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1. Introduction 

1.1. Human population growth and sustainability 

In the modern world, small livelihood-based farms that grow multiple crops have been 
mostly replaced by large, agricultural conglomerates, in which food is grown in 
monocultures. This shift has allowed for the expansion of suburbs and new cities, but it has 
also made these places isolated, dirty, degraded, abandoned, and depersonalized.  Owing in 
no small part to pesticide use, one of the legacies of the twentieth century is the potential for 
severe anthropogenic ecological damage. It has been recognized since the 1970s that 
byproducts and waste from technical-industrial development degrade the biosphere and 
threaten to irretrievably poison the environment to which we, as humans, also belong [1]. 

The term “sustainable” means that an activity can be continued and repeated indefinitely 
and predictably into the future. It is concerning that, in large part, human activities are 
logically unsustainable: global human population cannot continue to increase in size 
forever. We cannot continue to take fish out of sea faster than their populations can recover 
if we want to have fish to eat in the future. We cannot continue to develop crops in forests if 
soil quantity and quality deteriorates and water supplies become eutrophic or toxic. We 
cannot continue to use the same pesticides if an increasing number of pests and pathogens 
become resistant to them. We cannot maintain nature’s diversity if we continue to cause 
species extinction [2]. 

The source of many environmental problems, not to say of all, is simply our current level of 
rapid human population growth [Figure 1]. More people means more demand for energy, 
more consumption of non-renewable resources such as oil and minerals, more pressure on 
the renewable ones like forests and fisheries, more need for crops and food production, and 
so on. Surely, this cannot continue sustainably [2]. In addition to—or as a consequence of—
this population growth, environmental pollution is also increasing. 
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Figure 1. Representation of human population growth – before agricultural revolution [18th century] 
human population took around 1000 years to double in size. Currently, total population has been 
doubling in the last decade. Source: [2] 

While world population [more than seven billion people] has doubled in the last decade, the 
demand for water supply increased by a factor of six according to United Nations data for 
the year 2000. Water demand grows faster than the population, mainly due to the 
introduction of more hygienic habits globally and the omnipresent desire to increase the 
productivity of food and industrialized products, the latter of which are generally also 
intended to maximize agricultural production. However, this increase in per-capita 
consumption exacerbates the imbalance between the distribution of water on Earth and its 
centers of human population density. Thus, the cheapest and most viable way to supply a 
growing world population is to learn how to use the available water in a more efficient 
manner [3]. 

1.2. Water sustainability as a resource  

Water, when taken on the whole, can be considered an abundant resource on the planet. 
Total reserves sum up around of 1,265,000 trillion m3, distributed among solid [ice], liquid 
[rivers, lakes, oceans, water tables] and gaseous [atmosphere] phases [Figure 2].  

However, out of the proportions shown in Figure 2, the relatively small parcel of water 
present in freshwater courses stands out. These waterways constitute the main source of 
water supply and are also the most common recipients of sewage discharge. Total world 
water demand is only around 11% of the mean discharge of rivers.  Of this, 70% is used in 
agricultural activities, 20% in industrial activities and 10% goes to domestic and municipal 
use [3]. Therefore the actual crisis is not in terms of global water scarcity, but in its 
heterogeneous distribution. This is aggravated by the disorderly growth of local demand 
and, above all, by the fact that water degradation has reached unprecedented levels, not just 
in urban areas, but it rural areas as well [3]. 

In the same manner, water scarcity is not an issue that is exclusive to arid and semi-arid 
regions. Many areas with abundant water supplies, although insufficient to attend 
excessively high demands, have also experienced conflicts regarding water use and suffered 
consumption restrictions that have affected economic development and quality of life [4]. In 
addition, there has been severe extraction pressure on many aquifers to the point where 
many have been degraded nearly to extinction, especially near big cities or metropolises.  
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Figure 2. Distribution of the world’s water. Source: Courtesy “Earth Update” CD-ROM, Rice University 
and the Houston Museum of Natural Science; used with permission. 

The physical expansion of cities toward wellsprings has been causing serious damage, often 
focing their relocation. 

The demand for a clean and safe water supply for human consumption, agriculture, and 
recreational purposes has been rising rapidly in the last few years. Water has become a 
limiting factor for agricultural, urban and industrial development. Recipient waterways, 
such as lakes, rivers and coastal areas receive great amounts of industrial, agricultural and 
urban waste directly via inputs and conveyance as well as indirectly through atmospheric 
deposition of aerial emissions. A complex mixture of toxic substances with an increasing 
number of contaminants has been deposited in these waters, posing a threat to aquatic 
ecosystems as much as to the health and well-being of human populations [5]. 

Regrettably, the waterways that are becoming contaminated are otherwise especially 
valuable resources. Unfortunately, contamination is very easy, but decontamination is often 
very costly and in some cases impossible to achieve [2]. In contrast with waste disposed in 
terrestrial environments that has more-or-less local effects, toxic waste in aquatic 
environments can be easily transported by currents and dispersed over large areas. Toxic 
chemicals in water, even in low amounts, can be concentrated to lethal levels by filtering 
aquatic organisms and top predators [6]. Pesticides, herbicides, oil waste and leakages, 
heavy metals [such as mercury, zinc and lead], detergents, and industrial waste can harm 
and kill organisms that live in or use this contaminated water. The potential risks of 
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contamination in aquatic biota and humans can to be evaluated through biomonitoring 
programs. The relevance of these studies rises with the growth of urban, industrial, and 
agricultural activities around water sources [i.e., rivers, lakes and reservoirs] associated with 
frequently inadequate or insufficient water treatment. This is reflected in attempts to 
establish rules concerning the safety of water supplies in reservoirs and possible risks to 
environmental and human exposure [7]. These kinds of studies fits in a discipline called 
ecotoxicology. 

2. Ecotoxicology 

The term ecotoxicology was introduced by Truhaut in 1969 and was derived from the root 
words ecology and toxicology. The introduction of this term reflected a growing interest in 
the effects of chemicals in other, non-human species. Truhaut identified a field of study that 
was interested in the harmful effects of these substances within the concept of ecology. 
Ecotoxicology can be defined as the study of the harmful effects of chemicals on ecosystems, 

including effects on individuals as well as consequences in populations and higher levels of 

organization [8]. 

Despite the definition above, many of the first works in ecotoxicology had little to do with 
ecology or ecotoxicology. At the time, principal importance was placed on the detection and 
determination of pollutants in animal and plant samples, although the analytical results 
could sometimes be related to the effect on populations and communities. Analytical 
techniques such as chromatography, thin layer chromatography and atomic absorption 
facilitated the detection of very low concentrations of chemicals in living organisms, but 
establishing the biological significance of their presence or the organismal response to a 
specific dose of these substances remained difficult [8]. 

A substance is considered a pollutant when it is detected in levels above those that would 
normally occur in a particular environment. This immediately brings up the question “what 
level is considered to be normal?” For most synthetic organic chemicals, such as pesticides, 
the answer is simple: no detectable level is “normal,” because these substances do not exist 
in the environment until they are introduced by humans. On the other hand, substances 
such as metals, sulfur dioxide, nitrogen oxides, polycyclic aromatic hydrocarbons [PAHs] 
and methyl mercury naturally occur and their presence in the environment pre-dates 
humans. Naturally, there is variation in the concentration of these compounds across 
different sites and through time. This complicates the assessment of what is normal [8]. 

There is a conventional distinction between the definitions of the terms “pollutant” and 
“contaminant”: a pollutant is a substance that causes real environmental damage, while the 
term “contaminant” does not necessarily imply that the chemical is harmful. Still, it is 
difficult to deal with this distinction. First, there is the general toxicological principle that 
toxicity is related to dose. In this way, a pollutant can fit the description of pollutant in one 
situation [at high doses] but not in others [low concentrations]. Second, there is no general 
agreement on what constitutes environmental damage. Some scientists consider deleterious 
biochemical changes in organisms to be an environmental damage; others apply the term to 
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population decrease. Third, the effects of the levels of chemicals measured in living 
organisms – or in their environment – are frequently unknown, even though the term 
pollutant is applied to them. This subject becomes even more complicated due to the 
possibility of toxicity increasing when organisms are exposed to a suite of environmental 
chemicals; such synergistic effects may result in chemicals having more a deleterious 
influence on organisms when in a mixture than they would otherwise in isolation [8]. 

Determining whether a contaminant is a pollutant also depends on its concentration in the 
environment, on the organisms to be considered, and on the possible damages of the 
contaminant to the organism. Thus, a compound can fit the description of a pollutant for 
one organism but not for another [8]. In order to minimize these problems of terminology, 
the term “pollutant” is used for environmental chemicals that exceed normal levels and 
cause damage. And environmental damage includes biochemical and physiological changes 
that adversely affect individual organisms, birth, growth and mortality rates[8], and 
reproduction. 

An exciting aspect of ecotoxicology is that it represents an approach that extends from 
molecules to ecosystems, from genes to physiology [8]. This is further explored in the 
discussion of response levels in biomarkers. 

3. Pesticides 

When pesticides began to be developed on an industrial scale, manufacturers were not very 
concerned about the specificity of their products. These chemicals  could damage anything, 
so long as they did not harm the crop, human beings, or their animals. A good example of 
this was when P. H. Müller received the Nobel Prize in Physiology or Medicine in 1948 “for 
his discovery of the high efficiency of Dichloride-Diphenil-Trichlorethane [DDT] as a contact 
poison against several arthropods” [9]. This insecticide was widely used after World War II 
to exterminate mosquitoes that caused malaria and typhus. It is cheap and very effective in 
the short run, but in the long run it is harmful to human health and possibly carcinogenic. It 
also interferes with animal life, leading to, for example, higher mortality in birds. In less 
than two decades DDT was banned in many countries, and today its use is forbidden almost 
worldwide. 

The study of the impacts caused by pesticides gained attention from 1979 on, inspired by 
discoveries of pollution by nematicides in aquifers of many north-American states. 
Following this, many other cases of pesticide contamination of soil, water resources, animals 
and, more critically, human beings were diagnosed in the temperate regions, but little 
investigation was carried in tropical regions [10]. 

Many chemicals used to kill plagues have become important environmental pollutants. 
These pesticides are pulverized or released above plague areas, but only a small amount 
reaches the target, with most of it falling over resident crops or bare soil. Therefore, such 
pesticides are used in excessive quantities. This occurs especially with herbicides because 
they are cheaper than insecticides and fungicides [2]. The real problem emerges when the 
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pesticide is toxic to species other than the target ones and, in particular, when they are 
transported outside the areas where they were applied and persist in the environment 
longer than expected. 

Agricultural production is currently highly dependent on the use of pesticides, and the 
abandonment or reduction in their use would lead to a decrease in production, a rise in 
production costs, higher consumer prices, and, in some places, hunger and malnutrition[11]. 

The sale of pesticides involves billions of dollars a year. Current transgenic technology has 
increased the commercialization of certain kinds of pesticides, which can be deliberately 
used on resistant crops. With many of these substances reaching the environment, especially 
aquatic ecosystems  where they are most concentrated, it is natural to think that some could 
be accumulating in individuals that compose food chains [12]. Due to their biological 
activity and to the huge quantity in which they are spread annually in the environment, 
pesticides can harm human health and the environment; for example, the induction of DNA 
damage can lead to adverse reproductive reactions, cancer and many other chronic diseases 
[13]. Recent evidence of negative effects of herbicides in amphibians, reptiles, fish and many 
other organisms continue to elucidate the fact that we are still discovering the extent to 
which populations can be affected by the current use of pesticides [14–18]. 

Therefore, the goal of this chapter is to discuss the methodologies and results of experiments 
and field surveys that analyze the effects of pesticides, primarily on aquatic communities 
and especially in fish. 

4. Biomarkers 

In ecotoxicology, there are many levels of response that can be evaluated. 

The presence of a pesticide or other xenobiotic compounds in a portion of the aquatic 
environment does not, by itself, indicate a deleterious effect. Connections must be 
established between external levels of exposure, internal levels of tissue contamination and 
early adverse effects. The evaluation of these adverse effects—particularly if it is based upon 
only one level of response—can be affected by the ability of various pollutants [and their 
derivatives] to mutually affect toxicity, or even to act synergistically [19]. 

Deleterious effects on populations are often difficult to detect in feral organisms because 
many of these effects tend to be made manifest only after longer periods of time. When the 
effect finally becomes clear, the destructive process may have gone beyond the point where 
it could be reversed by remedial actions or risk reduction. In these sceneries the importance 
of early-warning signals, or biomarkers, that detect adverse biological responses towards 
anthropogenic environmental toxins become critical. A biomarker is any biological response 
to a chemical agent present in the environment that can be measured in the organism [or in 
its cells], in its metabolic products [urine, feces], or in hair, feathers, etc., that is indicative of 
some deviation in the standard pattern found in non affected organisms [20]. 

Pollutant stress generally triggers a cascade of biological responses, each of which may, in 
theory serve as a biomarker [21]. In the established reference response levels [22][Figure 3], 
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biomarkers evaluate the precocious responses to pollutants. The responses in higher 
hierarchical levels are late response measures, frequently when the entire environment is 
already impacted. Biomarkers are important because they give us much more information 
on the biological effects of a certain pollutant than simply its quantification. Moreover, by 
the use of multiple biomarkers important information can be obtained. Biomarkers can be 
used after trophic, environmental, or occupational exposure, to elucidate the relation of 
cause-effect and dose-effect in health risk assessment, and in clinical diagnoses and for 
monitoring purposes [19]. 

 
Figure 3. Schematic representation of the sequential order of responses to pollutant stress within a 
biological system. Modified from [22]. 

In developing a better understanding of the toxicity of contaminants, two kinds of studies 
can be carried out: bioassays, which are laboratory experiments, or biomonitoring, with direct 
field surveys. Although bioassays generate complementary data, it is important to note that 
experimental conditions do not always entirely reflect the natural environment [23]. 

On the other hand, we should not confound the term biomarker with bioindicator. A 
bioindicator is defined as an organism whose presence or absence, behavior, or some other 
characteristic gives information on the environmental conditions of its habitat. Fish species 
have attracted considerable interest as bioindicators in studies assessing the biological and 
biochemical responses to environmental contaminants. Fish can be found virtually 
everywhere in the aquatic environment and they play a major ecological role in the aquatic 
food-web because of their function as carriers of energy from lower to higher trophic levels 
[24]. Well like mammals, fish can suffer bioaccumulation, and have the advantage as 
bioindicators because they can respond to mutagenic agents in low concentrations by 
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activating the P450 cytochrome enzymatic system, a system of monoxigenase enzymes with 
a heme group and different specificities per substrate. These enzymes play a fundamental 
role in the metabolism of xenobiotic substances and of endogen compounds [25]. 

Genetic, biochemical, and histopathological biomarkers are among the most common 
biomarkers in ecotoxicological studies with fish. 

4.1. Genetic biomarkers 

Genetic biomarkers evaluate the most precocious level of response: at the molecular level. 
DNA is a molecule that contains all the necessary information for the survival and 
perpetuation of an organism [26]. The exposure of an organism to genotoxic substances can 
lead to a sequence of events [27] that affect higher levels of response. Genetic ecotoxicology 
can be defined as the study of pollutant-induced changes in the genetic material of biota in 
nature and has two components: first, initially, the genotoxicity of pollutants, such as 
structural alterations in the DNA, and second, consequently, the procession and expression 
of DNA damage in mutant gene products, resulting in long-term heritable effects, such as 
changes in gene frequency within exposed populations, mutational events, etc. [28]. 

Many biomarkers have been used as tools for exposure detection and for the evaluation of 
the effects of genotoxic pollution. These biomarkers consist of tests such as the evaluation of 
chromosomal abnormalities, DNA adducts and breaks, the measurement of micronucleus 
frequency and other chromosomal anomalies, and the Comet Assay [29]. Here we will 
discuss surveys that used the Piscine Micronucleus Test [in conjunction with nuclear 
morphological alterations] and the Comet Assay. 

Among many mutagenicity assays, piscine micronucleus and nuclear morphological 
alterations test [Figure 4] has been applied successfully because it is simple, safe, sensitive 
and it does not depend on the karyotypic characteristic of the study animal [30].  This last 
point is important because most fish have a relatively large number of small chromosomes, 
which are hard to visualize [31]. When fish erythrocytes are used there is also no excessive 
time consumption or animal suffering. Thus the micronucleus test in fish erythrocytes has 
been shown to be a promising technique in the investigation of environmentally-caused 
mutagenesis [32]. 

Micronuclei are small cytoplasmic chromatin masses present outside of the main nucleus of 
the cells that can originate from a chromosomal break as well as from a dysfunction in the 
mitotic spindle apparatus [33]. They are whole or partial chromosomes that were 
incorporated inside the nucleus of the daughter cell during cellular division and appear 
with a small dark round structure identical in appearance to the cellular nucleus [29]. 
Although there is a measurable basal level of spontaneous formation of micronuclei in most 
fish species [32], broad scale exposure to environmentally-relevant levels of clastogenic 
compounds in the laboratory [29,34,35] has been shown to elevate the frequency of 
micronuclei. 
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Figure 4. Photos of a micronucleus and nuclear morphological alterations found in erythrocytes of 
neotropical fish Astyanax altiparanae. The first cell represents a normal nucleus, the second cell has a 
micronucleus and all other cells show nuclear morphological alterations. 

In addition to the presence of micronuclei, nuclear morphological alterations can also occur, 
such as when the nucleus does not show a regular oval shape, but has a projection or an 
invagination of chromatin. In reference [36], they showed that these alterations are induced 
by well known genotoxic compounds, even when the micronucleus has not been formed. It 
is believed that these nuclear anomalies are due to problems with the nuclear lamina, 
because this structure confers the regular oval shape and stability on the nucleus [37]. 

Tests that directly evaluate breaks in DNA strands or chain alterations followed by DNA 
damage are commonly used to analyze the genotoxic impact in aquatic animals [38]. The 
Single Cell Gel Electrophoresis [SCGE], or Comet Assay, was firstly applied in ecotoxicology 
fifteen years ago, and has become one of the most popular tests for the detection of strand 
breaks in aquatic animals under in vitro, in vivo and in situ exposure [39]. 

The Comet Assay is a rapid, quantitative technique in which visual evidence of DNA 
damage in karyotic cells can be measured [Figure 5]. It is based on the quantification of 
denaturized DNA fragments that migrate out of the cell nucleus during electrophoresis. 
This method has been broadly used in many areas, including biomonitoring, genotoxicity, 
ecological monitoring, and also as a tool for DNA damage research or reparation in many 
kinds of cells in response to a variety of DNA-damaging agents [40]. 

There are many advantages to the Comet Assay: [a] genotoxic damage is detected at the 
individual cell level; [b] most eukaryotic organisms can be used in the Comet Assay; [c] a 
small number of cells is required; [d] it is usually easier to perform and more sensitive than 
other methods for the evaluation of strand breaks; [e] DNA strand breaks form quickly after 
a genotoxic exposure, so the essay provides an early evaluation of biota’s response [38]. 
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The Comet Assay is usually done with erythrocytes because they are easily obtained 
through non-destructive methods and do not require the additional cellular isolation step. 
However, other tissues have also been tested for the genotoxic effects of contaminants 
because genotoxic effects can be tissue-specific [41]. 

 
Figure 5. Pictures of five different damage rates in the Comet Essay through an immersion lens. a. zero 
damage; b. damage one; c. damage two; d. damage three; e. damage four [possibly in apoptosis]. 
Source: the author [2009]. 

4.2. Biochemical biomarkers 

According to the Central Dogma of Molecular Biology [DNA mRNAprotein], DNA is 
indirectly responsible for protein production [26]. Therefore, DNA alterations can lead to 
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damage in proteins [and the resulting enzymes]. These alterations can be quantified through 
biochemical biomarkers. 

The most sensitive biomarkers are usually changes in the level and activity of 
biotransformation enzymes. Biotransformation is the conversion, catalyzed by enzymes, of a 
xenobiotic compound into a more water-soluble form, facilitating its excretion [19]. The 
enzymes responsible for biotransformation reactions are found throughout an organism 
[blood, kidneys, lungs, skin, nervous tissue, small intestine, and liver], but the liver is 
undoubtedly the organ in which they are most concentrated [42]. The biochemical 
biomarkers to be highlighted in this chapter are the activities of  GST [Glutathione S-
transferase], CAT [Catalase], lipoperoxidation [LPO], and Acetylcholinesterase [AchE]. 

The enzyme Glutathione S-transferase [GST] belongs to phase II of metabolism, and is 
responsible for the conjugation of electrophilic components or those that come from phase I 
with GST. The conjugation reaction started by GST is important to cells because it acts in the 
hydrolysis of lipophilic substances, which can then be excreted as inert substances in the 
organism. This super family of enzymes occurs in prokaryotes, plants, mollusks, 
crustaceans, insects, amphibians, reptiles, fish, and mammals [19]. 

Catalases are intra-cellular enzymes located in the peroxisomes that facilitate the removal of 
hydrogen peroxide, which is transformed into molecular oxygen and water [43]. Catalases 
are also cited as detoxication enzymes on some substrates, such as phenols, alcohols, formic 
acid and formaldehyde [44,45]. 

The lipid peroxidation or oxidation of polyunsaturated fatty acids is a regular physiological 
process that is important in cellular maturation [46–48] and lipid mobilization [49,50]. Some 
classes of contaminants, however, can have detrimental effects on this process [51,52] and 
can lead to damage in cellular function [52,53] and malfunction of cellular membranes and 
essential organelles, in addition to potentially affecting transporting processes, metabolites 
and ion gradient maintenance, and receptor-mediated signals transduction [54], with 
subsequent structural modification of the lipoproteinic complexes in cellular membranes 
[55,56]. 

Lipoperoxidation has been used successfully as a xenobiotic-induced oxidative stress 
measurement in organisms exposed in vivo to myriad chemicals such as metals [iron, 
cadmium, mercury and lead], paraquat, malathion, deltamethrin, and glyphosate [19,57–61]. 

The term cholinesterase [AChE] usually refers to the sum of the activities of pseudo-
cholinesterase, or butirilcholinesterase, and acetylcholinesterase, or real cholinesterase, both 
of which are present in muscles [62]. The measurement of the AChE activity is often used to 
diagnose the exposure to anticholinesterasic toxins in fish, and can be considered one of the 
most ancient biomarkers [62,63]. Some authors [19] indicate that fish exposed to pesticides 
can show a reduction in acetylcholinesterase activity that is proportional to concentration 
and exposure time. The enzymatic measurement of cholinesterase allow the detection of 
sub-lethal toxicological effects, mainly of organophosphate compounds and carbamates, 
even without the presence of clinical symptoms. 



 
Pesticides – Advances in Chemical and Botanical Pesticides 368 

4.3. Histophatological biomarkers 

We can also observe damage in higher, cellular and tissue, response levels, which are 
detected through histopathological techniques. Morphological techniques such as light 
microscopy have been used in toxicology because they allow an evaluation of the possible 
effects of xenobiotics on target organs and tissues. According to [64], the effects in cell and 
tissue structure are important parameters to be considered in the evaluation of the potential 
toxicity of contaminants in living organisms. 

Some authors [65] report that, through morphology, it is possible to reveal the most-affected 
target organs as well as to detect an organism’s sensitivity to the toxicity level of the 
compounds to which it was exposed. Histopathology also permits the differentiation of 
injuries promulgated by disease from those caused by environmental factors, such as the 
exposure to pollutants [66]. 

The advantage of histopathology as a biomarker lies in its use at intermediate levels of 
biological organization. Histological changes appear as a medium-term response to sub-
lethal stressors, and histology provides a rapid method for detecting effects from xenobiotic 
compounds, especially chronic ones, in various tissues and organs [67]. For example, fish 
exposure to chemical contaminants is likely to induce a number of lesions in different 
organs [68,69]. Gills [70],  kidneys [71,72], liver [73,74] and skin [75] are suitable organs for 
histological examination in order to determine the effect of pollution. 

The article  [67] propose an index of histopathological tests for any given organ, which leads 
to standardized quantification and allows legitimate comparison between different studies 
and, with restrictions, between different organs. This tool leads to a better understanding of 
the significance of histological findings after exposure to contamination. 

Certain organs are the primary markers for aquatic pollution. For example, gills and skin 
have large surfaces that are in direct and permanent contact with potential irritants, and 
both have mucous cells. The liver plays a key role in metabolism and subsequent excretion 
of xenobiotics and is also the site of vitellogene production. The kidneys are very important 
for maintenance of a stable internal environment with respect to water and salt, excretion, 
and partially for the metabolism of xenobiotics [67]. 

5. Relationship between biomarkers and pesticide exposure in fishes 

Every week, new articles are published showing the detrimental effects of many pesticides. 
These effects can be seen at all response levels: molecular, cellular, histological, individual, 
or even at higher ecological levels such as population, community, or ecosystem. 

It is important to evaluate the effect of pesticides at lower response levels for the purposes of 
early damage detection, before they affect higher levels and decimate an entire community 
or ecosystem. Hence, we will focus on lower level responses at the molecular, cellular and 
histological level. 
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Mutagenic chemicals have a high probability of inducing carcinogenic effects in various fish 
species. A majority of these chemicals have been found to cause tumors at specific or 
multiple sites in fish [76]. Herbicides and pesticides comprise a large group of mutagenic 
chemicals, but information on herbicidal genotoxicity is lacking. Penthachlorophenol [PCP] 
and 2,4-dichlorophenoxyacetic acid [2,4-D] are chlorinated phenols widely used in 
agriculture. Chlorinated phenols in general are noted for exhibiting strong biological effects.  
For example, 2,4-dinitrophenol decouples oxidative phosphorylation; intervening in the 
oxidative pathways of metabolism. A clinical manifestation of this effect is the very rapid 
onset of rigor mortis in victims of pentachlorophenol poisoning [77]. Another study with 
humans revealed a significant increase in chromosomal abnormalities observed in the 
lymphocytes of workers exposed to PCP, leading to possible carcinogenic effects [78]. [79] 
surveyed the mutagenic effect of these two pesticides [PCP and 2,4-D] in the fish Channa 

punctatus. Using the Piscine Micronucleus Test [PMT], which evaluates the rate of 
permanent DNA damage, they observed that an increase in the dose and exposure time to 
both pesticides increased the rate of mutation in fish erythrocytes. In this work, they 
concluded that PCB was more toxic than 2,4-D in terms of Micronucleus  induction. 

The same fish species was used to evaluate the acute genotoxic effect of the insecticide 
Endosulfan [80]. Endosulfan is one of the most abundant organochlorine pesticides in the 
global atmosphere and is capable of undergoing long range transport to remote locations 
such as the Arctic [81].  Using the Comet Assay with liver and gill tissue, the authors 
observed a dose-dependent response; that is the higher the dose, the higher the rate of DNA 
breakdown in C. punctatus. In this case, there is evidence that gill cells are more sensitive 
than hepatic ones. 

We reported on the case of an accidental spill of about 8000 liters of endosulfan in Paraıba 
do Sul River in the state of Rio de Janeiro State [Brazil], in November 2008 [7]. In this study, 
we analyzed the fish Pimelodus maculatus before [dry season] and after [rainy season] the 
spill in two affected drinking water reservoirs [Ilha dos Pombos and Santa Cecília] and in 
one that was unaffected [Santa Branca] These reservoirs are destined for human water 
provision. Fish from the Ilha dos Pombos reservoir [rainy season] that had been affected by 
the endosulfan spill showed several histopathological alterations in the gills and liver. Gill 
alteration index was similar in the fish from the three reservoirs in the dry season, but 
increased in the affected reservoirs during the rainy season, probably due to the endosulfan 
spill that occurred two months before this sampling. Figures 6 and 7 show the alterations 
found in the Paraíba do Sul River fishes. With regard to biochemical biomarkers, 
Cholinesterase activity in axial muscle was higher in P. maculatus from Ilha dos Pombos 
[33X] and Santa Branca reservoirs [11X] during the rainy season sampling after the 
endosulfan spill. Although we do not have normal values for acetylcholinesterase activity in 
this fish species, based on studies with other fish species the activity in the muscle showed a 
decrease in the dry season in all the reservoirs. Several pollutants such as 
organophosphates, carbamates [82], metals [83], hydrocarbons, and endosulfan [84] can 
decrease cholinesterase activity through inhibition or reduced expression, although an 
increase in activity has also been reported for fish muscle [85]. 
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A similar study to [7] was also carried out in polluted and unpolluted areas in Estuarine 
Lakes at Santa Catarina Coast in southern Brazil, using the bioindicator fish Geophagus 

brasiliensis [86]. Estuaries are important sinks of pollutants derived from anthropogenic 
activities. The lakes in Santa Catarina are of great economic importance to the surrounding 
areas, enabling cultivation of rice crops and pig farming by various irrigation and drainage 
channels, as well as providing fish and shrimp to support ~10,000 artisanal fishermen. The 
results showed that both studied lakes are impacted by potential genotoxic substances. 
Severe lesions in the livers of G. brasiliensis were also observed. The inhibition of 
acetylcholinesterase activity suggested the presence of pesticides or metals in the study sites. 
The presence of large areas of rice crops around Santa Marta Lake [one of the studied lakes] 
may provide an explanation for the occurrence of substances with neurotoxic potential in 
the lakes. Three pesticides widely used on rice crops in southern Brazil [Clomazone, 
Quinclorac and Metsulfuron-methyl] have been shown to inhibit AChE activity in another 
species of fish, Rhamdia quelen [87]. The inhibition of AChE activity in fish can have adverse 
consequences for the animal itself, mainly by affecting its swimming ability and therefore its 
ability to find food and escape from predators [88]. 

 
Figure 6. Histopathological findings from the liver of Pimelodus maculatus in Paraıba do Sul River. [A] 
Normal tissue. Arrows show vessels. [B] The presence of pancreatic tissue [large arrow] and the high 
incidence of melanomacrophage centers [small arrows]. [C] Occurrence of differentiated tissue [small 
arrows]. [D] Arrows show leukocyte infiltration. [E] Large necrosis area [arrows]. [F] Arrows show a 
large differentiated area of tissue. Scale bar=100 mm. Font: [7] 
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Figure 7. Gills of Pimelodus maculatus from Paraíba do Sul River. A and B: Normal aspect of gills 
showing primary [small arrows] and secondary lamellas [large arrows]. Scale bar = 50 and 100μm 
respectively. C and D:  arrows: fusion among secondary lamellas. Scale bar = 20 and 50μm respectively. 
E and F:  neoplasia. Scale bar = 20 and 100μm. G and H: arrow= ectoparasite. Scale bar = 50 and 10μm. I: 
Observe the epithelial cells alterations [arrows]. Scale bar = 10μm. Font: [7]. 
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Another field study compared two areas in southern California with records of chlorinated 
hydrocarbon [DDTs and PCBs] contamination to one less contaminated site. The frequency 
of micronuclei in circulating erythrocytes of two sea fishes was much higher in the 
contaminated areas. The DNA damage rate was up to four times lower in the 
uncontaminated site [89]. Organochlorine compounds such as in the DDT family, used as 
pesticides in agriculture, and polychlorinated biphenyls or PCB, which are important 
industrial chemicals and are used as non-flammable oils in many commercial products, are 
extremely persistent and difficult to degrade. Despite the fact that these compounds have 
been forbidden in many developed countries and their worldwide production and use have 
drastically decreased in recent years [90], at present they are widespread and have become 
ubiquitous contaminants of natural systems. PCBs are currently the most abundant 
chlorinated aromatic contaminants in the environment. 

It was not until after DDT use had become widespread that the impacts of pesticides started 
to gain world’s attention and an environmental revolution began. This happened in 1962, 
with the release of the famous book Silent Spring, by Rachel Carson [91]. She described the 
process know as biomagnification, through which DDT and other organochlorine 
insecticides become more concentrated in higher levels of the food chain, being detected in 
the breast milk of women around the world and in the fatty tissues of Eskimos, inhabitants 
of isolated lands in Arctic. DDT is responsible for making bird’s egg shells thinner, 
particularly in birds of prey; this compound nearly drove the Peregrine falcon to extinction. 
DDT blocks calcium absorption, which makes the eggs easily broken and interrupts 
incubation, consequently undermining reproduction. 

Currently, the pesticides with the highest sales rates worldwide are those based on 
glyphosate. Their sales have risen 20% a year, mainly due to the advent of biotechnology, 
which has provided plants that are resistant to this herbicide. Described by the 
manufacturers as pesticides low in toxicity and with good environmental compatibility, the 
glyphosate-based herbicides can seem like a silver bullet to those dealing with unwanted 
vegetation. However, there is public interest in the ecological, safety, and health concerns 
that may arise through the use of products from transgenic harvests [92]. 

There is some literature on the undesirable effects of glyphosate. Laboratory studies have 
detected adverse effects in every toxicological test category: medium-term toxicity [salivary 
gland lesions], long-term toxicity [inflammations of the mucous membranes of the stomach], 
genetic damage [human blood cells], reproductive effects [reduction in the number of 
spermatozoa in mice; higher frequency of abnormal spermatozoa in rabbits], and 
carcinogenicity [higher frequency of liver tumors in male mice and thyroid cancer in female 
mice] [93]. 

The author [94] cites many positive results for the mutagenicity of glyphosate for a variety 
of test systems [e.g. Salmonella typhimurium – reverse mutation test, Drosophila melanogaster - 
induced sex-related lethal recessive mutations, and chromosomal aberrations in Allium cepa 
and cultures of human lymphocytes]. 
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The most popular commercial product based on glyphosate is Roundup®. Its active 
ingredient is the 48% acid equivalent of the isopropylamine salt of N-[phosphonomethyl] 
glycine [C3H8NO5P; Monsanto Agricultural Co, St. Louis, MO, USA]. Roundup is a broad-
spectrum, nonselective, postemergent herbicide that is used to kill unwanted plants in a 
wide variety of agricultural, lawn and garden, aquatic, and forestry situations. Despite its 
long and extensive use, the ecotoxicological data for Roundup are scarce. 

A study by [95] evaluated the genotoxic potential of Roundup® in blood cells of the 
European eel [Anguilla anguilla]. In a bioassay, they subjected the fish to realistic exposure 
concentrations of 58 and 116 μg/L for 1-3 days, and also addressed the possible association 
with oxidative stress. Comet and erythrocytes’ nuclear abnormalities assays were used as 
genotoxic end points, reflecting different types of genetic damage. The authors showed 
higher rates of DNA damage in the contaminated fish than in the control group after 3 days 
of exposure [the same result was obtained in the Piscine MicronucleusTest]. The biochemical 
markers were assessed through enzymatic [catalase, glutathione-S-transferase, glutathione 
peroxidase and glutathione reductase] and non-enzymatic [total glutathione content] 
antioxidants, as well as by lipid peroxidation [LPO] measurements. Antioxidant defenses 
were unresponsive to Roundup. LPO levels increased only for the high concentration after 
the first day of exposure, indicating that oxidative stress in blood caused by this 
agrochemical was not severe. Overall results suggested that both DNA damaging effects 
induced by Roundup are not directly related with an increased pro-oxidant state. 

Another study [96] showed different results. These authors evaluated the effects of 
Roundup Transorb® [RDT] on the Neotropical fish Prochilodus lineatus. Juvenile fish were 
acutely exposed [6, 24 and 96 h] to 1 mg/L of RDT, 5 mg/L of RDT, or only water [control]. 
They performed antioxidant analysis in the liver and acetylcholinesterase [AChE] 
determination in brain and muscle. After 6 h of exposure fish showed a transient reduction 
in superoxide dismutase and catalase activity. RDT also inhibited glutathione-S-transferase 
after 6 and 24 h of exposure. The reduction in these enzymes is probably related to the 
occurrence of lipid peroxidation [LPO] in fish exposed to the herbicide for 6 h. LPO returned 
to control levels after 24 and 96 h exposure to RDT, when fish showed an increased activity 
of glutathione peroxidase. The content of reduced glutathione also increased after 96 h 
exposure. Thus, after 24 and 96 h the antioxidant defenses were apparently enough to 
combat ROS, preventing the occurrence of oxidative damage. The exposure to RDT for 96 h 
led to an inhibition of AChE in brain and muscle at rates, which may not be considered a 
life-threatening situation. 

The contradictory results of these studies warrant closer inspection. First, the concentration 
used in [96] was up to 86 times higher than the one used by [95]. Some studies show that 
biomarker responses are dose-dependent [19]. Second, the sensitivity of the fish must be 
taken into account. Not all fish have the same response to the same contaminant. The 
exposure time to the contaminant is also a factor that can be responsible for the differences 
in the results. Finally, the products used had different commercial names and different 
surfactants in their composition. Virtually all pesticides have other ingredients other than 
the active one, which actually has the exterminating action. Such ingredients are mistakenly 
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called inert. Their purpose is to facilitate the use of the product or to make it more efficient. 
Usually the inert compounds are not identified in the pesticide’s label. In the case of 
glyphosate-based products, many “inert” ingredients were identified [93]. Differences in the 
test-organisms’ responses to glyphosate and to Roundup, its commercial formula, can be 
attributed to the toxicity of different compounds and surfactants in the commercial formula. 
Research has revealed that Roundup can be up to 30 times more toxic to fish than the pure 
glyphosate, due to the so-called inert compounds in the formula [94]. 

Some studies report pathological damage in fish exposed to glyphosate. The author [97] 
exposed Oreochromis niloticus to sub-lethal concentrations [5 and 15 mg/L] of Roundup for 3 
months, and the organs exhibited varying degrees of histopathological change. In the gills, 
filament cell proliferation, lamellar cell hyperplasia, lamellar fusion, epithelial lifting, and 
aneurysm were observed. In the liver, vacuolation of hepatocytes and nuclear pyknosis 
occurred. Kidney lesions consisted of dilation of Bowman’s space and accumulation of 
hyaline droplets in the tubular epithelial cells. The results indicated that long-term exposure 
to glyphosate at sub-lethal concentrations had adverse effects stemming from 
histopathological and biochemical alterations in the fish. [98] has exposed Cyprinus carpio to 
immersion in Roundup [205 mg of glyphosate/L and 410 mg of glyphosate/L] in 
concentrations of 40 to 20-fold lower than those used in practice. Electron microscopy 
revealed that Roundup caused appearance of myelin-like structures in carp hepatocytes, 
swelling of mitochondria and disappearance of the internal mitochondrial membrane at 
both exposure doses. In this case, both studies, even though with different concentrations 
and species, confirmed that glyphosate can cause damages to fish tissues. 

A study with the neotropical fish Corydoras paleatus contaminated with 3.20 μg/L glyphosate 
[6.67 μg/L Roundup®] showed that this pesticide might have genotoxic effects even at very 
small concentrations [99]. In this work, we performed PMT and Comet Assays with blood 
and liver cells, after the fish had been exposed to herbicide for 3, 6 and 9 d. A similar study 
[100], evaluated the sublethal effects of Roundup on the fish Astyanax sp. for 4 days. They 
tested two concentrations of Roundup: 3 μL/L and 6 μL/L.  The PMT outcome was that only 
the highest dose showed any difference in response compared to the control group. Both 
works used the same commercial product, tested similar doses, and had similar responses, 
even though they were conducted with different fish. 

The study [101] observed that Roundup® could affect cellular function [e.g., DNA] and that 
Roundup® and several glyphosate-based products interfered with cell-cycle regulation. In 
this work, the dose-response curves of the formulation products indicated a threshold for 
cell cycle induction even at very small concentrations, in agreement with other studies cited 
above. Failure in the cell cycle checkpoints leads to genomic instability and subsequent 
development of cancers from the affected cell [102,103]. Several lines of evidence have 
shown the highly conserved molecular basis of the cell cycle, from simple unicellular 
eucaryotes such as yeast to complex metazoans such as fishes or humans [104]. 

As discussed in the first pages of this chapter, a substance is considered harmful when it 
is detected in the environment at a higher concentration than it would normally occur. But 
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what is the normal level for each substance? For many synthetic organic chemicals, such 
as pesticides, the answer is quite simple – no detectable level is normal because these 
compounds do not exist in the nature unless they are introduced by humans [8]. 
However, considering the current worldwide dependence on pesticides, it is impossible to 
avoid their entering natural environments, reaching animals, contaminating our food 
supplies and drinking water, etc. For this reason, countries try to establish a maximum 
tolerance limit for each pesticide in each component of the environment. One of the 
lowest limits is the one established by the European Union legislation, which is 0.10 μg/L 
[or 0.0001 mg/L] for all pesticides [individually] in water designated for human 
consumption [105]. Many studies have shown that this limit is safe [106]. In Brazil, 
Ministry of Health law 518 establishes the limits of some agrochemicals in drinking water, 
such as atrazine [0.002 mg/L or 2 μg/L], 2,4 D [0.03 mg/L], DDT [0.002 mg/L], Endosulfan 
[0.02 mg/L] and glyphosate [0.5 mg/L][107]. 

In 1974, the US Congress passed the Safe Drinking Water Act. This law requires the US 
Environmental Protection Agency [EPA] to determine the level of contaminants in 
drinking water at which no adverse health effects are likely to occur. These non-
enforceable health goals, based solely on possible health risks and exposure over a 
lifetime with an adequate factor of safety, are called maximum contaminant level goals 
[MCLG]. Maximum contaminant levels [MCLs] are set as close to the health goals as 
possible, considering costs, benefits, and the ability of public water systems to detect and 
remove contaminants using suitable treatment technologies. The MCLG for glyphosate is 
0.7 mg/L, or 700 ppb. EPA has set an enforceable MCL regulation for glyphosate at 0.7 
mg/L, or 700 ppb. The MCLG for 2,4-D is 0.07 mg/L, or 70 ppb. For atrazine, the MCLG is 
0.003mg/L; and for PCBs [Polychlorinated biphenyls] the MCLG is zero, and the MCL is 
0.0005mg/L [108]. 

Canada has the Guidelines for Canadian Drinking Water Quality, which are intended to 
protect freshwater and marine life from anthropogenic stressors such as chemical inputs or 
changes in physical components. In this, the Maximum Acceptable Concentration [MAC] for 
atrazine and its metabolites is 0.005 mg/L; for 2,4-D is 0.1 mg/L, and for glyphosate the MAC 
is 0.28 mg/L [109]. 

6. Conclusions 

In this chapter, we make explanations about some pesticides, and the effects of these on 
fishes, in field or laboratory assays. In addition to the pesticides cited above, many others 
are spread daily in the environment. However, little is known about the individual or 
synergistic effects that these products may have at the various levels of biological systems 
[in the short or long run]. Thus, many efforts have been made to explore to the deleterious 
effects of pesticides on non-target species, but there is still a lot to be done. These efforts are 
of great importance in understanding the impacts of pesticides in organisms and in the 
environment as well as in establishing of safe limits on the use of these products in the 
environment. 
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