
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 14 

 

 

 
 

© 2012 Kihara et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Regulation of Differentiated Phenotypes  

of Vascular Smooth Muscle Cells 

Sho Shinohara, Satoko Shinohara, Takanori Kihara and Jun Miyake 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48573 

1. Introduction 

Smooth muscle cells (SMCs) are found in many organs, including the blood vessels, trachea, 

stomach, small intestine, and uterus. SMC-like cells are found in some other organs, for 

example, hepatic stellate cells in the liver and mesangial cells in the kidney. These SMCs and 

SMC-like cells play an important role in the formation and function of the cardiovascular, 

digestive, respiratory, and urinary systems. Vascular SMCs, which generally exist in the 

tunica media, constitute a large portion of cells in blood vessels. A main function of vascular 

SMCs involves maintaining vessel structure by involving vessel contractile and relaxation 

activities to control blood pressure. 

Vascular SMCs of each region are developed from different origins [1]. Vascular SMCs of 

large arteries near the heart originate from the neural crest cells of ectodermal origin, 

whereas other vascular SMCs are believed to differentiate from mesodermally derived 

mesenchymal cells. Among the mesodermally derived vascular SMCs, coronary SMCs are 

reported to come from the proepicardial organ [2]; and vascular SMCs of the root of the 

pulmonary artery and the lung artery stem from the second heart field [3]. Undifferentiated 

cells differentiate into progenitor cells or immature cells and ultimately differentiate into 

vascular SMCs with contractile ability. 

Vascular SMCs show different phenotypes according to external conditions, such as 

developmental stage, angiogenesis state, and disease. Vascular SMCs existing within the 

tunica media are normally called contractile SMCs. On the other hand, vascular SMCs that 

are found in disease, the fetal period, and angiogenesis are called proliferative SMCs (Fig. 1). 

Proliferative SMCs have less contractive ability than contractile SMCs because of the lack of 

sufficient myofibrils inside the cells. Proliferative SMCs have the ability to proliferate and 

migrate, and they actively synthesize proteins and secrete extracellular matrices (ECMs) like 

collagen and elastin. 
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Figure 1. Phenotypes of vascular SMCs. There are 2 phenotypes of vascular SMCs, immature prolifera-

tive SMC and differentiated contractile SMC. Vascular SMCs transform their phenotypes in response to 

the surrounding environment. Proliferative immature SMCs have abilities to proliferate, migrate, and 

synthesize proteins well. On the other hand, contractile fully differentiated SMCs adhere each other and 

have contractile ability.  

Because contractile SMCs change their phenotype into proliferative SMCs in response to the 

surrounding environment or growth factors and proliferative SMCs turn into contractile 

SMCs according to the surrounding environment, vascular SMCs are considered a unique 

cell type [4]. Proliferative SMCs and immature SMCs seen during the developmental period 

are considered identical. Therefore, the transformation from contractile SMCs to prolifera-

tive SMCs is considered the dedifferentiation process, whereas the transformation from 

proliferative SMCs to contractile SMCs is considered the differentiation process. These phe-

notype alterations of vascular SMCs are important for the regulation of angiogenesis, blood 

vessel remodeling, and homeostasis. In this chapter, we review the observation of regulato-

ry mechanisms of the differentiated phenotypes of vascular SMCs. 

2. Regulation of the vascular SMC phenotype in vitro by ECM 

When contractile SMCs are collected from a body and cultured in vitro, they immediately 

transform into proliferative SMCs and then begin to proliferate under in vitro conditions. 

These transformed cells show the same characteristics as the proliferative SMCs in vivo, 

such as the inability to contract and secrete ECMs [5]. This transformation process decreas-

es the expression of various actin-associated molecules that are seen in contractile SMCs 

and simultaneously increases the expression of proliferation-related proteins. On the other 

hand, it is difficult to retransform undifferentiated proliferative SMCs into contractile 

SMCs in vitro. 

Many researchers have attempted to achieve the retransformation of proliferative SMCs into 

contractile SMCs. Koyama et al. reported that proliferation of the undifferentiated 

proliferative SMCs can be inhibited by culturing on type Ι collagen gel [6]. Pauly et al. 

reported that culturing proliferative SMCs on Matrigel extracted from basal lamina-like 

matrix, a product from mouse Engelbreth-Holm-Swarm tumor, enables the inhibition of 

proliferation and induction of differentiation [7]. These studies suggest that regulation of the 

vascular SMC retransformation has the potential to be achieved through control of their 

ECM conditions. 
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Hayashi et al. reported that during a primary culture of chick gizzard SMCs or rat aortic 

vascular SMCs, the in vivo contractile state can be maintained by seeding cells on laminin-

coated dishes and adding insulin or insulin-like growth factor-1 (IGF-1) to the serum-free 

medium [8, 9]. However, once proliferative SMCs are transformed in vitro and then induced 

by the addition of a serum, platelet-derived growth factor-BB (PDGF-BB), or 

lysophosphatidic acid (LPA) to the maintaining medium, they do not redifferentiate into the 

contractile state despite being cultured under the previously mentioned condition [8, 10]. 

These studies suggest that SMC dedifferentiation is regulated by the extracellular 

environment and that extracellular signaling is an important factor in this differentiation 

and dedifferentiation process [8, 11]. 

Hirose et al. successfully induced redifferentiation of normal human aorta proliferative 

SMCs that were once dedifferentiated in vitro into a contractile state by culturing them on 

type IV collagen gel [12]. According to this report, SMCs take an elongated spindle-like 

structure and constructed network when cultured on type IV collagen gel (Fig. 2). At the 

same time, the expression levels of molecular markers of contractile SMCs, smooth muscle 

myosin heavy chain (SM-MHC) and smooth muscle α-actin (SM-α-actin), were increased, 

whereas comparable levels in proliferative SMCs were negligible or undetectable. 

Furthermore, elongated SMCs on type IV collagen gel could contract in response to 

stimulation by endothelin-I, a vessel contracting factor. Most important is that these 

phenomena were also observed under serum-added conditions. Primary SMC-like rat 

hepatic stellate and human kidney mesangial cells also showed elongated and network 

structures on type IV collagen gel [13]. These studies showed that it is possible to induce 

redifferentiation of proliferative SMCs into contractile SMCs in vitro and that the 

redifferentiation can be regulated by extracellular environments, especially by type IV 

collagen gel. 

 

Figure 2. Morphology of human aortic vascular SMCs on different substrates. Proliferative normal 

human vascular SMCs cultured on polystyrene culture dish or type IV collagen gel. The cells spread 

flatly on culture dish. On the other hand, once proliferated SMCs on type IV collagen gel elongate and 

form mesh-like multicellular network by formation of cell-to-cell junction. This morphology is a charac-

teristic of contractile phenotype of SMCs. 
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SMCs produce and deposit basal lamina components in their extracellular surroundings 

in vivo. They are covered by basal lamina and adhere to each other via the surrounding 

basal lamina. Major components of the basal lamina include type IV collagen, laminin, 

and proteoglycans like perlecan and nidogen. Type IV collagen is expected to work as a 

skeletal protein that consists of a micro meshwork at the basal lamina [14]. Therefore, the 

above-mentioned studies obviously indicate that the components of the basal lamina, 

especially type IV collagen, play an important role in maintaining the contractile state of 

SMCs in vivo. 

Hirose et al. reported that when human proliferative SMCs were cultured on dishes coated 

with nongel type IV collagen, the cells retained their proliferative phenotype [12]. Hayashi 

et al. examined the detailed behavior of human proliferative SMCs on type IV collagen ag-

gregates with a continuous change in the physicochemical properties [13]. They made a 

unique cell culture substrate, a hat-like-shaped gel on a cover glass using a type IV collagen 

solution. The central region of the hat-like-shaped gel has a domed gel structure surrounded 

by a broad brim-like region that consisted of a nongel form of type IV collagen aggregates. 

The proliferative SMCs in the domed gel region retained their initial round cell shape at the 

initial stage of culture (6 h) and eventually formed a multicellular meshwork at a later stage 

(24 h), as is seen with redifferentiated SMCs. However, the cells at the brim region started to 

adhere, spread, and proliferate soon after seeding. These results suggest that the physico-

chemical state of type IV collagen determines the vascular SMC phenotypes and that the gel 

form of type IV collagen, in particular, is essential to the induction of the redifferentiation of 

proliferative SMCs. Reports of inhibited proliferation of SMCs on type I collagen gel [6] and 

Matrigel [7] described earlier also indirectly imply the importance of the gel’s physicochem-

ical properties. 

What factor of the gel form of type IV collagen supports redifferentiation of proliferative 

SMCs? As described previously, the proliferative SMCs cultured on dishes coated with type 

IV collagen aggregates remained in the proliferative state [12, 13]. It is assumed that the 

mechanical property of gel exercises an effect on SMC state. Some mechanical receptors that 

actually sense various mechanical stresses, such as shear stress, are found [15, 16]. Cells may 

also have made an essential morphological change as a result of transition to the physically 

steady state. It was revealed that the mechanical properties of ECMs have significant effects 

on cell proliferation or differentiation [17]. By changing the stiffness of a culture substrate, 

for example, the differentiation of mesenchymal stem cells into many kinds of cells can be 

controlled [18]. This finding implies that the ECM is not merely a functional molecule but 

works as an important factor for cell phenotype as a physical substrate. Thus, regulation of 

the dedifferentiation and redifferentiation of the vascular SMC phenotype by ECM is as-

sumed to be a result of the ECM’s physicochemical properties. 

3. Regulation of gene expression of vascular SMC 

Studies to clarify the regulatory mechanism of vascular SMC gene expressions have been 

performed by many researchers. Contractile SMCs express unique marker proteins, such as 
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SM α-actin, SM-MHC, SM22α (also kown as transgelin), high-molecular weight caldesmon 

(h-caldesmon), and calponin [19]. On the other hand, increased protein expressions, such as 

low-molecular weight caldesmon (l-caldesmon), c-fos, Egr-1, epiregulin, and SMemb MHC, 

are seen in proliferative SMCs [19, 20]. 

A promoter analysis of these proteins has revealed the associated transcription factors 

and their binding sites that regulate the protein expressions unique to contractile  

SMCs. The CArG box (CC(A/T)6GG), one of these sites [19, 21], exists in the promoter 

region of proteins like SM22α, SM-MHC, SM α-actin, calponin, and caldesmon. It has 

been clarified that the expressions of contractile SMC-specific proteins are induced 

when the serum response factor (SRF), a ubiquitously expressed transcription factor, 

binds to the CArG box [19, 21]. Other than that, the E-box, a GATA-binding site, and an 

A/T-rich element are reported to regulate the gene expressions specific to contractile 

SMCs [22-24]. 

SRF was thought to be the main regulator of the SMC differentiation and dedifferentiation 

process because the CArG boxes exist in the promoter regions of most proteins expressed in 

contractile SMCs. However, the CArG boxes are found in the promoter region of proteins 

like c-fos or Egr-1, which are actively expressed by proliferative SMCs, and these proteins 

were also found to be regulated by the CArG box and SRF [25, 26]. These bipolar regulations 

of CArG box and SRF for the vascular SMC phenotypes have been given further 

explanations by the participation of transcriptional cofactors for SRF. In other words, SRF 

cofactors activate the gene expression specific to contractile SMCs either positively or 

negatively [27, 28]. 

The myocardin-related transcription factor (MRTF) family is attracting attention as the most 

sensible candidate for SRF cofactors that regulate vascular SMC differentiation the most 

[29]. The MRTF family consists of 3 SRF coactivators: myocardin, MKL1 (also called MAL, 

BSAC, or MRTF-A), and MKL2 (also called MAL16 or MRTF-B) [29-33]. Cysteine-rich pro-

teins, CRP1 (also called CSRP1) and CRP2 (also called CSRP2 or SmLIM), were also reported 

to be SRF cofactors that promote contractile SMC-specific gene expression [34]. CRP1 and 

CRP2 associate with SRF and GATA proteins, forming SRF-GATA-CRP1/2 complexes that 

strongly activate SMC-specific gene targets [34]. Moreover, it is reported that SRF-Nkx3.2-

GATA6 complex increases the SMC gene expression in chick gizzard SMCs [23]. As just 

described, several SRF cofactors have been reported to strongly activate the SMC-specific 

gene expression. These cofactors are assumed to play some roles in vascular SMC develop-

ment and differentiation. 

In addition, some cofactors, such as Elk-1, were reported to activate the expressions of 

specific proliferative SMC genes [35]. Elk-1 is a downstream protein of extracellular 

signal-related kinase (ERK) of mitogen-activated protein kinase (MAPK), whereas ERK 

directly activates it via phosphorylation [36, 37]. As Elk-1 binds to the Ets site on the 

genome as soon as it associates with SRF binding to the CArG box, it regulates the gene 

expression through promoters that have Ets site near the CArG box. Elk-1-induced gene 

expression activates several proteins, including c-fos [25]. Factors, such as serum or LPA, 
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that transform contractile SMCs into proliferative SMCs are thought to activate Elk-1 

through MAPK and promote the gene expressions of proliferation-associated proteins, 

such as c-fos. 

Thus, it is widely accepted that the gene expressions involved in the SMC phenotype 

regulation are controlled by many cofactors through the transcriptional factor SRF, but it 

remains unclear how each factor functions in vivo. 

4. Gene regulation by MRTF family 

The MRTF family interacts with SRF and potently enhances the expression of SRF-

dependent SMC genes. Myocardin is specifically expressed in the cardiac and circulation 

organs, whereas MKL1 and MKL2 expressions are widely distributed over various organs 

[29]. Myocardin-deficient mice died in the embryo stage, and vascular SMC differentiation 

was not observed [38]. MKL1 null mice were born normal and bore children but exhibited 

failure to nurse their offspring because the mammary myoepithelial cells were 

undifferentiated [39, 40]. MKL2 null mice had cardiovascular system defects, and the 

coronary SMCs that originated from the neural crest were undifferentiated [41, 42]. These 

results suggest that the MRTF family is widely involved in regulation of the SMC 

phenotype. Among the members of the MRTF family, MKL1 and MKL2, but not myocardin, 

are directly activated via the Rho-actin pathway [43, 44]. Myocardin and MKL1 strongly 

activate CArG box-dependent SMC gene transcription [29], whereas MKL2 is less effective 

in activating the SMC gene. 

The MRTF family has many conserved domains (Fig. 3). The MRTF family binds to the 

MADS domain of SRF by the basic rich 1 (B1) domain, and the glutamine-rich (Q) domain 

supports this binding [45]. A powerful transcription activation domain (TAD) exists on the 

c-terminus region and functions with heterologous promoters [46]. Although the MRTF 

family and SRF bind singularly, the MRTF family forms a homo/heterodimer via the 

conserved leucine zipper (LZ) domain [43, 47] and preferentially binds SRF as a dimer, 

which then forms a dimer on the CArG box [48]. 

Myocardin is reported to regulate histone acetylation by binding p300 histone 

acetyltransferase and deacetylation by binding to class II histone deacetyltransferase [49]. 

The p300 histone acetyltransferase and the class II histone deacetyltransferase interact with 

the TAD and Q domains of myocardin, respectively. The N-terminus region of MKL1 

directly binds to SPT16 and SSRP1, which are components of the facilitating chromatin 

transcription (FACT) complex [50]. The FACT complex functions as a histone chaperone and 

allows RNA polymerase II to traverse the nucleosomes by removing a H2A/H2B dimer [51]. 

Altering the repressive nature of the chromatin is necessary for the cell to implement all of 

the nuclear activities of the chromatin. Therefore, expression of the nucleosomal SMC-

related gene is assumed to be activated by the MRTF family (Fig. 4). In this manner, the 

MRTF family positively and negatively regulates the nucleosomal dynamics of the SMC-

specific gene. 
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Figure 3. Structure of MRTF family. RPEL, RPEL motif; B1 and B2, basic region; Q, glutamine-rich 

domain; LZ, leucine zipper domain; TAD, transcription activation domain. The numbers on the right 

side indicate the number of amino acids in each protein. 

 

Figure 4. The model for nucleosomal gene activation by MRTF family. DNA is shown schematically as 

solid lines. The nucleosomal characteristic of the chromosomal site is indicated by closed circles. RNA is 

represented as a dotted line. MRTF associates with SRF and activates transcription of the nucleosomal 

genes via recruiting the FACT complex into the coding region. The FACT complex remodels the chro-

matin structure and facilitates the progression of RNA polymerase II (RNAPII). Furthermore, MRTF 

interact with p300 and loosen the nucleosomal structure by acetylating the histone.  

The SMC gene activation function of the MRTF family can be regulated by other proteins. 

Elk-1, one of the TCF families, competitively blocks the binding of MRTF to the MADS 

domain of SRF [27, 45]. By SMC stimulation of PDGF-BB or serum, the C-terminus of Elk-1 

gets phosphorylated by ERK, and phosphorylated Elk-1 then moves into the nucleus. In the 

nucleus, Elk-1 competitively inhibits the binding of myocardin and SRF by binding to the 

MADS domain of SRF; as a result, it inhibits the myocardin-activated gene expression [27]. It 

is assumed that PDGF-BB stimulation simultaneously recruits histone deacetyl transferase 

(HDAC) to the CArG box of the SMC-specific region, the acetyl group in histone H4 gets 

deacetylated by HDAC, and the promoters finally reach a stable “silencing state” [28]. 

Phosphoinositide-3-kinase (PI3K) and AKT signaling from insulin/IGF-1 is essential for 

maintaining primary culture of the chick gizzard contractile SMC phenotype [9]. Inhibiting 

the PI3K-AKT signal induces dedifferentiation of the contractile SMCs into the proliferative 
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phenotype [9]. Especially in once-dedifferentiated proliferative SMCs, insulin receptor 

substrate 1 (IRS-1) gets phosphorylated by insulin/IGF-1 signaling, although IRS-1 

phosphorylates Grb-2/SOS but not SHP-2 [11]. The different downstream molecules are then 

activated between the contractile and proliferative SMC states. Signaling from insulin/IGF-1 

through PI3K-AKT promotes nuclear exports of Foxo4, which binds to myocardin in the 

nucleus and inhibits myocardin-activated transcription [52]. Therefore, PI3K-AKT signaling 

from insulin/IGF-1 enables myocardin function as an SRF cofactor in the nucleus to maintain 

the contractile state of SMCs. 

5. CRP2 contributes to SMC differentiation 

CRP family proteins consist of 2 LIM domains and 2 glycine-rich regions (Fig. 5). The LIM 

domain is a double zinc finger-like structure that mediates protein-protein interactions. The 

CRP family proteins CRP1, CRP2, and CRP3/MLP share high sequence homology [53]; 

however, their gene expression patterns differ. CRP1 is expressed in organs such as the 

arteries, stomach, and intestines, all of which contain abundant SMCs [54]. CRP2 is mainly 

expressed in vascular SMCs and is also found in the cardiac muscle in the developmental 

period [55]. CRP3 expression was confirmed in the striated heart and skeletal muscles [56]. 

As evidenced by their expression patterns, the CRP members are reported to be related to 

muscle cell differentiation [34, 55, 57]. CRP2, in particular, plays a role in the vascular SMC 

differentiation and dedifferentiation process. CRP2 expression is known to decrease when 

vascular SMCs dedifferentiate and proliferate in response to injury [58]. On the other hand, 

CRP2-deficient mice develop normally, and the expressions of the SMC-related proteins SM 

α-actin, SM22α, and calponin neither increase nor decrease [59]. In the CRP2-deficient mice, 

however, the effect of intimal regeneration or hypertrophy increases, which occurs when 

blood vessels gets injury. When vascular SMCs from wild-type and CRP2-deficient mice 

were stimulated by PDGF-BB in vitro, there were no differences in proliferation, but the 

migration ability was reported to be increased in CRP2-deficient mice.  

 

Figure 5. Structure of CRP. Gly, glycine rich region. CRP consists of two LIM domains and two glycine 

rich regions. The LIM domain is a double zinc-finger like structure. 

CRP2 localizes in the cell nucleus and cytoplasm, where it associates with the actin 

cytoskeleton [34, 60]. In chick embryo proepicardial cells, which are progenitor cells of 

SMCs in the coronary artery, endogeneous CRP2 localizes to the nucleus, whereas CRP2 

translocates to the cytoskeleton as these cells fully differentiate into SMCs [34]. It is believed 

that CRP2 plays different roles in these different locations. In the nucleus, CRP2 associates 

with GATA proteins and SRF (CRP2-GATA-SRF) and acts as a transcriptional regulator of 

SRF-dependent SMC genes [34, 61]. On the other hand, in the cytoplasm, CRP2 directly 
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associates with actin filaments, α-actinin, and zyxin in vitro [60, 62]. CRP1 also directly 

associates with actin filaments in vitro and in vivo and stabilizes actin filament formation in 

vitro [63, 64]. The distinct role of CRP2 in the cytoplasm is unclear, but CRP2 may be 

involved in the assembly and maintenance of the actin cytoskeleton in vascular SMCs. 

We recently focused on the dynamics of CRP2 localization with respect to actin stress fiber 

formation during vascular SMC differentiation [65]. The vascular SMC differentiation pro-

cess is a characteristic of the epithelial-to-mesenchymal transformation (EMT) [66]. The 

CRP2 localization dynamics during SMC differentiation is regulated by actin stress fiber 

formation accompanied by the EMT. In particular, nuclear CRP2 distribution is determined 

by the actin polymerization state [65]. These CRP2 localization dynamics can be interpreted 

from a simple in silico CRP2 localization kinetic model regulated by actin dynamics [65]. 

Reorganization of the actin cytoskeleton is able to affect vascular SMC differentiation pro-

gress through SRF activation and CRP2 translocation. The effects of cytoplasmic CRP2 for F-

actin become more important for vascular SMC differentiation. We now speculate that actin-

bound CRP2 plays direct and indirect roles in the stabilization of SMC differentiation. 

6. Perspective 

Phenotype alterations and differentiation of vascular SMC are important for angiogenesis, 

blood vessel remodeling, and homeostasis. These processes are regulated by extracellular 

signals. In particular, maintenance of the contractile SMC phenotype is highly supported by 

the basal lamina physicochemical properties, which are probably sensed by the actin cytoskel-

eton. On the other hand, vascular SMC differentiation and SMC-related gene expression are 

highly regulated by actin dynamics. Nuclear accumulation of MKL1 and MKL2 is controlled 

by the amounts of G-actin pool, and stimulation of F-actin formation activates contractile 

SMC-related gene expression by interacting with SRF and nuclear importing MKL1 and 

MKL2. However, the gene activation function of myocardin, the most important transcription 

factor of vascular SMC differentiation, is blocked competitively by Elk-1, which is activated by 

the extracellular signaling of serum and PDGF-BB. CRP2 localization is regulated by actin 

stress fiber formation, and nuclear and cytoplasmic CRP2 play a role in SMC differentiation. 

Therefore, the actin cytoskeleton is a key factor for vascular SMC differentiation and maintain-

ing the contractile SMC phenotype. However, the details of the regulatory mechanism and 

process of SMC differentiation, as well as maintenance of the SMC phenotype, remain unclear. 

Future studies will address the integrated interrelationship among factors including ECM, 

extracellular signaling, actin dynamics, and SRF cofactors in the process of SMC differentiation 

and phenotype maintenance. 
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