has full rank:

(

Bc AcBc . . . Ad−1
c Bc

)

.

(7) Prove that the controllable subsystem has the same "transfer matrix" (which, we recall,
reflects the input/output behaviour) than the initial system, that is, that:

C(sI − A)−1B = Cc(sI − Ac)
−1Bc.

11. Control canonical form

For controllable systems, the so-called "control canonical form" simplifies the computations,
for example, for the pole assignment by feedback. We are going to obtain it for the
one-parameter case.

(1) Consider the system
ẋ(t) = Ax(t) + bu(t)
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A =

⎛

⎝

0 0 −1
0 1 −1

1 0 1

⎞

⎠ , b =

⎛

⎝

1
1

1

⎞

⎠ .

(1.1) Check that it is controllable, that is, that:

rank
(

b Ab A2b
)

= 3.

(1.2) Check that doing the basis change

S1 =
(

A2b Ab b
)

we get

Ā = S−1
1 AS1 =

⎛

⎝

2 1 0
0 0 1
−1 0 0

⎞

⎠ , b̄ = S−1b =

⎛

⎝

0
0
1

⎞

⎠ .

(1.3) Check that with the additional change

S2 =

⎛

⎝

1 0 0
−2 1 0
0 −2 1

⎞

⎠

we get the control canonical form

Ac = S−1
2 ĀS2 =

⎛

⎝

0 1 0
0 0 1
−1 2 0

⎞

⎠ , bc = S−1
2 b̄ =

⎛

⎝

0
0
1

⎞

⎠ .

(2) Consider the system

ẋ(t) = Ax(t) + bu(t); A ∈ Mn, b ∈ Mn,1

which is assumed to be controllable:

rank
(

b Ab . . . An−1b
)

= n

and let Q(t) be the characteristic polynomial of A

Q(t) = (−1)n(tn − a1tn−1 − . . . − an−1t − an).

(2.1) Check that doing the basis change

S1 =
(

An−1b . . . Ab b
)

we get

Ā = S−1
1 AS1 =

⎛

⎜

⎜

⎜

⎜

⎝

a1 1 0 . . . 0
a2 0 1 . . . 0

. . .
an−1 0 0 . . . 1

an 0 0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎠

, b̄ = S−1
1 b =

⎛

⎜

⎜

⎜

⎝

0
...
0
1

⎞

⎟

⎟

⎟

⎠

.
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(2.2) Check that with the additional change

S2 =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 . . . 0 0

−a1 1 . . . 0 0
−a2 −a1 . . . 0 0

. . .
−an−1 −an−2 . . . −a1 1

⎞

⎟

⎟

⎟

⎟

⎠

we get the control canonical form

Ac = S−1
2 ĀS2 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1
an an−1 an−2 . . . a2 a1

⎞

⎟

⎟

⎟

⎟

⎠

, bc = S−1
2 b̄ =

⎛

⎜

⎜

⎜

⎝

0
...
0
1

⎞

⎟

⎟

⎟

⎠

.

(3) As an application, we use the control canonical form to check that A is non-derogatory:

(3.1) Prove that if λi is an eigenvalue of A, then:

rank(AC − λi I) = n − 1.

(3.2) Deduce that A is non-derogatory, and so it does not diagonalize if some of its
eigenvalues are multiple.

3.2 Solutions

1. Solution

(1) It follows immediately from the observation of the diagrams.

(2.i)

ẋ1 = A1x1 + B1u1 = A1x1 + B1u

ẋ2 = A2x2 + B2u2 = A2x2 + B2y1 = A2x2 + B2C1x1

y = y2 = C2x2

Hence:

ẋ =

(

ẋ1

ẋ2

)

=

(

A1 0
B2C1 A2

)(

x1

x2

)

+

(

B1

0

)

u

y =
(

0 C2

)

(

x1

x2

)

(2.ii) Reasoning in the same way, it results:

(

A1 0
0 A2

)

,

(

B1

B2

)

,
(

C1 C2

)
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(2.iii) Analogously:
(

A1 B1C2

B2C1 A2

)

,

(

B1

0

)

,
(

C1 0
)

(3.i) ŷ = ŷ2 = G2û2 = G2ŷ1 = G2G1û1 = G2G1û. Hence, the transfer matrix is:

G2G1

(3.ii) Analogously:
G1 + G2

(3.iii) ŷ = ŷ1 = G1û1 = G1(û + ŷ2) = G1û + G1G2û2 = G1û + G1G2ŷ

(I − G1G2)ŷ = G1û

ŷ = (I − G1G2)
−1G1û

2. Solution

(a) The controllability matrix is

K(A, B) =

⎛

⎜

⎜

⎝

1 1 0 β −2 β

0 β −2 β −2 −β

0 1 α 1 α αβ + 1

⎞

⎟

⎟

⎠

,

which clearly has full rank for all α, β. Hence, the given system is controllable for all α, β.

(b) When only the second control acts, that is to say, when u1(t) = 0 for all t, the system can
be written

ẋ(t) = Ax(t) + b2u2(t).

Then, the controllability matrix is reduced to

K(A, b2) =

⎛

⎜

⎜

⎝

1 β β

β β −β

1 1 αβ + 1

⎞

⎟

⎟

⎠

,

which has full rank for β �= 0, α �= −2
β .

(c) Now one has

K(A, B) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 γ 0 δ 1 0

0 0 0 γ 0 δ 1 0 0 0

0 γ 0 δ 1 0 0 0 0 0 0 0

0 δ 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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The "controllability indices" can be computed from the ranks of the 2, 4, 6, . . . first columns:

rank(B) = 2, for all γ, δ

rank(B, AB) = 4, for all γ, δ

rank(B, AB, A2B) = 5 if γ = δ = 0; rank(B, AB, A2B) = 6 otherwise

rank(B, . . . , A3B) = 6 if γ = δ = 0; rank(B, . . . , A3B) = 7 otherwise

rank(B, . . . , A4B) = 7

3. Solution

(1) Let

G(s) =

(

1/s
1/(s − 1)

)

.

Then: p = 2, m = 1. Following the given pattern:

(i) P(s) = s(s − 1) = −s + s2

r = 2, p0 = 0, p1 = −1, p2 = 1

(ii) G(s) = 1
−s+s2

(

s − 1
s

)

(iii) G(s) = 1
−s+s2

((

−1
0

)

+

(

1
1

)

s

)

R0 =

(

−1
0

)

, R1 =

(

1
1

)

(iv) A =

(

0 1
0 1

)

, B =

(

0
1

)

, C =

(

−1 1
0 1

)

(2) rank K(A, B) = rank

(

0 1
1 1

)

= 2

(3) (sI − A)−1 =

(

s

(

1 0
0 1

)

−

(

0 1
0 1

))−1

=

(

s −1
0 s − 1

)−1

= 1
s2−s

(

s − 1 1
0 s

)

C(sI − A)−1B =

(

−1 1
0 1

)

1

s2 − s

(

s − 1 1
0 s

)(

0
1

)

=
1

s2 − s

(

−1 1
0 1

)(

1
s

)

=
1

s2 − s

(

−1 + s
s

)

= G(s)

4. Solution

(1) x = (−1, 2, 1) is 3-step reachable, from the origin, if there are u2(0), u2(1), u2(2) such that:

x = A2b1u1(0) + Ab1u1(1) + b1u1(2)

=

⎛

⎝

10
−8

8

⎞

⎠ u1(0) +

⎛

⎝

2
−2

2

⎞

⎠ u1(1) +

⎛

⎝

0
−1

1

⎞

⎠ u1(2)
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or equivalently::
⎛

⎝

−1
2
1

⎞

⎠ =

⎛

⎝

10 −2 0
−8 −2 −1
8 2 1

⎞

⎠

⎛

⎝

u1(0)
u1(1)
u1(2)

⎞

⎠

No solutions exist because

rank

⎛

⎝

10 −2 0
−8 −2 −1
8 2 1

⎞

⎠ = 2 rank

⎛

⎝

10 −2 0 −1
−8 −2 −1 2
8 2 1 1

⎞

⎠ = 3

(2) Analogously:
⎛

⎝

−1
2
1

⎞

⎠ =

⎛

⎝

−1 0
1 1
1 0

⎞

⎠

(

u2(0)
u2(1)

)

whose solution is: u2(0) = 1, u2(1) = 1.

(3.1) Analogously:
⎛

⎝

−1
2
1

⎞

⎠ =

⎛

⎝

2 −1 0 0
−2 1 −1 1
2 1 1 0

⎞

⎠

⎛

⎜

⎜

⎝

u2(0)
u2(0)
u1(1)
u2(1)

⎞

⎟

⎟

⎠

The solutions can be parameterized by u1(0) as follows:

u2(0) = 1 + u1(0)

u1(1) = 1 − 2u1(0)− u2(0) = −4u1(0)

u2(1) = . . . = 1 − 4u1(0)

(3.2) It is not possible, because u1(0) and u1(1) have opposite signs.

(3.3) It is possible u1(0) = u2(0) = −1. Then u1(1) = 4, u2(1) = 5.

5. Solution

(1.1) When x(0) = 0, one has:

x(k) = (Ak−1b1u1(0) + . . . + Ak−1bmum(0))

...

+ (Ab1u1(k − 2) + . . . + Abmum(k − 2))

+ (b1u1(k − 1) + . . . + bmum(k − 1))

where B = (b1, . . . , bm) and u(0), . . . , u(k − 1) run over all possible control functions.
Therefore

K(h) = [Ak−1b1, . . . , Ak−1bm, . . . , Ab1, . . . , Abm, b1, . . . , bm] = [B, AB, . . . , Ak−1B].

(1.2) It is obvious from (1.1).

191Learning Automation to Teach Mathematics



22 Will-be-set-by-IN-TECH

(1.3) K(h) = K(h + 1) if and only if Ahb1, . . . , Ahbm ∈ K(h).
Then Ah+1b1, . . . , Ah+1bm ∈ K(h + 1), so that K(h + 2) = K(h + 1).

(1.4) As dim K(h) ≤ n, the length of the increasing chain is n at most.

(2)

Ki + Kj = [bi, Abi, . . . , An−1bi] + [bj, Abj, . . . , An−1bj]

= [(bi, bj), A(bi, bj), . . . , An−1(bi, bj)]

(3.1) K = Im

⎛

⎝

0 0 2 −1 10 −2
−1 1 −2 1 −8 2

1 0 2 1 8 2

⎞

⎠ = R
3

K1 = Im

⎛

⎝

0 2 10
−1 −2 −8
1 2 8

⎞

⎠ = Im

⎛

⎝

0 2
−1 −2
1 2

⎞

⎠

A basis of K1: (0,−1, 1), (1, 0, 0)

K2 = Im

⎛

⎝

0 −1 −2
1 1 2
0 1 2

⎞

⎠ = Im

⎛

⎝

0 −1
1 1
0 1

⎞

⎠

A basis of K2: (0, 1, 0), (−1, 0, 1)

(3.2) K1 + K2 = Im

⎛

⎝

0 1 0 −1
−1 0 1 0
1 0 0 1

⎞

⎠ = R
3

K1 = {y + z = 0}
K2 = {x + z = 0}
K1 ∩ K2 = {y + z = x + z = 0}
A basis of K1 ∩ K2: (1, 1,−1)

6. Solution

(1) If x̄ = S−1x, then:

˙̄x = S−1ẋ = S−1(Ax + Bu) = S−1ASx̄ + S−1Bu

y = Cx = CSx̄

(2) rank(B̄, ĀB̄, . . . , Āh B̄) = rank(S−1B, S−1ASS−1B, . . . , (S−1AS)hS−1B)
= rank S−1(B, AB, . . . , AhB) = rank(B, AB, . . . , AhB)

(3) Ḡ(s) = C̄(sI − Ā)−1B̄ = CS(sI − S−1AS)−1S−1B = CS(S−1(sI − A)S)−1S−1B
= CSS−1(sI − A)−1SS−1B = G(s)

7. Solution

(1) From Cayley-Hamilton theorem:

An = a0 I + a1 A + . . . + an−1An−1
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Therefore, if x ∈ Im
(

B AB . . . An−1B
)

, then

Ax ∈ Im
(

AB A2B . . . AnB
)

⊂ Im
(

B AB . . . AnB
)

,

and

Im
(

B AB . . . AnB
)

= Im
(

B AB . . . (a0B + a1 AB + . . . + an−1An−1B)
)

= Im
(

B AB . . . An−1B
)

= K.

If x ∈ L, then:
Cx = CAx = . . . = CAn−1x = 0

Clearly:
C(Ax) = . . . = CAn−2(Ax) = 0

It is sufficient to prove that CAn−1(Ax) = 0, but

CAn−1(Ax) = CAnx

= C(a0 I + a1 A + . . . + an−1 An−1)x

= a0Cx + a1CAx + . . . + an−1CAn−1x = 0

(2.1) K = Im

⎛

⎜

⎜

⎝

1 1 1 1

0 0 0 0
0 1 −2 3
1 −1 1 −1

⎞

⎟

⎟

⎠

; dim K = 3

L = Ker

⎛

⎜

⎜

⎝

0 1 0 1
0 1 0 −1
0 1 0 1
0 1 0 −1

⎞

⎟

⎟

⎠

; dim L = 4 − 2 = 2

(2.2) Basis of K: (u1, u2, u3)
u1 = (1, 0, 0, 1), u2 = (1, 0, 1,−1), u3 = (1, 0,−2, 1)
Basis of L: (v1, v2)
v1 = (1, 0, 0, 0), v2 = (0, 0, 1, 0)

(2.3) Au1 = u2; Au2 = u3; Au3 =

⎛

⎜

⎜

⎝

1
0

3
−1

⎞

⎟

⎟

⎠

= u1 + u2 − u3

Mat A|K =

⎛

⎝

0 0 1
1 0 1
0 1 −1

⎞

⎠

Av1 = v1; Av2 = −v2

Mat A|L =

(

1 0
0 −1

)
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(2.4) K = {(x1, x2, x3, x4) : x2 = 0}
L = {(x1, x2, x3, x4) : x2 = x4 = 0}
K ∩ L = L

8. Solution

(1) We recall (see ex. 7) that K and L are A-invariant subspaces. Therefore:

A(S2) ⊂ [S2]

A(S1) ⊂ [S1, S2]

A(S4) ⊂ [S2, S4]

so that Ā = S−1AS has the stated form.
Moreover Im B ⊂ K. Hence, B̄ = S−1B ⊂ [S1, S2].
Finally, as L ⊂ Ker C, we have C(S2) = C(S4) = 0.

(2.1) According to the solution of ex. 7, we can take:

S2 =

⎛

⎜

⎜

⎝

1 0
0 0
0 1
0 0

⎞

⎟

⎟

⎠

S1 =

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

S3 =

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

and S4 is empty. Hence:

S =

⎛

⎜

⎜

⎝

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

⎞

⎟

⎟

⎠

(2.2)

Ā = S−1AS =

⎛

⎜

⎜

⎝

−1 0 0 0

0 1 0 1
1 0 −1 0

0 0 0 1

⎞

⎟

⎟

⎠

B̄ = S−1B =

⎛

⎜

⎜

⎝

1

1
0

0

⎞

⎟

⎟

⎠

C̄ = CS =
(

1 0 0 1
)

That is to say:

A11 =
(

−1
)

A13 =
(

0 0
)

A21 =

(

0
1

)

A22 =

(

1 0
0 −1

)

A23 =

(

1
0

)

A33 =
(

1
)

B1 =
(

1
)

B2 =

(

1
0

)

C1 =
(

1
)

C3 =
(

1
)

(2.3) rank K(A11, B1) = rank
(

1 −1
)

= 1
rank(L(C1, A11))

t = rank
(

1 −1
)

= 1
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rank K

((

A11 0
A21 A22

)

,

(

B1

B2

))

= rank

⎛

⎝

1 −1 1
1 1 1

0 1 −2

⎞

⎠ = 3

rank

(

L

(

(

C1 C3

)

,

(

A11 0
A21 A33

)))t

= rank

(

1 −1
1 1

)

= 2

9. Solution

(1.1) It is easy to check that there is only one main minor of each sign. Then:

a1 = tr Ac, a2 = −det

(

0 1
a2 a1

)

, a3 = det

⎛

⎝

0 1 0
0 0 1
a3 a2 a1

⎞

⎠ , . . . , an = det Ac.

(1.2) If Fc =
(

f1 . . . fn
)

, then

Ac + bcFc =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 . . . 0 0
0 0 . . . 0 0

. . .
0 0 . . . 0 1

an + f1 an−1 + f2 . . . a2 + fn−1 a1 + fn

⎞

⎟

⎟

⎟

⎟

⎠

Therefore, f1, . . . , fn are the solutions of:

tn − (a1 + fn)t
n−1 − . . . − (an−1 + f2)t − (an + f1) = (t − μ1)(t − μ2) · · · (t − μn).

(1.3)

eigenvalues(A + bF) = eigenvalues(SAcS−1 + SbcFcS−1)

= eigenvalues(S(Ac + bcFc)S
−1)

= eigenvalues(Ac + bcFc) = {μ1, . . . , μn}.

(2.1) It is straightforward to check that:

S−1AS =

⎛

⎝

0 1 0
0 0 1
−1 2 0

⎞

⎠ , S−1b =

⎛

⎝

0
0
1

⎞

⎠ .

(2.2) First, we look for Fc =
(

f1 f2 f3

)

such that:

t − f3t2 − (2 + f2)− (−1 + f1) = (t − μ1)(t − μ2)(t − μ3)

Therefore:

f3 = μ1 + μ2 + μ3

f2 = μ1μ2 + μ2μ3 + μ3μ1 − 2

f1 = μ1μ2μ3 + 1
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Finally: F = FcS−1.

10. Solution

(1) From Cayley-Hamilton theorem, if the characteristic polynomial of A is

Q(t) = (−1)n(tn − a1tn−1 − . . . − an−1t − an),

then

An = an I + an−1 A + . . . + a1 An−1.

Therefore, if x ∈ K = Im
(

B AB . . . An−1B
)

, then

Ax ∈ Im
(

AB A2B . . . AnB
)

⊂ Im
(

B AB . . . An−1B (a0B + . . . + an−1An−1B)
)

= K

(2) If (u1, . . . , ud, . . . , um) is a basis of the state space adapted to K, then a state x belongs to K
if and only if the last n − d coordinates are 0.

(3) In the conditions of (2), the d first columns of Ā are Au1, . . . , Aud, which belong to K (see
(1)). Hence, again from (2), their last n − d coordinates are 0. The same argument works
for B, because its columns belong to K.

(4) From (3), it is clear that xuc(0) = 0 implies xuc(t) = 0 for any control u(t).

(5) Again from (3), if xuc(t) = 0, the remainder coordinates xc(t) are determined by system
(2).

(6) By hypothesis
rank

(

B AB . . . An−1B
)

= d.

The rank is preserved under changes of bases. Hence:

d = rank
(

B̄ ĀB̄ . . . Ān−1B̄
)

= rank

((

Bc

0

)(

AcBc

0

)

. . .

(

An−1
c Bc

0

))

= rank
(

Bc AcBc . . . An−1
c Bc

)

= rank
(

Bc AcBc . . . Ad−1
c Bc

)

where the last equality follows from Cayley-Hamilton theorem.

(7) Recall that the transfer matrix is preserved under changes of bases:

C(sI − A)−1B = C̄S−1(sI − SĀS−1)−1SB̄ = C̄S−1(S(sI − Ā)S−1)−1SB̄ =

= C̄S−1(S−1)−1(sI − Ā)S−1SB̄ = C̄(sI − Ā)B̄

From (2):

(sI − Ā)−1 =

(

sI −

(

Ac ∗
∗ ∗

))−1

=

(

sId − Ac ∗
0 ∗

)−1

=

(

(sId − Ac)−1 ∗
0 ∗

)
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where it does not matter the form of the blocks *:

C̄(sI − Ā)−1B̄ =
(

Cc Cuc
)

(

(sId − Ac)−1 ∗
0 ∗

)(

Bc

0

)

=
(

Cc Cuc
)

(

(sId − Ac)−1Bc

0

)

= Cc(sId − Ac)
−1Bc

11. Solution

(1)

A =

⎛

⎝

0 0 −1
0 1 −1
1 0 1

⎞

⎠ ; b =

⎛

⎝

1
1
1

⎞

⎠

(1.1)

rank
(

b Ab A2b
)

= rank

⎛

⎝

1 1 2
1 0 −2

1 2 3

⎞

⎠ = 3

(1.2)

S1 =

⎛

⎝

2 1 1
−2 0 1
3 2 1

⎞

⎠ ; S−1
1 =

1

3

⎛

⎝

2 −1 −1
−5 1 4
4 1 −2

⎞

⎠

Ā =
1

3

⎛

⎝

6 3 0
0 0 3
−3 0 0

⎞

⎠ b̄ =
1

3

⎛

⎝

2 −1 −1
−5 1 4
4 1 −2

⎞

⎠

⎛

⎝

1
1
1

⎞

⎠ =
1

3

⎛

⎝

0
0
3

⎞

⎠

(1.3)

S2 =

⎛

⎝

1 0 0
−2 1 0
0 −2 1

⎞

⎠ ; S−1
2 =

⎛

⎝

1 0 0
2 1 0
4 2 1

⎞

⎠

Ac =

⎛

⎝

0 1 0
0 0 1
−1 0 2

⎞

⎠ ; bc =

⎛

⎝

1 0 0
2 1 0
4 2 1

⎞

⎠

⎛

⎝

0
0
1

⎞

⎠ =

⎛

⎝

0
0
1

⎞

⎠

(2) The computations are analogous to those in (1).

(3.1) If λi is an eigenvalue of Ac, then:

rank(Ac − λi I) < n.

On the other hand,

rank(Ac − λi I) = rank

⎛

⎜

⎜

⎜

⎜

⎝

−λi 1 0 . . . 0 0
0 −λi 1 . . . 0 0

. . . . . .
0 0 0 . . . −λi 1
∗ ∗ ∗ . . . ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎠

≥ n − 1.
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(3.2) If λi is an eigenvalue of A, then λi is also en eigenvalue of Ac. Then, from (3.1):

dim Ker(A − λi I) = n − rank(A − λi I) = n − rank(Ac − λi I) = n − (n − 1) = 1.

Therefore, A is non-diagonalizable if the algebraic multiplicity of λi is greater than 1.
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