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1. Introduction 

Thyroid hormones play a crucial role in the skeletal growth, peak bone mass acquisition and 

maintenance of bone mass. Abnormalities in hypothalamic–pituitary–thyroid axis in infancy 

and childhood have been shown to interfere with a normal linear growth and skeletal 

maturation. Hypothyroidism compromises normal bone formation and results in slowing of 

linear growth. Thyrotoxicosis leads to growth acceleration, diminution of bone mass and 

advance in bone age. Studies in animal models have demonstrated the importance of 

thyroid hormone signaling in the maintenance of bone mass in adulthood. Increased risk of 

fracture has been demonstrated in both hypothyroidism and hyperthyroidism. The thyroid 

hormone, 3,5,3’-triiodothyronine (T3), has long been considered to play a primordial role in 

the skeletal homeostasis. However, recent studies have shown that TSH acts as a direct 

regulator of bone remodeling, highlighting the importance of integrity of the hypothalamo-

pituitary-thyroid axis. 

This chapter will review our current understanding regarding the action of thyroid 

hormones on the bone development and maintenance of bone mass, under normal 

conditions and as a result of thyroid gland dysfunction. Mechanism of thyroid hormone 

action will be illustrated in relation to bone with the focus on the genetic regulation and the 

molecular interactions between thyroid hormones and skeletal cells. Clinical consequences 

of thyroid dysfunction on the growth and skeletal maturation will be detailed. We will 

review the published literature regarding BMD in hyperthyroid and hypothyroid patients 

including patients on medical therapy, as well as the influence of sex and menopause on the 

maintenance of bone mass. The impact of treatments for thyroid dysfunction on the bone 

mineral metabolism will be discussed.  
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2. Role of thyroid hormones in bone growth and metabolism 

Thyroid hormones are critical for the skeletal development and the bone maintenance. The 

thyroid hormone, 3,5,3’-triiodothyronine (T3), is responsible for major actions of thyroid 

hormones. T3 binds to nuclear receptors that regulate gene transcription via interaction with 

thyroid hormone response elements of specific genes (Sap et al., 1986; Weinberger et al., 

1986; Thompson et al., 1987). Recently, non-genomic actions of T3 and T4 have been 

described (Cheng et al., 2010). Local tissue availability of T3 seems to be regulated by type 2 

and 3 deiodinase (St Germain et al, 2009). The nuclear thyroid hormone receptors (TRs) are 

derived from the THRA and THRB genes coding for the TRα1 and β1-2 T3-binding 

isoforms, truncated isoforms ∆α1, ∆α2 and ∆β3, and a TRa2 non-T3-binding isoform of 

unknown function (Lazar et Chin et al, 1990; Lazar, 1993; Chassande et al, 1997; Williams, 

2000; Cheng et al, 2010). Expression of TRα1 and TRβ1 was described in growth plate 

chondrocytes, osteoblasts, and stromal cells of bone marrow (Williams et al, 1994; Abu et al, 

1997; Ballock et al, 1999; Bradley et al, 1992; Bassett et Williams, 2003; Siddiqi et al, 2002). 

Expression of TRα in the skeleton is higher than that of TRβ (Bookout et al, 2006; O’Shea et 

al, 2003). 

2.1. Thyroid hormone and bone development 

Studies on animal models have brought valuable insights into role of TRs in bone 

development and growth. Mice lacking TRβ or TRα1 did not display abnormalities in 

skeletal development (Forrest et al, 1996; Wikstrom et al, 1998). On the other hand, genetic 

disruption of both receptors (TRα1 and TRβ) led to delayed ossification and disorders in 

development of epiphyseal growth plates (EGPs; Gothe et al, 1999). Pax-8−/− mice, expressing 

all TR isoforms, but lacking the follicular cells producing T4 and T3 in the thyroid gland, 

displayed more severe abnormalities in bone development than mice KO for all TRs (TRα0/0, 

TRβ−/−) (Flamant et al, 2002). The authors concluded that the unliganded TRs (aporeceptors) 

on thyroid hormone responsive genes have repressor effects during bone development. In 

support of this, Pax-8−/−TRα0/0, but not Pax-8−/−TRβ−/−, compound mutants presented a partial 

rescue of the bone phenotype (O’Shea et Williams, 2002; Flamant et al, 2002). Another study 

was realized employing mice invalidated for TRα. These animals were euthyroid, but 

displayed a growth delay with abnormal bone development and ossification (Bassett et al 

2007a, 2007b; Gauthier et al, 1999, 2001; O’Shea 2003, 2005). Mice lacking all TRα isoforms 

presented a less severe impairment of bone development than TRα-/- mice, pointing to the 

role of non-T3 binding TRα isoforms (∆α1 and ∆α2) (Gauthier et al, 2001). On the other 

hand, mice with nonfunctional TRβ displayed augmentation in circulating thyroid hormone 

levels associated with dysregulation of hypothalamo-pituitary-thyroid axis. These animals 

had skeletal signs of hyperthyroidism, increased bone mineral deposition and acceleration 

of growth-plate maturation, resulting in a short adult body size (Bassett et al, 2007a; O’Shea 

et al, 2003). These findings suggested an increased skeletal response to T3 via TRα, which 

was consistent with the hypothesis that elevated circulating thyroid hormone levels in TRβ 

mutant mice result in an increased skeletal response to T3 via TRα (O’Shea et al, 2006). 

Recently, GC-1, thyroid hormone analogue targeting preferentially TRβ1 over TRα1, has 
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partially reverted skeletal development and maturation defects in hypothyroid rats (Freitas 

et al, 2005). This finding is suggestive of TRβ1 involvement in bone growth.  

Thyroid hormones regulate bone development also indirectly through the growth hormone 

(GH) and insulin-like growth factor-I (IGF-I) axis. Previously, it was demonstrated that T4 

enhanced the growth promoting effect of GH/IGF-I (Thorngren et Hansson, 1974) and could 

stimulate longitudinal bone growth in hypophysectomized rats (Thorngren et Hansson, 

1973; Ray et al, 1954). T3 was shown to interact with the thyroid hormone receptor - thyroid 

hormone responsive element complex (TR-TRE) in the GH promoter to regulate GH gene 

transcription (Glass et al, 1987; Koenig et al, 1987). However, GH without T3 did not 

promote the maturation (Ballock et Reddi, 1994) and organization (Lewinson et al, 1989) of 

growth plate chondrocytes and GH replacement could not rescue the impaired ossification 

in TRα and TRβ-null mice (Kindblom et al, 2001). In TRα1−/−β−/− mice, GH substitution 

reversed the growth phenotype, but not the defective ossification (Kindblom et al, 2001).  On 

the other hand, inactivation of GH or IGF-I receptors in mice was associated with delayed 

ossification (Liu et al, 1993; Sjogren et al, 2000). 

Overall, the literature data indicate importance of both TRs and GH-IGF-I axis in skeletal 

development. Other factors, such as the Indian Hedgehog (Ihh), parathyroid hormone-

related peptide (PTHrP), fibroblast growth factor receptor and Wnt--catenin signaling 

pathways, are implicated in this process (Barnard et al, 2005; O’Shea et al, 2005; Stevens et 

al, 2000, 2003; Wang et al, 2007). Further studies are warranted to clarify the exact 

mechanisms underlying the physiological regulation of bone development. 

2.2. Thyroid hormone and bone remodeling 

Literature evidence points to the critical importance of thyroid hormones in bone 

remodeling and maintenance. Adult euthyroid mice invalidated for TRα have reduced 

osteoclastic bone resorption and increased trabecular bone volume and mineralization 

(Bassett et al, 2007a, 2007b), indicating a critical role of TRα in T3 action in bone cells. On the 

other hand, increased osteoclastic bone resorption and severe osteoporosis were 

demonstrated in adult TRβ mutant mice, suggestive of thyroid hormone excess in TRα-

expressing skeletal cells (Bassett et al, 2007a, 2007b; Gauthier et al, 2001; O’Shea et al, 2006). 

The bone architecture and strength are maintained by a balanced process of remodeling, 

which involves recruitment of osteoclast and osteoblasts. T3 can induce differentiation and 

inhibits proliferation of osteoblastic cells. T3 was shown to promote production of IL-6, IL-8, 

IGF-I and its binding proteins IGFBP2-4 in bone marrow stromal cells and osteoblasts (Milne 

et al, 2001; Siddiqi et al, 1998), and to increase the expression of several bone-related genes, 

including osteocalcin, collagen type I, gelatinase B and collagenase 3 (Gouveia et al 2001; Milne 

et al 1998; Pereira 1999; Varga et al 1997; Williams et al 1994). T3 is implicated in 

chondrogenesis, angiogenesis, bone matrix formation and mineralization (Himeno et al, 2002; 

Makihira et al, 2003; Pereira et al, 1999). In primary cultures of growth plate chondrocytes, T3 

inhibits chondrocyte clonal expansion and cell proliferation, induces hypertrophic 

chondrocyte differentiation and promotes cartilage matrix mineralization (Robson et al, 2000).  
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Furthermore, T3 is involved in local signaling pathways by stimulating osteoblast responses 

to IGF1-I, PTH and fibroblast growth factors. T3 is a critical regulator of the Ihh - bone 

morphogenetic protein (BMP) – PTHrP feedback loop (Stevens et al, 2000). Hypothyroidism 

is marked by increased PTHrP expression and impaired hypertrophic chondrocyte 

differentiation (Stevens et al, 2000). In hyperthyroidism, reduced expression of PTHrP 

associated with augmentation of BMP enhances hypertrophic chondrocyte differentiation 

(Lassova et al, 2009; Stevens et al, 2000). It has also been shown that T3 regulates terminal 

differentiation of growth plate chondrocytes in part through controlling cell cycle 

progression at the G1/S restriction point (Ballock et al, 2000). T3 mediates osteoclastic bone 

resorption through activation of osteoblasts, which then release receptor activator for NF-κB 

ligand (RANKL), a member of the TNF cytokine family. RANKL is a ligand for 

osteoprotegerin, a cytokine that regulates osteoclastic differentiation, and functions as a key 

factor for osteoclast differentiation and activation by inhibiting osteoclasts apoptosis (Allain 

et al, 1992; Britto et al, 1994).  

Overall, T3 seems to enhance activity of osteoblasts by various mechanisms and signaling 

loops. Although the effects of thyrotoxicosis in adult bone are characterized by increased 

bone resorption, it is not known whether T3 acts directly in osteoclasts or whether effects on 

osteoclasts are secondary to the actions of T3 in osteoblasts. 

2.3. Role of TSH on bone 

Thyroid stimulating hormone (TSH) is a ligand hormone between hypothalamic-pituitary 

axis and the thyroid gland. TSH has long been recognized to act on the thyroid gland to 

control follicle development and thyroid hormone production and secretion. Beyond 

thyroid, TSH has also been shown to have additional effects on other tissues. TSH can exert 

a direct effect on bone metabolism independently of the peripheral thyroid hormone 

(thyroxine, T4, and triiodothyronine, T3) levels. This effect is mediated through the receptor 

for binding the thyroid-stimulating hormone (TSH-R), which is a pituitary G protein-

coupled transmembrane receptor. Its expression has been demonstrated on osteoblast and 

osteoclast precursors. The TSH-R haploinsufficient mice display osteoporosis and focal 

osteosclerosis and thyroid hormone replacement did not restore bone mass but corrected 

growth deficiency in these animals (Abe et al, 2003). It has been suggested that the effects of 

TSH on the skeleton are independent of thyroid hormone levels.  

In vitro and in vivo studies have provided evidence that TSH has negative effects on both 

osteoclasts and osteoblasts (Abe et al, 2003; Hase et al, 2006; Sun et al, 2006; Ma et al, 2011). 

TSH inhibits osteoclastogenesis by attenuating Janus N-terminal kinase (JNK) and NF-KB 

signaling. The osteoclast-inhibitory actions of TSH are partially mediated also through 

effects on tumor necrosis factor (TNF)-alpha production as it has been demonstrated in 

murine models (Abe et al, 2003). Mice lacking the TSHR present osteoporosis, early in 

embryogenesis, due to increased osteoclast formation (Abe et al, 2003; Hase et al 2006; Ma et 

al, 2009). These observations have not been confirmed in double-null mice of TSHR and 

TNF-alpha supporting thus the role of TNF-alpha in increased osteoclastogenesis (Abe et al, 
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2003; Hase et al 2006; Ma et al, 2009). Yamoah et al (2008) have recently described RANKL-

responsive elements on the TNF alpha gene providing new insights into regulation of TNF 

transcription in osteoclast formation. The role of TSH on RANKL remains controversial 

since the administration of the exogenous recombinant TSH in animal models and humans 

has been shown to increase and in other series to decrease RANKL serum levels (Martini et 

al, 2008; Sampath et al, 2007; Abe et al, 2003). Role of TSH in osteoblastogenesis seems to be 

mediated through attenuation of Wnt and VEGF signaling (Abe et al, 2003). Enhanced 

osteoblastogenesis in TSHR deficiency was found to be associated with increased expression 

of low-density lipoprotein receptor–like protein-5 and Flk-1 proteins (Abe et al, 2003). 

Expression of these receptors, but not that of osteoblastic transcription factors, was inhibited 

by rhTSH. Altogether, these observations suggest that TSH negatively modulates bone 

turnover, however, further research is warranted to explain in detail the regulatory 

pathways.  

3. Thyroid hormones and skeletal growth in infancy and adolescence 

In prepubertal children, the linear growth is controlled mainly by GH-IGF-I axis, with 

influence from glucocorticoids and thyroid hormones. Thyroid hormones were shown to 

play an essential role for normal onset of the childhood component of growth (Heyerdahl, 

1997). Role of the GH/IGF-I axis in the regulation of thyroid gland growth has recently been 

demonstrated (Boas et al, 2009). During pubertal period, sex steroids are important co-

regulators of skeletal growth. Age related consequences of thyroid dysfunction on bone 

development have largely been described. Nevertheless, the exact role of thyroid hormone 

in the peak bone mass acquisition during childhood and early adulthood is not well 

understood. The same is for the gender specific action of T3 in the developing skeleton 

(Gauthier et al, 1999). 

Euthyroid status is essential for normal skeletal development and linear growth. 

Generalized retardation in endochondral and intramembranous ossification associated with 

alterations in the EGPs, such as reduced thickness, disorganized columns of chondrocytes, 

and impaired differentiation of hypertrophic chondrocytes, have been reported in 

hypothyroid status during development (Lewinson et al, 1989; Stevens et al, 2000). The 

clinical consequences are reduced growth and skeletal abnormalities (Allain & McGregor, 

1993). Theodore Kocher was awarded the Nobel Prize in Medicine in 1909 for his 

description of consequences of thyroidectomy. He showed the impact of hypothyroidism on 

the child growth (Kocher, 1883). Hypothyroid children present with the growth retardation 

and disproportionately short limbs in relation to the trunk. Radiographic skeletal 

examination may reveal, depending on the age and onset of hypothyroidism, a delayed 

closure of the fontanelles, enlargement of pituitary fossa and epiphyseal dysgenesis. Reilly 

& Smyth have described in 1937 stippled appearance of epiphyses on X-ray films in 

hypothyroid children. The pathognomonic nature of these changes was later confirmed by 

Wilkis (Wilkis, 1941). Epiphyseal dysgenesis has been demonstrated in the ossification 

centers that normally ossify after the onset of the hypothyroid status. Delayed appearance of 

ossification centers and delayed bone age are also noted in hypothyroid children. BMD 
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seems to be also affected by a hypothyroid status during childhood. In one cross-sectional 

study, BMD was reported to be lower in prepubertal children with congenital 

hypothyroidism than in controls (Demartini et al, 2007). 

Treatment with thyroxine results in a period of rapid catch-up growth, although predicted 

final height based on midparental height calculations may not be achieved, particularly 

when hypothyroidism is prolonged (Rivkees et al, 1988). The LT4 replacement for 8 years in 

children with congenital hypothyroidism did not have a negative effect on BMD for the 

lumbar spine and the femoral site and on biochemical markers of bone turnover (Leger et al, 

1997). The results showed normal serum levels of calcium, phosphate, alkaline phosphatase, 

parathyroid hormone and 25-hydroxyvitamin D and did not demonstrate any relationship 

between BMD and L-T4 dosage or biochemical markers of bone formation. These findings 

were confirmed by other studies reporting no alterations of bone mass in adolescents and 

young adults with congenital hypothyroidism, treated from the neonatal period (Salerno et 

al, 2004, Demeester-Mirkine et al, 1990). 

On the other hand, thyroid hormone excess results in accelerated skeletal maturation, 

premature closure of the EGPs and subsequent decrease in longitudinal bone growth with a 

compromised final adult height (Allain & McGregor, 1993; O’Shea et al, 1993; Harvey et al, 

2002). In severe cases, hyperthyroidism during early childhood may also cause 

craniosynostosis due to premature fusion of the sutures of the skull (Segni et al 1999). Low 

bone density values and high bone resorption rates were demonstrated at diagnosis of 

hyperthyroidism in children and adolescents (Mora et al, 1999). Successful treatment of 

hyperthyroidism was shown to increase BMD in children and improve the conditions for 

the best obtainable peak bone mass (Mora et al, 1999). 

Consequences of syndrome of resistance to thyroid hormone (RTH) on the skeletal 

development have been described in literature. RTH results from dominant negative 

mutations in the carboxyl terminus of the thyroid hormone receptor β gene. The mutant 

receptors are transcriptionally impaired and inhibit thyroid hormone receptor action. RTH 

is characterized by phenotypic variability including skeletal manifestations (Weiss et 

Refetoff, 2000). Our current understanding is based mainly on the published case reports. 

Involvement of the skeleton can cause a short stature, advanced or delayed bone age, 

increased bone turnover, osteoporosis, fractures, craniofacial abnormalities and 

craniosynostosis. The clinical variability might be secondary to functional properties of 

mutant proteins and heterogeneity of cofactors mediating action of TR (Kvistad et al, 2004).  

4. Effects of thyroid dysfunction on bone turnover in adult bone 

4.1. Hypothyroidism 

Reduced bone turnover in hypothyroidism impairs bone formation and mineralization 

(Eriksen et al, 1986). Results of population studies indicate an increased fracture risk in 

hypothyroid individuals (Ahmed et al, 2006; Vestegaard et al 2002, 2005). The association 

between subclinical hypothyroidism and decreased BMD with increased fracture risk has 
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also been reported, but has not been confirmed by others (Lee et al, 2006, 2010; Bertoli et al, 

2002). Overall, the literature data have so far presented conflicting results. We will review 

the current literature and discuss changes in the bone metabolism, BMD and fracture risk in 

adult men and women with overt and subclinical hypothyroidism. 

4.1.1. Mineral metabolism in hypothyroidism 

Slight perturbations in some parameters of bone and mineral metabolism have been 

reported in hypothyroid patients. Minor abnormalities of calcium metabolism may exist 

with slightly elevated serum calcium, PTH and 1,25(OH)2 vitamin D, decreased level of 

alkaline phosphatase, decreased urinary calcium excretion and glomerular filtration rate. 

The exchangeable pool of calcium and its rate of turnover may be reduced, reflecting 

decreased bone formation and resorption. However, these changes seem not to be different, 

even during the treatment, in hypothyroid patients compared to euthyroid controls 

(Sabuncu et al, 2001). 

4.1.2. Overt hypothyroidism and skeletal changes 

Large population based studies identified an increased fracture risk in individuals with 

hypothyroidism (Vestegaard et al 2000; 2002). The first of these studies (Vestegaard et al, 

2000) analyzed 408 patients with primary hypothyroidism and found a temporary increase 

in fracture risk within the first 2 years after diagnosis, mainly in the age group >50 years, 

and was limited to the forearms. In the following study (Vestegaard, 2002), 4473 patients 

with autoimmune hypothyroidism (mean age, 66.1 +/- 17.3) were shown to present a 

significantly increased fracture risk up to 8 years prior to diagnosis with a peak around the 

time of diagnosis. The fracture risk was found to return to normal more than 5 years after its 

diagnosis. 

An increased fracture risk in hypothyroid patients is not probably due to modifications of 

bone density. There are no convincing literature data as to changes in bone architecture 

during hypothyroidism. Neuromuscular symptoms and impaired muscle energy 

metabolism could be responsible for bone changes in this population. Hypothyroid patients 

have been shown to display impaired neuromuscular response to exercise persisting even 

after restoration of euthyroid status (Caraccio et al, 2005). 

4.1.3. Subclinical hypothyroidism and skeletal changes 

Subclinical hypothyroidism is a relatively frequent clinical condition, particularly among 

aged population, characterized by a low-normal free T4 level and a slightly elevated TSH 

level. The prevalence of subclinical hypothyroidism has been reported between 3.9 and 6.5% 

(Hollowell et al, 2002; Huber et al, 2002) 

In Trosmo study, Grimnes et al. (2008) have demonstrated that, after multivariate 

adjustment, 25 out of 950 postmenopausal women with serum TSH above the 97.5 percentile 

had significantly higher BMD at the femoral neck than women with serum TSH in the 
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normal range. However, there was no association between TSH and BMD, and serum TSH 

as a continuous variable had no effect on BMD. 

Bone quality was studied by Nagata et al. using quantitative ultrasound in postmenopausal 

women with subclinical hypothyroidism. The results demonstrated that calcaneo osteo sono 

assessment indices of right feet measured by ultrasound bone densitometer decreased 

according to the increase in TSH concentration. The authors have suggested that 

hypothyroidism affects bone structure (Nagata et al, 2007). 

4.2. Hyperthyroidism 

Hyperthyroid patients present with an increased bone turnover and a risk for osteoporosis. 

The activity of osteoblasts and osteoclasts are increased, the latter predominates favoring 

resorption, negative balance of calcium, and bone loss (Melsen & Mosekilde, 1977; 

Mosekilde et al, 1990). Thyrotoxicosis in adults is a recognized cause of high-bone-turnover 

osteoporosis. Reduced bone mineral density was noted in hyperthyroid patients with an 

increased susceptibility to fragility fracture (Mosekilde et al, 1990; Vestergaard et al, 2002, 

2005). 

In both, clinical and subclinical hyperthyroidism, elevation of markers of bone turnover and 

decreased BMD have been reported (Kumeda et al, 2000; Heemstra et al, 2006; Lee et al, 

2006). Previous studies that investigated impact of thyroid dysfunction on BMD and 

fracture risk did not provide conclusive results. Recently published population studies 

indicate association of endogenous subclinical hyperthyroidism with an increased fracture 

risk (Bauer et al, 2001; Jamal et al, 2005; Vadiveloo et al, 2011). Consequences of the 

hyperthyroid status (overt and subclinical) on bone turnover, BMD and fracture risk will be 

discussed and compared with the data in healthy population. 

4.2.1. Mineral metabolism in hyperthyroidism 

Hyperthyroidism is associated with impaired mineral metabolism. Increased serum calcium 

levels have been reported in up to 27% of hyperthyroid patients (Begic-Karup et al, 2001), 

but severe and symptomatic hypercalcemia is rare. Concentrations of serum alkaline 

phosphatase and osteocalcin are also frequently elevated. These findings are reminiscent of 

those in primary hyperparathyroidism, however, serum parathyroid hormone is mostly 

low-normal (Iqbal et al, 2003). True primary hyperparathyroidism and thyrotoxicosis may 

coexist (Beus & Stack, 2004; Wagner et al, 1999). Decreased plasma 25-

hydroxycholecalciferol levels observed in hyperthyroidism could participate to the lower 

intestinal absorption of calcium and osteopenia in these patients (Mohan et al, 2004). Bone 

resorption markers, urinary pyridinoline and deoxypyridinoline, are increased 7-8 times 

more than in age and sex matched controls (Kraenzlin et al, 2008). Furthermore, 

hyperthyroid patients display a greater increase in urinary pyridinoline cross-links than that 

in serum markers of bone formation (osteocalcin, bone-specific alkaline phosphatase) 

(Akalin et al, 2002; Kisakol et al, 2003). Altogether, an increased bone turnover in these 

patients is in favor of osteoclastic bone resorption. 
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After initiation of anti-thyroid treatment, biochemical markers of bone resorption, such as 

urinary hydroxyproline, serum pyridinoline, serum deoxypiridinoline cross-links, have 

been found to fall, with a subsequent rise of the bone formation markers (Mosekilde et al 

1990; Siddiqi et al, 1997; Garnero et al, 1994). Elevation of serum PTH has been reported in 

some patients with severe thyrotoxicosis under anti-thyroid treatment (Pantazi et al, 2000). 

This rise in PTH was suggested to play a role in inducing some temporal changes in mineral 

metabolism and participate to the reversal of the catabolic bone status of hyperthyroidism to 

anabolic. Furthermore, another study found that in hyperthyroidism, despite normal or high 

IGF-I levels, IGF-I bioactivity is reduced, probably because of high levels of IGF-binding 

protein-1 (Miell et al, 1993). Treatment of thyrotoxicosis reverses this abnormality. The rise 

in IGF-I bioactivity may therefore have a positive effect on the bone metabolism. 

4.2.2. Overt hyperthyroidism and skeletal changes 

Pathological skeletal changes, including osteopenia and osteoporosis, with higher 

incidence of fracture rates have been reported in hyperthyroid patients. Accordingly, 

hyperthyroidism was found 2.5-fold more often in postmenopausal women presenting 

with hip fracture than in controls. Among postmenopausal women, risk of hip fracture 

was significantly higher in patients with overt untreated hyperthyroidism and a history of 

past hyperthyroidism (Wejda et al, 1995). These findings were confirmed by a prospective 

follow-up study realized in 9516 Caucasian women, 65 years of age or older (Cummings 

et al, 1995). The authors demonstrated a higher risk of hip fracture among women who 

had previous hyperthyroidism. Another study reported that the prevalence of all types of 

fractures in patients with a history of thyroid disease was not different from that of 

control subjects.  

However, women with a history of hyperthyroidism or thyroid cancer appeared to have 

their first fracture earlier than women without thyroid disease (Solomon et al, 1993). Median 

lumbar BMD in patients with thyrotoxicosis was shown to be 12.6% lower than that of 

normal individuals before the initiation of treatment (Krolner et al, 1983). Decreased BMD in 

hyperthyroid patients was demonstrated particularly in areas consisting of cortical bone. 

The risk of hip fracture increased significantly with age at diagnosis of hyperthyroidism 

(Campos-Pastor et al, 1993; Udayakmar et al, 2006; Vestergaard et al, 2002, 2005). The 

etiology of hyperthyroidism is not believed to play a role in the severity of hyperthyroid 

bone disease (Jodar et al, 1997). 

A recent meta-analysis (Vestergaard et al, 2005) evaluated data regarding BMD and fracture 

risk in 20 (962 patients) and 5 publications, respectively (62 830 patients and controls). The 

results showed that patients with hyperthyroidism have a significantly decreased BMD. 

These values were lower in untreated patients compared to those under treatment, 

particularly for the lumbar spine (-0.83 vs. -0.27 Z-score) and the femoral site (-0.75 vs. -0.15 

Z-score). The risk of hip fracture at the moment of diagnosis of hyperthyroidism was 1.6 

(95% CI 0.7 to 3.4), and the value of BMD alone was associated with a risk of hip fracture 

corresponding to 1.2 (95% CI 0.9-1.5).  
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Decreased bone density in hyperthyroid patients tended to normalize under treatment 

(Wejda et al, 1995, Jodar et al, 1997). The improvement of BMD was noted even though no 

other specific anti-osteoporotic measures were introduced. The type of treatment of 

hyperthyroidism, iodine 131 or anti-thyroid drugs was not shown to alter the fracture risk 

(Vestergaard et al, 2005). 

4.2.3. Subclinical hyperthyroidism and skeletal changes 

Subclinical hyperthyroidism is defined as subnormal serum TSH with normal serum free 

thyroid hormones without signs or symptoms of thyrotoxicosis. Its prevalence in the U.S. 

population has been reported 0.7% (Hollowell et al, 2002). By definition, such patients 

should not have any clinical abnormalities associated with thyrotoxicosis (Biondi et al, 

2005). However, a reduced bone mass was reported among postmenopausal patients (Bauer 

et al 2001). These observations could thus have a broader impact on the healthcare systems, 

as the subclinical hyperthyroidism is more frequent than overt thyrotoxicosis (Hollowell et 

al, 2002). Improvement of bone mineral density was shown in postmenopausal women with 

subclinical hyperthyroidism after normalization of their thyroid function (Faber et al, 1998). 

These data would justify indications of treatment in the older population. However, the 

risk/benefit ratio needs to be demonstrated by long-term, randomized studies. 

On the other hand, the bone mineral density of the lumbar spine, femoral neck and the 

midshaft of the radius were not significantly decreased in premenopausal women (Foldes et 

al, 1993). The impact of subclinical hyperthyroidism in men is less known. A recent work 

suggests that a serum TSH concentration at the lower end of the reference range may be 

associated with low BMD in men (Kim et al, 2010). 

5. Impact of thyroid hormone treatment on bone metabolism 

Effects of thyroid replacement therapy or thyroid suppressive therapy on bone mineral 

density (BMD) are controversial. Results of previous studies are confounded by differences 

in study design, insufficient prospective data and small numbers of subjects. In the 

population study by Vestergaard et al (2005), the use of anti-thyroid drugs was associated 

with a significantly reduced fracture risk, no effect of levothyroxine on fracture risk was 

observed. No influence of L-thyroxine therapy on BMD was reported in young adults with 

congenital hypothyroidism (Salerno et al, 2004). Recently published population based case-

control study has demonstrated a significantly increased fracture risk in adults over 70 years 

treated by levothyroxine (Turner et al, 2011). Publications on the association between the 

thyroid replacement and suppressive treatments and the bone mineral metabolism will be 

discussed. 

5.1. Thyroid hormone replacement therapy 

The objective of thyroid hormone replacement therapy is to normalize TSH levels. Some 

authors have suggested that treatment with levothyroxine may cause long-term 
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osteoporosis, but there is no evidence to support this theory, and studies have shown no 

difference in bone density or fracture risk in patients undergoing treatment.  

Previously, the effects of thyroid hormone treatment upon lumbar spine BMD were studied 

in a consecutive series of patients with myxedema. Patients with myxoedema did not differ 

from normal individuals as regards initial lumbar BMD, but levothyroxine-treatment caused 

a significant reduction in this variable. The median decrease in lumbar BMC after 1 year was 

8.9% (95% confidence limits 1.5-15.4%, P less than 0.05). This loss of bone might be 

attributed to an inappropriate increase in bone turnover in the euthyroid status (Krolner et 

al, 1983). Accelerated bone turnover was shown to occur in women with subclinical 

hypothyroidism during replacement L-T4 treatment and normal TSH levels (Meier et al, 

2004; Tarraga Lopez et al, 2011). In these women, bone loss was attributed to an adaptive 

mechanism on decreased bone turnover in pre-existent hypothyroidism. Finally, a long-term 

L-T4 treatment in children and adolescents with congenital hypothyroidism, diffuse goiter 

or with chronic lymphocytic thyroiditis did not affect BMD nor had a negative effect on the 

attainment of peak bone mass (Kooh et al, 1996; Saggese et al, 1996; Tumer et al, 1999). These 

results suggest that careful regulation of thyroid replacement is critical. Significant effects of 

prolonged L-T4-replacement therapy on bone tissue in patients with congenital 

hypothyroidism can be avoided by careful monitoring of serum TSH and adjustment of 

doses of L-T4 (Salerno et al, 2004). 

5.2. Thyroid hormone suppressive therapy 

Treatment with thyroid hormones with the objective to suppress TSH levels is used for 

example after surgery and radioiodine in differentiated thyroid carcinomas. The patients are 

maintained in subclinical hyperthyroidism, a condition associated with increased bone 

turnover.  

Previous studies indicated that adults receiving high doses of L-T4-replacement therapy 

may be at risk of excessive bone loss. Reduction in BMD was observed after exogenous 

administration of high L-T4 doses used to fully suppress TSH in cases of thyroid cancer, 

goiters or nodules. Further, a review of cross-sectional and prospective studies examining 

the effect of thyroid hormone suppression on skeletal integrity in adults showed neither 

significant negative effect nor a decrease in BMD (Greenspan et al, 1990). Conflicting results 

were reported also in children. A significant reduction in peripheral BMD was found in 

children and adolescents receiving suppressive doses of L-T4 treatment for endemic goiter, 

Hashimoto’s thyroiditis or thyroid cancer (Radetti et al, 1993). 

More recently, suppression of TSH in hyperthyroidism or after thyroid hormone treatment 

has been shown to result in decrease in BMD and increase in fracture risk in 

postmenopausal women (Vestergaard et al, 2000; Bauer et al, 2001; Jamal et al, 2005; Kim et 

al, 2006). Similar results have been demonstrated in premenopausal women and men by 

Karner et al (2005).  Recently realized systematic reviews analyzing effects of subclinical 

hyperthyroidism showed that postmenopausal women with subclinical hyperthyroidism 

may present an increased risk, whereas no increased risk has been demonstrated in men and 
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premenopausal women (Quan et al, 2002; Heemstra et al, 2006). However, both reviews 

found methodological differences between different studies, making a structured meta-

analysis impossible. Lately, a randomized prospective controlled trial has shown significant 

adverse effects of TSH suppressive therapy on BMD in women ≥ 50 years of age (Sugitani et 

Fujimoto, 2011). However, the results have not been adjusted for confounding factors, such 

as menopause status, dietary calcium, vitamin D intake, and smoking.  

Overall, literature data enhance the hypothesis that low TSH levels may have a deleterious 

effect on bone homeostasis. Nevertheless, the exact relationship between subclinical 

hyperthyroidism and osteoporosis remains to be explained. 

6. TSH as a metabolic regulator 

We previously discussed (see paragraph 1.2) the role of TSH in the control of bone 

remodeling in animal models (Abe E, Marians RC et al, 2003). Systemic administration of 

TSH to ovariectomised rats has been shown to prevent bone loss and restore bone mass 

(Sampath et al, 2007; Sun et al, 2008) have demonstrated that intermittent administration of 

exogenous TSH in ovariectomised rats and mice have anti-resorptive effects. Recent findings 

indicate that TSH might play a crucial role in bone turnover in humans. Bone loss has been 

shown in women with polymorphism in the TSHR gene (Onigata et al, 2005). 

There is a growing body of evidence that variations of TSH even in its reference range may 

influence BMD. A higher BMD has been reported in postmenopausal women with TSH 

within the physiological range comparing to these with the low level of TSH (Baqi et al, 

2010). Clinical observations show that patients with subclinical hyperthyroidism and normal 

circulating thyroid hormone levels display osteoporotic changes (De Menis et al, 1992; 

Kisakol et al, 2003). Strong correlation between serum TSH and bone status has been 

demonstrated in postmenopausal women (Bauer et al, 2001; Morris et al, 2007). Based on 

these findings it has been suggested that it is the suppressed TSH rather than the elevated 

thyroid hormones that exert a deleterious effect on bone density. In a recent observational 

study, low-normal TSH values were shown to be associated with high prevalence of 

vertebral fractures in women with post-menopausal osteoporosis or osteopenia, even after 

correction for age, BMD, BMI and serum free-thyroxine values (Mazziotti et al, 2010). Svare 

et al, 2009, in a cross-sectional, population-based study, analyzed 5778 women without and 

944 with self-reported thyroid disease aged >40 years. Women with the TSH level <0.50 

mU/l had lower forearm BMD than the reference group and the prevalence of osteoporosis 

was higher in women who reported hyperthyroidism than in women without self-reported 

thyroid disease. Finally, Kim et al, 2010 investigated the association between serum 

thyrotropin (TSH) concentration and bone mineral density (BMD) in 1478 healthy euthyroid 

men in a cross-sectional community based survey. Lumbar spine BMD and femoral neck 

BMD were shown to increase with TSH level after adjustment for age, weight and height. 

The odds of lower BMD were significantly increased in subjects with low-normal TSH, 

when compared to high-normal TSH after adjustment for confounding factors. These results 
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suggested that a serum TSH concentration at the lower end of the reference range may be 

associated with low BMD in men.  

The role of TSH on bone metabolism has also been analyzed through markers of bone 

metabolism after administration of recombinant TSH (rhTSH). TSH has been demonstrated 

to activate directly osteoblasts according to the increased levels of N-terminal propeptide of 

type I procollagen (PINP) (Martini et al, 2008). Others showed that TSH promotes the 

production and activity of alkaline phosphatase and of osteocalcin (Sampath et al, 2007; Abe 

et al, 2003), while some studies found inhibition of osteoblast differentiation induced by the 

administration of TSH (Abe et al, 2003). These finding suggested that TSH may enhance the 

differentiation of osteoblasts precursors.   

Clinically, it has been found that the administration of exogenous TSH may have 

antiresorptive effects of TSH on bone turnover.  In women monitored for thyroid carcinoma, 

a short-term stimulation with rhTSH had inhibitory effect on bone resorption. Acute 

administration of rhTSH in thyroidectomised postmenopausal women with suppressed 

endogenous serum TSH resulted in diminution in serum C-telopeptides of type-1 collagen 

and increase in bone alkaline phosphatase (Mazziotti et al., 2005). A transient inhibition of 

bone resorption and increase in osteoblastic activity, measured by markers of bone 

metabolism, after acute TSH administration was demonstrated also by other studies (Karga 

et al, 2010; Iakovou et al, 2010; Martini et al, 2008).  

Overall, these data constitute the evidence for relationship between TSH and a change in 

bone mass in humans. 

7. Bone effects of thyroid hormone analogues 

Synthetic analogues of thyroid hormones display tissue-specific actions (Baxter and Webb 

2009). They have been developed for their lipid lowering activity by preferential activation 

of the TRβ1 isoform in the liver while sparing the TRα1 mediated cardiac effects (Angelin & 

Rudling, 2010; Pramfalk et al., 2010; Webb, 2010). Previous animal and human studies have 

demonstrated that thyromimetics can influence bone metabolism. Skeletal effects of thyroid 

hormone analogues recently reported in literature on cell lines, animal models and humans 

are summarized in Table 1. 

Previously studied selective thyromimetic, tiratricol (3,5,3’-triiodothyroacetic acid; Triac) 

was shown to enhance skeletal metabolic activity (Sherman, et al 1997) and to produce 

adverse effects on bone metabolism (Alvarez et al 2004; Brenta et al 2003; Kawaguchi et al 

1994a, 1994b). DITPA, 3,5-diiodothyropropionic acid, has a higher affinity for the TRβ 

compared to the TRα. Administration of DITPA to humans for 24 weeks was associated 

with a significant rise in serum osteocalcin, N-telopeptide, and deoxypyridinoline levels, 

indicating an increased bone turnover (Ladenson el al 2010b). GC-1, [3,5-dimethyl-4-(4′-
hydroxy-3′isopropylbenzyl)-phenoxy acetic acid],  binds TRβ1 with the same affinity as T3, 

but TRα1 with a 10-fold lower affinity (Scanlan, 2010). Bone sparing effects in adult female 

rats have been observed after treatment by GC-1 for 64 days (Freitas et al, 2003). In another     
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Thyromimetic Study Design Skeletal effects Reference 

Tiratricol 

(Triac) 

Cultured neonatal 

mouse calvariae: Triac 

vs. T3 

More potent stimulation of  

resorption and less potent 

stimulation of formation vs. 

T3 

Kawaguchi 

1994a 

Tiratricol 

(Triac) 

Cultured fetal rat long 

bones and neonatal 

mouse calvariae; Triac 

vs. T3 

Equal or greater stimulation of 

bone resorption by Triac than 

T3 

Kawaguchi 

1994b 

Tiratricol 

(Triac) 

Rats; Triac vs. T3 Greater increase in beta-CTX 

levels, no alteration of BMD 

Alvarez         

2004 

Tiratricol 

(Triac) 

Randomized clinical 

trial (2 months); 

athyreotic patients: 

Triac vs. L-T4  

Increased serum osteocalcin 

and urinary excretion of 

calcium and pyridinium cross-

links 

Sherman       

1997 

Tiratricol 

(Triac) 

Randomized clinical 

trial (11 months); 

euthyroid goitrous 

women: 

Triac vs. L-T4  

Significant increase in serum 

deoxypyridinoline and 

significant decrease in hip 

bone density, but ns compared 

to L-T4;  

Brenta           

2003 

DITPA 

 

Prospective, controlled, 

double-blind clinical 

trial (24 weeks):                 

DITPA vs. placebo 

Increase in serum osteocalcin,  

N-telopeptide and 

deoxypyridinoline 

Ladenson      

2010b 

Sobetirome 

(GC-1)  

Rat and mouse               

osteoblast-like cells  

Induction of differentiation 

and activity of osteoblasts 

Beber             

2009 

Sobetirome 

(GC-1)  

 

Female adult Wistar 

rats;  study groups (64 

days):                 

GC-1; T3 ; control 

No effects on BMD in L2-L5, 

femur, and tibia; no changes in 

histomorphometric 

parameters of the femur 

Freitas           

2003 

Sobetirome 

(GC-1)  

 

21-day old female 

hypothyroid rats, 

treatment for 5 weeks: 

GC-1 vs. placebo  

Induction of ossification,             

HC differentiation, expression 

of collagen II and X mRNA, 

increase in EGP thickness 

Freitas           

2005 

Eprotirome 

(KB2115) 

 

Randomized, double-

blind, multicenter 12-

week clinical trial:             

Eprotirome vs. placebo  

No changes in b-ALP and type 

I collagen breakdown product;   

ns increase in PINP  

Ladenson      

2010a 

Table 1. Skeletal effects of thyroid hormone analogues: b-ALP – bone alcalic phosphatase; BMD - 

bone mineral density; EGP - epiphyseal growth plate; HC – hypertrophic chondrocytes; ns – non 

significant; PINP - procollagen type I N-terminal propeptide 
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study, partial reversion of the skeletal development and maturation defects has been shown 

in hypothyroid rats after 5 week therapy by GC-1 (Freitas et al 2005). Eprotirome, (KB2115), 

3-[[3,5-dibromo-4-[4-hydroxy-3-(1-methylethyl)-phenoxy]-phenyl]-amino]-3-oxopropanoic 

acid, displays a higher affinity for TRβ1 isoform with hepatic uptake (Berkenstam 2008). 

Administration of eprotirome to humans for 12 weeks has not been associated with 

unfavorable bone effects (Ladenson et al 2010a). 

Altogether the data are consistent with potentially adverse skeletal effects of thyroid 

hormone analogues. However, no conclusive evidence can be drawn and further 

investigations would be justified to establish an accurate benefice/risk ratio before their 

clinical use. 

8. Conclusion 

The last decades have seen an increasing interest in the action of thyroid hormones in bone 

mineral homeostasis. In vivo and in vitro studies in cell lines as well as animal models have 

demonstrated a critical role of thyroid hormones, TSH and their receptors in the skeletal 

growth and its maintenance. However, many of the molecular mechanisms of thyroid 

hormone action remain still poorly defined.  

Clinical studies, consistently with animal data, indicate a close association between thyroid 

status and bone metabolism. Thyrotoxicosis results in an increased bone turnover, 

osteoporosis and a risk of fragility fracture. Thyroid hormone deficiency decreases bone 

turnover with a subsequent risk of bone fragility. Exogenous administration of suppressive 

doses of thyroxine was shown to negatively influences BMD and bone turnover. In future, 

prospective studies a prolonged time of observation will be necessary, as well as to increase 

the number of studied patients, in order to better assess the relative risk of osteoporosis in 

patients undergoing TSH-suppressive treatment. Another question that remains to be 

answered is if there is a benefit from treatment of subclinical thyroid disease on skeletal 

health.  

Finally, thyroid hormone analogues represent a promising therapeutic option for their lipid 

lowering activity. Nevertheless, literature data suggest their potentially adverse skeletal 

effects. No conclusive evidence can be drawn and further investigations would be justified 

to establish an accurate benefice/risk ratio before their clinical use. 
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