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1. Introduction

In last years has been a growing interest of researchers on theory and applications of switched
control systems, widely used in the area of power electronics (Cardim et al., 2009), (Deaecto
et al., 2010), (Yoshimura et al., 2011), (Batlle et al., 1996), (Mazumder et al., 2002), (He et al.,
2010) and (Cardim et al., 2011). The switched systems are characterized by having a switching
rule which selects, at each instant of time, a dynamic subsystem among a determined number
of available subsystems (Liberzon, 2003). In general, the main goal is to design a switching
strategy of control for the asymptotic stability of a known equilibrium point, with adequate
assurance of performance (Decarlo et al., 2000), (Sun & Ge, 2005) and (Liberzon & Morse,
1999). The techniques commonly used to study this class of systems consist of choosing an
appropriate Lyapunov function, for instance, the quadratic (Feron, 1996), (Ji et al., 2005) and
(Skafidas et al., 1999). However, in switched affine systems, it is possible that the modes
do not share a common point of equilibrium. Therefore, sometimes the concept of stability
should be extended using the ideas contained in (Bolzern & Spinelli, 2004) and (Xu et al.,
2008). Problems involving stability analysis can many times be reduced to problems described
by Linear Matrix Inequalities, also known as LMIs (Boyd et al., 1994) that, when feasible, are
easily solved by some tools available in the literature of convex programming (Gahinet et al.,
1995) and (Peaucelle et al., 2002). The LMIs have been increasingly used to solve various types
of control problems (Faria et al., 2009), (Teixeira et al., 2003) and (Teixeira et al., 2006). This
paper is structured as follows: first, a review of previous results in the literature for stability
of switched affine systems with applications in power electronics is described (Deaecto et al.,
2010). Next, the main goal of this paper is presented: a new theorem, which conditions hold
when the conditions of the two theorems proposed in (Deaecto et al., 2010) hold. Later, in
order to obtain a design procedure more general than those available in the literature (Deaecto
et al., 2010), it was considered a new performance indice for this control system: bounds on
output peak in the project based on LMIs. The theory developed in this paper is applied to
DC-DC converters: Buck, Boost, Buck-Boost and Sepic. It is also the first time that this class
of controller is used for controlling a Sepic DC-DC converter. The notation used is described
below. For real matrices or vectors (′) indicates transpose. The set composed by the first N
positive integers, 1, ..., N is denoted by IK. The set of all vectors λ = (λ1, . . . , λN)′ such that
λi ≥ 0, i = 1, 2, . . . , N and λ1 + λ2 + . . . + λN = 1 is denoted by Λ. The convex combination
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of a set of matrices (A1, . . . , AN) is denoted by Aλ =
N

∑
i=1

λi Ai, where λ ∈ Λ. The trace of a

matrix P is denoted by Tr(P).

2. Switched affine systems

Consider the switched affine system defined by the following state space realization:

ẋ = Aσ(t)x + Bσ(t)w, x(0) = x0 (1)

y = Cσ(t)x, (2)

as presented in (Deaecto et al., 2010), were x(t) ∈ IRn is the state vector, y(t) ∈ IRp is the
controlled output, w ∈ IRm is the input supposed to be constant for all t ≥ 0 and σ(t): t ≥ 0
→ IK is the switching rule. For a known set of matrices Ai ∈ IRn×n, Bi ∈ IRn×m and Ci ∈ IRp,
i = 1, . . . , N, such that:

Aσ(t) ∈ {A1, A2, . . . , AN} , (3)

Bσ(t) ∈ {B1, B2, . . . , BN} , (4)

Cσ(t) ∈ {C1, C2, . . . , CN} , (5)

the switching rule σ(t) selects at each instant of time t ≥ 0, a known subsystem among the
N subsystems available. The control design problem is to determine a function σ(x(t)), for
all t ≥ 0, such that the switching rule σ(t), makes a known equilibrium point x = xr of (1),
(2) globally asymptotically stable and the controlled system satisfies a performance index, for
instance, a guaranteed cost. The paper (Deaecto et al., 2010) proposed two solutions for these
problems, considering a quadratic Lyapunov function and the guaranteed cost:

min
σ∈IK

∫ ∞

0
(y − Cσxr)

′(y − Cσxr)dt = min
σ∈IK

∫ ∞

0
(x − xr)

′Qσ(x − xr)dt, (6)

where Qσ = C′
σCσ ≥ 0 for all σ ∈ IK.

2.1 Previous results

Theorem 1. (Deaecto et al., 2010) Consider the switched affine system (1), (2) with constant input
w(t) = w for all t ≥ 0 and let the equilibrium point xr ∈ IRn be given. If there exist λ ∈ Λ and a
symmetric positive definite matrix P ∈ IRn×n such that

A′
λP + PAλ + Qλ < 0, (7)

Aλxr + Bλw = 0, (8)

then the switching strategy

σ(x) = arg min
i∈IK

ξ ′(Qiξ + 2P(Aix + Biw)), (9)

where Qi = C′
i Ci and ξ = x − xr, makes the equilibrium point xr ∈ IRn globally asymptotically stable

and from (6) the guaranteed cost

J =
∫ ∞

0
(y − Cσxr)

′(y − Cσxr)dt < (x0 − xr)
′P(x0 − xr), (10)

holds.
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Proof. See (Deaecto et al., 2010).

Remembering that similar matrices have the same trace, it follows the minimization problem
(Deaecto et al., 2010):

inf
P>0

{

Tr(P) : A′
λP + PAλ + Qλ < 0, λ ∈ Λ

}

. (11)

The next theorem provides another strategy of switching, more conservative, but easier and
simpler to implement.

Theorem 2. (Deaecto et al., 2010) Consider the switched affine system (1), (2) with constant input
w(t) = w for all t ≥ 0 and let the equilibrium point xr ∈ IRn be given. If there exist λ ∈ Λ, and a
symmetric positive definite matrix P ∈ IRn×n such that

A′
iP + PAi + Qi < 0, (12)

Aλxr + Bλw = 0, (13)

for all i ∈ IK, then the switching strategy

σ(x) = arg min
i∈IK

ξ ′P(Aixr + Biw), (14)

where ξ = x − xr , makes the equilibrium point xr ∈ IRn globally asymptotically stable and the
guaranteed cost (10) holds.

Proof. See (Deaecto et al., 2010).

Theorem 2 gives us the following minimization problem (Deaecto et al., 2010):

inf
P>0

{

Tr(P) : A′
iP + PAi + Qi < 0, i ∈ IK

}

. (15)

Note that (12) is more restrictive than (7), because it must be satisfied for all i ∈ IK. However,
the switching strategy (14) proposed in Theorem 2 is simpler to implement than the strategy
(9) proposed in Theorem 1, because it uses only the product of ξ by constant vectors.

2.2 Main results

The new theorem, proposed in this paper, is presented below.

Theorem 3. Consider the switched affine system (1), (2) with constant input w(t) = w for all t ≥ 0
and let xr ∈ IRn be given. If there exist λ ∈ Λ, symmetric matrices Ni, i ∈ IK and a symmetric positive
definite matrix P ∈ IRn×n such that

A′
iP + PAi + Qi − Ni < 0, (16)

Aλxr + Bλw = 0, (17)

Nλ = 0, (18)

for all i ∈ IK, where Qi = Q′
i, then the switching strategy

σ(x) = arg min
i∈IK

ξ ′
(

Niξ + 2P(Aixr + Biw)
)

, (19)

where ξ = x − xr , makes the equilibrium point xr ∈ IRn globally asymptotically stable and from (10),
the guaranteed cost J < (x0 − xr)′P(x0 − xr) holds.
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Proof. Adopting the quadratic Lyapunov candidate function V(ξ) = ξ ′Pξ and from (1), (16),
(17) and (18) note that for ξ �= 0:

V̇(ξ) = ẋ′Pξ + ξ ′Pẋ = 2ξ ′P(Aσx + Bσw) = ξ ′(A′
σP + PAσ)ξ + 2ξ ′P(Aσxr + Bσw)

< ξ ′(−Qσ + Nσ)ξ + 2ξ ′P(Aσxr + Bσw) = ξ ′(Nσξ + 2P(Aσxr + Bσw))− ξ ′Qσξ

= min
i∈IK

{

ξ ′(Niξ + 2P(Aixr + Biw))
}

− ξ ′Qσξ

= min
λ∈Λ

{

ξ ′(Nλξ + 2P(Aλxr + Bλw))
}

− ξ ′Qσξ

≤ −ξ ′Qσξ ≤ 0. (20)

Since V̇(ξ) < 0 for all ξ �= 0 ∈ IRn, and V̇(0) = 0, then xr ∈ IRn is an equilibrium point globally
asymptotically stable. Now, integrating (20) from zero to infinity and taking into account that
V̇
(

ξ(∞)
)

= 0, we obtain (10). The proof is concluded.

Theorem 3 gives us the following minimization problem:

inf
P>0

{

Tr(P) : A′
iP + PAi + Qi − Ni < 0, Nλ = 0, i ∈ IK

}

. (21)

The next theorem compares the conditions of Theorems 1, 2 and 3.

Theorem 4. The following statements hold:

(i) if the conditions of Theorem 1 are feasible, then the conditions of Theorem 3 are also feasible;

(ii) if the conditions of Theorem 2 are feasible, then the conditions of Theorem 3 are also feasible.

Proof. (i) Consider the symmetric matrices Ni, i ∈ IK, as described below:

Ni = (A′
iP + PAi + Qi)− (A′

λP + PAλ + Qλ). (22)

Then, multiplying (22) by λi and taking the sum from 1 to N it follows that

Nλ =
N

∑
i=1

λi Ni =
N

∑
i=1

λi(A′
iP + PAi + Qi)−

N

∑
i=1

λi(A′
λP + PAλ + Qλ)

= (A′
λP + PAλ + Qλ)− (A′

λP + PAλ + Qλ) = 0. (23)

Now, from (16), (18) and (22) observe that

A′
iP + PAi + Qi − Ni = A′

iP + PAi + Qi −
(

(A′
iP + PAi + Qi)− (A′

λP + PAλ + Qλ)
)

= A′
λP + PAλ + Qλ < 0, ∀i ∈ IK. (24)

(ii) It follows considering that Ni = 0 in (16):

A′
iP + PAi + Qi − Ni = A′

iP + PAi + Qi < 0, ∀i ∈ IK. (25)

Thus, the proof of Theorem 4 is completed.
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2.3 Bounds on output peak

Considering the limitations imposed by practical applications of control systems, often must
be considered constraints in the design. Consider the signal:

s = Hξ, (26)

where H ∈ IRq×n is a known constant matrix, and the following constraint:

max
t≥0

‖s(t)‖ ≤ ψo, (27)

where ‖s(t)‖ =
√

s(t)′s(t) and ψo is a known positive constant, for a given initial condition
ξ(0). In (Boyd et al., 1994), for an arbitrary control law were presented two LMIs for the
specification of these restrictions, supposing that there exists a quadractic Lyapunov function
V(ξ) = ξ ′Pξ, with negative derivative defined for all ξ �= 0. For the particular case, where
s(t) = y(t), with y(t) ∈ IRp defined in (2), is proposed the following lemma:

Lemma 1. For a given constant ψo > 0, if there exist λ ∈ Λ, and a symmetric positive definite matrix
P ∈ IRn×n, solution of the following optimization problem, for all i ∈ IK:

[

P C′
i

Ci ψ2
o In

]

> 0, (28)

[

In ξ(0)′P
Pξ(0) P

]

> 0, (29)

(Set of LMIs), (30)

where (Set o f LMIs) can be equal to (7)-(8), (12)-(13) or (16)-(18) then the equilibrium point ξ =
x − xr = 0 is globally asymptotically stable, the guaranteed cost (10) and the constraint (27) hold.

Proof. It follows from Theorems 1, 2 and the condition for bounds on output peak given in
(Boyd et al., 1994).

The next section presents applications of Theorem 3 in the control design of three DC-DC
converters: Buck, Boost and Buck-Boost.

3. DC-DC converters

Consider that iL(t) denotes the inductor current and Vc(t) the capacitor voltage, that were
adopted as state variables of the system:

x(t) = [x1(t) x2(t)]
′ = [iL(t) Vc(t)]′. (31)

Define the following operating point xr = [x1r x2r ]
′ = [iLr Vcr]′. Consider the DC-DC power

converters: Buck, Boost and Buck-Boost, illustrated in Figures 1, 3 and 5, respectively. The
DC-DC converters operate in continuous conduction mode. For theoretical analysis of DC-DC
converters, no limit is imposed on the switching frequency because the trajectory of the system
evolves on a sliding surface with infinite frequency. Simulation results are presented below.

105On Control Design of Switched Affine Systems with Application to DC-DC Converters



6 Will-be-set-by-IN-TECH

The used solver was the LMILab from the software MATLAB interfaced by YALMIP (Lofberg,
2004) (Yet Another LMI Parser). Consider the following design parameters (Deaecto et al.,
2010): Vg = 100[V], R = 50[Ω], rL = 2[Ω], L = 500[μH], C = 470[μF] and

Qi = Q =

[

ρ1rL 0
0 ρ2/R

]

,

is the performance index matrix associated with the guaranteed cost:

∫ ∞

0
(ρ2R−1(Vc − Vcr)

2 + ρ1rL(iL − iLr)
2dt,

where ρ1 and ρ2 ∈ IR+ are design parameters. Note that ρi ∈ IR+ plays an important role with
regard to the value of peak current and duration of the transient voltage. Adopt ρ1 = 0 and
ρ2 = 1.

3.1 Buck converter

+

-

+

-

L

Vg

S1

S2 C Vc R

rL

iL

Fig. 1. Buck DC-DC converter.

Figure 1 shows the structure of the Buck converter, which allows only output voltage of
magnitude smaller than the input voltage. The converter is modeled with a parasitic resistor
in series with the inductor. The switched system state-space (1) is defined by the following
matrices (Deaecto et al., 2010):

A1 =

[

−rL/L −1/L
1/C −1/RC

]

, A2 =

[

−rL/L −1/L
1/C −1/RC

]

,

B1 =

[

1/L
0

]

, B2 =

[

0
0

]

. (32)

In this example, adopt λ1 = 0.52 and λ2 = 0.48. Using the minimization problems (11)
and (15), corresponding to Theorems 1 and 2, respectively, we obtain the following matrix
quadratic Lyapunov function

P = 1 × 10−4

[

0.0253 0.0476
0.0476 0.1142

]

,
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needed for the implementation of the switching strategies (9) and (14). Maintaining the same
parameters, from minimization problem of Theorem 3, we found the matrices below as a
solution, and from (10) the guaranteed cost J < (x0 − xr)′P(x0 − xr) = 0.029:

P = 1 × 10−4

[

0.0253 0.0476
0.0476 0.1142

]

,

N1 = −1 × 10−6

[

0.2134 0.0693
0.0693 0.0685

]

, N2 = 1 × 10−6

[

0.2312 0.0751
0.0751 0.0742

]

.

The results are illustrated in Figure 2. The initial condition was the origin x = [iL Vc]′ = [0 0]′

and the equilibrium point is equal to xr = [1 50]′.
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Fig. 2. Buck dynamic.

Observe that Theorem 3 presented the same convergence rate and cost by applying Theorems
1 and 2. This effect is due to the fact that for this particular converter, the gradient of the
switching surface does not depend on the equilibrium point (Deaecto et al., 2010). Table 1
presents the obtained results.

Overshoot [A] Time [ms] Cost (6)
Theo. 1 36.5 2 0.029

Theo. 2 36.5 2 0.029

Theo. 3 36.5 2 0.029

Table 1. Buck results.

107On Control Design of Switched Affine Systems with Application to DC-DC Converters



8 Will-be-set-by-IN-TECH

3.2 Boost converter

+

-

+

-

L

Vg

S2

S1 C Vc R

rL

iL

Fig. 3. Boost DC-DC converter.

In order to compare the results from the previous theorems, designs and simulations will be
also done for a DC-DC converter, Boost. The converter is modeled with a parasitic resistor
in series with the inductor. The switched system state-space (1) is defined by the following
matrices (Deaecto et al., 2010):

A1 =

[

−rL/L 0

0 −1/RC

]

, A2 =

[

−rL/L −1/L

1/C −1/RC

]

,

B1 =

[

1/L

0

]

, B2 =

[

1/L

0

]

. (33)

In this example, λ1 = 0.4 and λ2 = 0.6. Using the minimization problems (11) of Theorem 1
and (15) of Theorem 2, the matrices of the quadratic Lyapunov functions are

P = 1 × 10−4

[

0.0237 0.0742

0.0742 0.2573

]

, P = 1 × 10−3

[

0.1450 0.0088

0.0088 0.2478

]

,

respectively. Now, from minimization problem of Theorem 3, we found the matrices below as
a solution, and from (10) the guaranteed cost J < (x0 − xr)

′P(x0 − xr) = 0.59:

P = 1 × 10−4

[

0.0237 0.0742

0.0742 0.2573

]

,

N1 =

[

−0.018 −0.030

−0.030 0.0178

]

, N2 =

[

0.012 0.020

0.020 −0.012

]

.

The initial condition is the origin and the equilibrium point is xr = [5 150]′. The results are
illustrated in Figure 4 and Table 2 presents the obtained results.
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Fig. 4. Boost dynamic.

Overshoot [A] Time [ms] Cost (6)
Theo. 1 36.5 7 0.59

Theo. 2 36.5 40 5.59

Theo. 3 36.5 7 0.59

Table 2. Boost results.
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Fig. 5. Buck-Boost DC-DC converter.
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3.3 Buck-Boost converter

Figure 5 shows the structure of the Buck-Boost converter. The switched system state-space (1)
is defined by the following matrices (Deaecto et al., 2010):

A1 =

[

−rL/L 0
0 −1/RC

]

, A2 =

[

−rL/L −1/L
1/C −1/RC

]

,

B1 =

[

1/L
0

]

, B2 =

[

0
0

]

. (34)

The initial condition was the origin x = [iL Vc]′ = [0 0]′, λ1 = 0.6, λ2 = 0.4 and the
equilibrium point is equal to xr = [6 120]′ . Moreover, the optimal solutions of minimization
problems (11) of Theorem 1 and (15) of Theorem 2, are

P = 1 × 10−4

[

0.0211 0.0989
0.0989 0.4898

]

, P = 1 × 10−3

[

0.1450 0.0088
0.0088 0.2478

]

,

respectively. Maintaining the same parameters, the optimal solution of minimization problem
(21) are the matrices below and from (10) the guaranteed cost J < (x0 − xr)′P(x0 − xr) = 0.72:

P = 1 × 10−4

[

0.0211 0.0990
0.0990 0.4898

]

,

N1 =

[

−0.0168 −0.0400
−0.0400 0.0158

]

, N2 =

[

0.0253 0.0600
0.0600 −0.0237

]

.

The results are illustrated in Figure 6. Table 3 presents the obtained results. The next section

Overshoot [A] Time [ms] Cost (6)

Theo. 1 37.5 10 0.72
Theo. 2 7.5 70 3.59

Theo. 3 37.5 10 0.72

Table 3. Buck-Boost results.

is devoted to extend the theoretical results obtained in Theorems 1 (Deaecto et al., 2010) and 2
(Deaecto et al., 2010) for the model Sepic DC-DC converter.

4. Sepic DC-DC converter

A Sepic converter (Single-Ended Primary Inductor Converter) is characterized by being able
to operate as a step-up or step-down, without suffering from the problem of polarity reversal.
The Sepic converter consists of an active power switch, a diode, two inductors and two
capacitors and thus it is a nonlinear fourth order. The converter is modeled with parasitic
resistances in series with the inductors. The switched system (1) is described by the following
matrices:

A1 =

⎡

⎢

⎢

⎣

−rL1/L1 0 0 0
0 −rL2/L2 −1/L2 0
0 1/C1 0 0
0 0 0 −1/(RC2)

⎤

⎥

⎥

⎦

, B1 =

⎡

⎢

⎢

⎣

1/L1

0
0
0

⎤

⎥

⎥

⎦

,
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Fig. 6. Buck-Boost dynamic.
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A2 =

⎡

⎢

⎢

⎣

−rL1/L1 0 −1/L1 −1/L1

0 −rL2/L2 0 1/L2

1/C1 0 0 0
1/C2 −1/C2 0 −1/(RC2)

⎤

⎥

⎥

⎦

, B2 =

⎡

⎢

⎢

⎣

1/L1

0
0
0

⎤

⎥

⎥

⎦

. (35)

For this converter, consider that iL1(t), iL2(t) denote the inductors currents and Vc1(t), Vc2(t)
the capacitors voltages, that again were adopted as state variables of the system:

x(t) = [x1(t) x2(t) x3(t) x4(t)]
′ = [iL1(t) iL2(t) Vc1(t) Vc2(t)]

′. (36)
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Adopt the following operating point,

xr =
[

x1r(t) x2r(t) x3r(t) x4r(t)
]′
=

[

iL1r(t) iL2r(t) Vc1r(t) Vc2r(t)
]′

. (37)

The DC-DC converter operates in continuous conduction mode. The used solver was the
LMILab from the software MATLAB interfaced by YALMIP (Lofberg, 2004) . The parameters
are the following: Vg = 100[V], R = 50[Ω], rL1 = 2[Ω], rL2 = 3[Ω], L1 = 500[μH], L2 =
600[μH], C1 = 800[μF], C2 = 470[μF] and

Qi = Q =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ρ1rL1 0 0 0

0 ρ2rL2 0 0

0 0 0 0

0 0 0 ρ3/R

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (38)

is the performance index matrix associated with the guaranteed cost

∫ ∞

0
(ρ1rL1(iL1 − iLr1)

2 + ρ2rL2(iL2 − iLr2)
2 + ρ3R−1(Vc2 − Vc2r)

2) dt, (39)

where ρi ∈ IR+ are design parameters. Before of all, the set of all attainable equilibrium point
is calculated considering that

xr = {[iL1r iL2r Vc1r Vc2r]
′ : Vc1r = Vg , 0 ≤ Vc2r ≤ RiL2r}. (40)

The initial condition was the origin x = [iL1 iL2 Vc1 Vc2]
′ = [0 0 0 0]′. Figure 8 shows

the phase plane of the Sepic converter corresponding to the following values of load voltage
Vc2r = {50, 60, . . . , 150}.

In this case, Theorem 1 presented a voltage setting time smaller than 30[ms] and the maximum
current peak iL1 = 34[A] and iL2 = 9[A]. However, Theorem 2 showed a voltage setting time
smaller than 80[ms], with currents peaks iL1 = 34[A] and iL2 = 13.5[A]. Now, in order to
compare the results from the proposed Theorem 3, adopt origin as initial condition, λ1 =
0.636, λ2 = 0.364 and the equilibrium point equal to xr = [5.24 − 3 100 150]′. From the
optimal solutions of minimization problems (11) and (15), we obtain respectively

P = 1 × 10−4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0141 −0.0105 0.0037 0.0707

−0.0105 0.0078 −0.0026 −0.0533

0.0037 −0.0026 0.0016 0.0172

0.0707 −0.0533 0.0172 0.3805

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

P = 1 × 10−3

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0960 −0.0882 0.0016 0.0062

−0.0882 0.0887 0.0184 −0.0034

0.0016 −0.0184 0.0940 0.0067

0.0062 −0.0034 0.0067 0.2449

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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Fig. 8. Sepic DC-DC converter phase plane.

Maintaining the same parameters, the optimal solution of minimization problem (21) are the
matrices below and from (10) the guaranteed cost J < (x0 − xr)′P(x0 − xr) = 0.93:

P = 1 × 10−4

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0141 −0.0105 0.0037 0.0707

−0.0105 0.0078 −0.0026 −0.0533

0.0037 −0.0026 0.0016 0.0172

0.0707 −0.0533 0.0172 0.3805

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

N1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.0113 0.0099 0.0003 −0.0286

0.0099 −0.0085 0.0002 0.0290

0.0003 0.0002 0.0009 0.0088

−0.0286 0.0290 0.0088 0.0168

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

N2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0197 −0.0173 −0.0005 0.0500

−0.0173 0.0148 −0.0003 −0.0507

−0.0005 −0.0003 −0.0015 −0.0154

0.0500 −0.0507 −0.0154 −0.0293

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The results are illustrated in Figure 9 and Table 4 presents the obtained results from the
simulations.
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Fig. 9. Sepic dynamic.

Overshoot [A] Time [ms] Cost (6)

Theo. 1 34 30 0.93

Theo. 2 34 80 6.66
Theo. 3 34 30 0.93

Table 4. Sepic results.

Remark 1. From the simulations results, note that the proposed Theorem 3 presented the same results
obtained by applying Theorem 1. Theorem 3 is an interesting theoretical result, as described in Theorem
4, and the authors think that it can be useful in the design of more general switched controllers.
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5. Conclusions

This paper presented a study about the stability and control design for switched affine
systems. Theorems proposed in (Deaecto et al., 2010) and later modified to include bounds on
output peak on the control project were presented. A new theorem for designing switching
affine control systems, with a flexibility that generalises Theorems 1 and 2 from (Deaecto et al.,
2010) was proposed. Finally, simulations involving four types of converters namely Buck,
Boost, Buck-Boost and Sepic illustrate the simplicity, quality and usefulness of this design
methodology. It was also the first time that this class of controller was used for controlling a
Sepic converter, that is a fourth order system and so is more complicated than the switched
control design of second order Buck, Boost and Buck-Boost converters (Deaecto et al., 2010).
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