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1. Introduction

The integration of Wireless Sensor Networks and the Internet is growing in importance as
WSNs have been employed in a great variety of applications which need a common means
to share data over the Internet. In the recent years, many solutions have been proposed to
provide that integration. The simplest and most popular one is the gateway-based approach
[1], which basically converts between protocol stacks and logical address formats used in both
networks. In the overlay-based approach [2], some sensor nodes may implement the TCP/IP
protocols or some hosts may implement WSN protocols, being the reachable nodes and acting
like gateways in their respective network. Another solutions use the TCP/IP suite as the
communication protocols for sensor nodes [3]. These three approaches focus on accessing
the network nodes through their logical addresses, which has several problems, such as the
different addressing and routing scheme of both networks. Besides, employing TCP/IP in
the sensor nodes raises specific issues, like the header overhead of those protocols which is
very large for small packets, and the end-to-end retransmissions used by TCP which consume
energy at every hop of the path.

Mobile agents have also been used as an approach to dynamically access the WSN from the
Internet [4], answering queries while migrating through the sensor nodes. Another solution
adopts service-oriented middleware to integrate WSNs and the Internet, converting sensor
nodes into service providers for the Internet hosts [5]. Additionally, Web service approaches
have been presented [6], some of them converting all the WSN into a single web service, and
others allowing sensor nodes to offer their data through Web services that can be accessed
from the Internet. The main limitation of these approaches is that sensor nodes are considered
only as service providers, not consumers.

In order to overcome the aforementioned problems, this chapter introduces a framework
for integrating WSNs and the Internet by allowing the interoperability of their services.
Our approach aims at integrating applications (considered as services) instead of networks
(i.e., protocol stack and/or logical address formats mapping). This service abstraction is an

©2012 Domingues et al., licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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important advantage, since it offers to the application developers an easy and transparent way
to integrate the networks with seamless handling of addresses and protocols. Furthermore,
the provision of the capability of transparently requesting services in both directions is another
benefit offered by our approach. Although sensors are typically providers of sensed data,
there are some cases where it is better for the sensor to request a service outside the WSN.
That happens, for instance, when the application is too computationally demanding, when it
needs to store a huge amount of data, and/or when it requires global knowledge of the WSN.

The rest of this chapter is organized as follows. Section 2 describes a scenario of usage and
an overview of the framework. The framework elements, namely Smart, WISeMid, SAGe
and Clever, are presented in Sections 3, 4, 5 and 6, respectively. Section 7 discusses an
energy consumption evaluation of those elements, and a real application that emphasizes the
usefulness of the sensor nodes’ capability of being service requestors is also analyzed. Finally,
Section 8 presents some concluding remarks.

2. Illustrative scenario

This section presents a scenario of usage of the framework which is depicted in Figure 1 and
comprises two distributed applications.

Figure 1. Scenario of usage of the framework

The first application monitors an area (such as a house, a factory, etc.) to detect and report
the presence of intruders. It is composed by two services: Surveillance and Recognition.
The Surveillance service runs in a sensor node and captures images of any moving target.
Each captured image has to be analyzed to verify if the moving target is really a potential
threat. This is necessary to avoid reporting the presence of a cat, for example. Therefore, the
application has to perform an image recognition procedure to classify the moving target as
human or non-human. This kind of task is too computationally demanding and resource
consuming, which makes it non-suitable for the resource constraints of the sensor nodes.
Considering this, it may be more worthwhile for the Surveillance service to invoke an image
recognition service outside the WSN instead of performing itself that task.

Now consider that an Internet host provides the (image) Recognition service, which offers an
operation that receives an image, analyzes it and classifies it as human or non-human. The
Surveillance service sends the captured image to the Recognition service and, if it signals that
the target is a human, the Surveillance service reports the presence of the intruder.

The second distributed application monitors the temperature of an area (such as a forest) to
detect high temperatures and prevent potential fires. This application is composed by two
services: Monitoring and Temperature (see Figure 1). The Monitoring service runs in an
Internet host and keeps track of the environment temperature of the area of interest. For
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that purpose, it uses a Temperature service that runs in a WSN which has been deployed
in that area. This service measures and returns the environment temperature value. Hence,
to observe the changes in temperature, the Monitoring service calls the Temperature service
periodically.

Both described applications spread out through the Internet and a WSN. In order to allow the
construction of this kind of distributed application composed by services from both networks,
some issues should be addressed. First, there must be a uniform way of describing those
services regardless of their provider being sensor nodes or Internet hosts. Then, based on
that description, there must be a mechanism to discover those services and use them. Those
services should be able to communicate with each other irrespective of their location. Also, the
service location should not influence the way it is accessed. In other words, a service provided
by a WSN node should be accessed the same way that a service provided by an Internet host.

Additionally, the distributed applications described above focus on specific areas of interest.
The surveillance, for instance, would define the border region of a WSN as a critical one to be
monitored, whereas forest fire detecting applications may define clearings that resulted from
previous fires as the critical regions to be monitored (since they tend to be more propitious
for new fires due to their dry vegetation and soil). Therefore, there should be a mechanism to
select a group of nodes in the WSN so such areas can be delimited.

Those issues are handled by the presented framework as described in the following sections.

2.1. Framework overview

For the purpose of enabling the construction of applications that are distributed between
WSN’s and Internet’s nodes, the framework comprises four components: a service model
to describe services from both networks; a communication infrastructure (middleware)
that enables the interoperability of WSN’s and Internet’s services; an advanced gateway
which is responsible for providing the location and access transparency for the services’
communication; and a service composition tool which enables the creation of logical regions
in the WSN by just composing Web services that are available on the Internet.

The service model is named Smart (Service model for integrating Wireless Sensor Networks
and the Internet) [7] and is able to describe both WSN’s and Internet’s services. Describing
a service in a uniform way despite its location is essential to provide the integration of those
networks at service level. The Smart model allows a service provider to characterize its service
by making available some information about it. That information includes functional details,
such as the service interface, nonfunctional details, such as service properties, and information
on how to interact with it so the service can be accessed.

Once the services have been described, a middleware called WISeMid (Wireless sensor
network’s and Internet’s Services integration Middleware) [8] provides a communication
infrastructure for the services interaction, supporting the integration of WSNs and the Internet
at service level. In this context, applications running in the Internet/WSN nodes may play the
role of service providers or service users, where a service user is able to communicate with
a service provider no matter whether they are running in the same network or not. For that
purpose, WISeMid provides an infrastructure that allows integrating these services in such a
transparent manner that services provided by both WSN nodes or Internet hosts are accessed
the same way. Moreover, WISeMid implements the following mechanisms for saving energy
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in WSNs [9]: Aggregation service, which aggregates the last n data sensed by a node; Reply
Storage Timeout, which avoids sending equivalent messages to the sensor nodes while the
last sensed data is still considered up-to-date; Automatic Type Conversion, which removes
unnecessary bytes from the messages; and the implementation of asynchronous invocation
patterns, which prevents the sensor application from wasting power for being blocked during
a service request.

The access and location transparency provided by the middleware is performed by the
gateway, which is called SAGe (Sensor Advanced Gateway) [10]. Running in an Internet
host which is connected to the WSN sink node, SAGe’s main function is to act as a service
proxy between both networks by enabling the communication between services running on
Internet hosts and WSN nodes in such way that the service user should invoke a service
without knowing if it is being provided by a WSN node or an Internet host. Additionally,
SAGe is involved in all energy-saving methods performed by WISeMid.

The service-level integration of the WSNs and the Internet is enhanced by a Web service
composition tool named Clever (Composing logical regions via services). This tool enables
the definition of logical regions in WSN by composing Web services available in the Internet.
Having a Web service acting as a proxy to each WSN node, the definition of a logical region in
the WSN consists of defining a Web service composition. Once that composition is deployed,
a new Web service is created and an invocation to it is passed to all sensors belonging to the
WSN logical region and represented by the composition.

The next sections will describe in details each of those components.

3. Smart

The first element of the framework is Smart (Service model for integrating Wireless Sensor
Networks and the Internet), a service model that is suitable for both Internet and WSN
services, promoting the integration of those networks. In other words, both services designed
for a WSN and services designed for the Internet may be described using the Smart model.
Although there are many service models for the Internet [11, 12] and a few service-oriented
models for WSNs [13, 14], for the best of our knowledge, Smart is the first service model able
to describe both WSN and Internet services.

Either on the Internet or in a WSN, a service provider needs to characterize its service by
making available some information about it. The essential and simplest information that must
be available is the service identification and what it can do. The service interface offers that
information by specifying the service name and the operations it provides. A description of
how the service provides its operations may also be exposed. That information concerns the
service functionality and thus compose the service functional description.

A service user may be interested in knowing specific details of the service provider, the
service implementation or its running environment. That information is called nonfunctional
description and may include, for instance, the bit rate of a service provider or its location.

Furthermore, for a service to be accessed, information on how to interact with it needs to be
defined. That is so called interoperability information and includes the format of the messages
the service understands and its access point.
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With that in mind, the Smart model defines a service as being composed by functional and
nonfunctional descriptions, from which depends its interoperability information.

3.1. Functional description

To be able to request a service and the execution of one of its operations, a service user (client)

needs first to be aware of the service name and what operations it can perform. More than
that, the client needs to know the input and output data of a successfully execution of the

service, as well as the possible errors that an unsuccessful invocation may generate in order

to handle them. That information is commonly referred to as the service interface.

Some services share the name and the operations they provide, but may produce different

results by performing different actions or being under different conditions to execute the same

operation. Those services are said to have the same type, and the differences between them

are expressed using properties, which assume different values from service to service.

Another service characteristic that concerns its functionality is the period of time the service

instance needs to exist, which is known as its lifecycle and is closely related to maintaining

the service state between subsequent invocations. According to the lifecycle patterns defined

in [15], service instances may be static, per-request or per-client. A static instance may be used

when the service is independent of any service user (client), and its state must be available

to all clients between individual invocations. When the service does not require maintaining

state and is accessed by many users at the same time, an instance per request is more suitable.

A per client instance is appropriate when it is important to maintain the service state for

subsequent invocations by the same user, which happens when the logic of the service extends

the logic of the client.

Considering all that information about the service functionality, the Smart model defines the
service FunctionalDescription as being composed by its Interface and its Behavior,

as shown by the class diagram in Figure 2. Those elements are explained in detail as follows.

3.1.1. Interface

As previously stated, the interface contains the service name and the operation(s) it provides

(see Figure 2). The service’s name is used by a service client to locate a particular service.

Concerning the service operations, each Operation is defined by a name, an operation

type, a list of typed parameters (Argument), a result (Outcome) and a list of possible errors

(Fault). There are two types of operation: Interrogation, which is a request-response

operation; and Announcement, which is an one-way operation. The list of errors represents

exceptions raised by the operation, each of which is defined by a name and a message.

In the WSN context, an operation is either a Command or an Event, which is actually a

feature of nesC, one of the most used programming language for developing applications

for WSNs [16]. Commands are implemented by the interface’s provider, whereas events are

implemented by the interface’s user.

The ServiceType is used to categorize services according to their capabilities. That means

that all services of the same type, share the same interface and the same properties,

145A Framework for IntegratingWireless Sensor Networks and the Internet



6 Will-be-set-by-IN-TECH

Figure 2. UML Class diagram of the Functional description

being distinguished by the different values of their properties. Also, a service type may

extend another one (parent), inheriting its interface signature, while being able to add more

operations, and its properties, also being able to define additional ones.

3.1.2. Behavior

The service behavior includes a BehaviorType and a set of Actions, as depicted in Figure 2.

The behavior type defines the service’s lifecycle: static, which specifies that the service has

a unique instance; per-client, which states the service has an instance for each client; and

per-request, meaning that each request is handled by a different instance of the service.

The Actions element defines the service behavior in terms of activity structure. It specifies

the workflow (execution) of the service. This workflow may be simple, specifying the

expected execution order of the service operations, which is necessary when the execution

of an operation affects the execution of other one. It may also be more complex, identifying

the actions of the operation and specifying the ordered sequence in which they are performed.

3.2. Nonfunctional description

The functional description specifies what the service can do, but describing how the service can

do it may be very useful or even necessary for a service user to choose the service that best fits

their needs. This extra description includes characteristics (properties) that are not directly

related to the functional description of the service, such as the server geographic location or

the service security, and therefore is commonly referred to as nonfunctional description.

A particular subset of nonfunctional characteristics is very important for choosing the proper

service: quality of service (QoS) parameters. Although the term QoS is typically related to
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network performance parameters (such as bandwidth, latency and error rate), in a service

related context it covers a wider range of service properties which can be used as quality

indicators, including, for instance, accuracy, dependability, robustness, security, customer

service, etc.

With that in mind, Smart defines that the NonfunctionalDescription of a service
specifies its nonfunctional properties (Property) and QoS parameters (QoSParameter), as
depicted in Figure 3. Those elements are explained in detail next.

Figure 3. UML Class diagram of Nonfunctional description

3.2.1. Property

The Smart model elements which describe properties (Property, PropertyType and
PropertyMode), are based on the CORBA Trading Object Service Specification [17].

In Smart, each Property can be described by a name-value tuple, where name is a string that
names the property and value is the value assigned to the property (see Figure 3).

The service properties are actually classified in property types, which are related to the
ServiceType element of the functional description (see Figure 2). A PropertyType is
defined by a name, a property value type (e.g., integer, string, etc.) and a mode. The
mode (PropertyMode) defines whether a property is mandatory and/or readonly. When a
property is Mandatory, it means that an instance of the service type that defines this property
must provide an appropriate value for it when registering the service. When it is ReadOnly,
the value for this property is optional, but if provided, it may not be changed after the service
is registered. When it is both mandatory and readonly (MandatoryReadOnly), the property
value should be provided when registering the service and may not be changed after that.
Finally, when a property is Normal, it is optional and its value may be subsequently modified.
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3.2.2. QoS Parameters

QoS parameters refer to service properties that can be used as indicators of quality, as said
previously. Based on the SMEPP service model description [18], the Smart model defines that
a QoSParameter is described by a name, a type, a unit and a QoSDomain (see Figure 3).
The name is a string that specifies the QoS parameter name, such as “throughput”. The type
describes the data type of the QoS parameter value (e.g.: integer, float, etc.), whereas the unit
represents the unit of measurement (such as second, bits, percent, etc.).

A QoSDomain specifies the domain of the information enclosed by the QoS parameter.
Possible QoS domains include runtime (e.g.: performance), transaction support (e.g.:
integrity), configuration and cost (e.g.: stability), and security (e.g.: authentication) [19].

Some QoS parameters are composed by two or more parameters. For example, the
“performance” parameter is composed by “response time”, “throughput” and “latency”. Such
compound QoS parameters may be described by a QoSAggregation, with two or more QoS
parameters, each of which represents a parameter member of the composition.

Also, QoS parameters may affect other ones and this influence is expressed by the
QoSRelationship, which defines the impact factor as one of the following values:
DirectProportionality (i.e., the related parameter values have the same behavior: if one
increases or decreases, so does the other), InverseProportionality (i.e., the parameter
values have the opposite behavior: if one increases, the other decreases; and vice-versa) or
Equality (i.e., the parameters have the same value).

3.3. Interoperability information

According to [20], interoperability “is about the meaningful sharing of functionality and
information that leads to the achievement of a common goal”. For that to be possible, a message
exchange pattern should be defined by the model. It specifies the message sequence and
the exchange rules, which should be followed by both sides of the interaction and is usually
specified by a protocol definition. Also, for the interoperability to happen, the services must
provide a kind of identification, a way to be accessed.

Before being able to exchange messages, the services need to find each other. By finding, we
mean searching and retrieving information about the services which satisfy some user defined
conditions. The service discovery procedure is responsible for that task and is implemented
by some special services that offer operations for registering and searching services. The
most simple discovery service is called Naming service and locates a service based only on
the service name. Trading service is another special service that implements a discovery
procedure, which discovers a service based on its type and a set of property values that
describe it.

Still concerning service interoperability, a set of policies may be defined to guide the services
interaction. Different policies may be involved in the process of service discovery to check the
constraints that either the service provider or the service user specify to protect the process of
communication or sharing the information.

In Smart, all that information that concerns the way a service may interact with another is
represented by Interoperability element, which consists of Policies, Discovery and
Reachability, as illustrated in Figure 4(a).
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(a) UML Subsystem diagram of Interoperability
information

(b) UML Class diagram of Policy

Figure 4. UML diagrams of Interoperability information

3.3.1. Policy

As stated previously, policies may be used by either the service provider or the service user to
protect the process of communication or sharing the information. For that end, each Policy

defined by a service prescribes a set of Constraints for interacting with it, as depicted in
Figure 4(b). Those constraints define the ideal, acceptable or desirable service behavior during
an interaction with another service.

In the Smart model, a Constraint may describe an Obligation – a behavior that is
required; a Permission – a behavior that is allowed to occur; a Prohibition – a behavior
that must not occur; and an Authorization – a behavior that must not be prevented for the
services involved. Note that a permission is equivalent to there being no obligation for the
behavior not to occur, whilst an authorization is actually an empowerment.

Constraints may contain quantifiers (e.g.: for all, there exists), constants, data types (e.g.:
integer, String), operators (arithmetic operators, comparison operators, boolean operators,
implication operators) and structural constructs (e.g.: let in, if then else) [21].

3.3.2. ReachabilityInfo

The ReachabilityInfo element is in charge of providing the service information that
enables other services to locate and interact with it. Therefore, it should define the EndPoint
to which a client can direct messages to invoke actions and the MessageExchangePattern,
which specifies the protocol to adopt for message exchange using the endpoint (see Figure 5).

Since Smart aims at integrating the Internet and WSNs, it specifies two kinds of end point to a
service, one for each network. For an Internet service, the InternetEndPoint is described
by the IP address of the host (ipAddress) and the port number through which the service is
provided (portNumber). For a WSN service, the WsnEndPoint may identify a nodeId or a
groupId, as a service may be provided by a single node or by a group of nodes.

For the MessageExchangePattern, the Smart model defines that the
Publish/Subscribe communication model or the Request/Reply may be used.
The former has been chosen due to its suitability in WSNs, since it saves energy by sending
a message only when an event of interest is detected. The request/reply approach has been
chosen for being the most suitable for server/client communication. For now, only the
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Figure 5. UML Class diagram of Reachability information

request/reply has been detailed in the model, with a protocol being defined for that purpose.
The request/reply protocol, namely WIOP (see Section 4.3.1 for details), defines different
message formats for Internet service (WIOPi) and WSN services (WIOPs), to handle their
specificities, and provides the mapping among those formats (especially concerning the data
types) in order to ensure that the exchanged information has the same meaning for both
message sender and receiver, no matter if one is located at the Internet and another at a WSN.

3.3.3. DiscoveryProcedure

As its name suggests, the DiscoveryProcedure element models the service discovery
procedure, which may be defined as the act of finding a service that may have been previously
unknown and that meets certain functional criteria. Since additional nonfunctional criteria
may be used to locate the desired service, the DiscoveryProcedure element interacts
with the FunctionalDescription and the NonfunctionalDescription elements, as depicted in
Figure 6.

Smart defines two discovery procedures: the Naming, that uses only functional criteria, and
Trader, that uses functional and nonfunctional criteria. Both procedures are detailed next.

3.3.3.1. Naming

The Naming component represents the Naming discovery procedure, which is used to

register/locate a service based on its name. To provide scalability to the Naming Service, the

Smart model defines two architectures for it: Flat and Hierarchical (see Figure 6). The

flat Naming uses unique, globally distinguished names, whilst the hierarchical one deals with

different domains. Therefore, the chosen architecture defines the name space, that comprises

a Context in which names are unique and valid.

3.3.3.2. Trader

The Trader component represents the Trading discovery procedure. The Smart model

definition of the trading function is based on the CORBA Trading Object Service Specification

[17] and the ANSA Model for Trading and Federation [22].
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Figure 6. UML Class diagram of Discovery

As stated before, the trading service is concerned with discovering a service based on its

type and a set of property values that describe it. The act of registering information about

a service in the Trader is usually called exporting a service offer. A service offer consists of

the service type name, a reference to the interface that is provided by the service, and zero or

more property values for the service. Those properties correspond to the ones that are listed

in the associated service type (and parents), and specifying a value for them depends on the

mode assigned to each one of them. A value must be provided for every property that has

been defined as mandatory (including both Mandatory and MandatoryReadOnly modes) in

the service type. Providing a value for the other properties is optional.

4. WISeMid

As mentioned earlier, WISeMid provides a communication infrastructure for services

interaction, where applications running in the Internet/WSN nodes act as service providers

or service users that are able to communicate irrespective of being at the same network

or not. As depicted in Figure 7(a), those applications (services) should be developed in

different technologies, such as Web Service, Java RMI, EJB and JMS, although WISeMid

current implementation supports only WISeMid services and Web services.

(a) WISeMid logical view (b) WISeMid physical view

Figure 7. WISeMid views
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Figure 7(b) presents a physical view of how WISeMid spreads out through the Internet and

WSN. The WISeMid implementation for WSN and Internet is not the same, as they have

different requirements and components (that will be explained in the subsequent sections).

Physical communication is performed through an Internet host that is connected to the WSN
sink node via a serial port (USB). This host executes a special WISeMid service called SAGe,

which acts as a proxy between both networks (see Section 5).

4.1. WIDL

The first step to enable the services interaction is to specify a notation to describe a service. For

this particular purpose, we have defined the WISeMid IDL – WISeMid Interface Definition

Language. It enables us to define service interfaces in a uniform way, wherever the service

runs (Internet or WSN) and whatever the implementation language (Java or nesC). Based on

Smart model definition of the service interface and its properties (see Sections 3.1.1 and 3.2.1),

the general structure of a service definition in WISeMid IDL is presented below:

1: module PACKAGE_NAME{

2: interface INTERFACE_NAME{

3: [OPER_TYPE] OUTCOME_TYPE OPER_NAME([TYPE ARG1,...]) [raises(EXCEPTION_NAME1,...)]

4: }

5: [type TYPE_NAME [extends TYPE_NAME] {

6: propertyType [PROP_MODE ,] PROP_NAME , PROP_TYPE;

7: }]

8: [properties TYPE_NAME {

9: [property PROP_NAME = VALUE;]

10: }]

11:}

First, the module (package) that contains the service should be specified (1), followed

by the service interface, which includes its name (2) and provided operations (3). Each

operation has a name, input/output typed parameters and may raise exceptions. An

operation is by default a request-response operation, but it may be defined as a one-way

operation by using the reserved word oneway as the operation type. (Note that in

Smart, request-response corresponds to the interrogation type and one-way is the

announcement type.) The service type definition (5-7) includes its name, its parent’s

name (5), and a list of property types, each of which comprising a property mode (optional),

a name and a type (6). The property mode options are NORMAL (default), MANDATORY,

READ_ONLY and MANDATORY_READ_ONLY.

Property values are defined in properties clauses (8-10), which are related to the service

type that specified the property type (8). Every property type defined as MANDATORY or

MANDATORY_READ_ONLY in the service type must have a property value associated to its

name in the properties clause (9). Specifying a value for property types of other modes is

optional. Additionally, property values that have not been defined in the service type may be

specified. The definition of service type and properties is optional.

The service definition in a WIDL file may be used for automatic code generation. To perform

that task, we have developed a tool, namely ProxiesGen, that can interpret a WIDL file and

generate the proxies (i.e., stub and skeleton) related to the described service according to a

command line parameter, which specifies if the service is supposed to be provided by a WSN
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node or by an Internet host. When service type and properties are defined, ProxiesGen adds

to the server code the creation and registration of the service type in the Trader. Also, a service

offer with the defined property values is created and exported.

4.2. Architecture

Based on the DOC middleware layers [23], the WISeMid architecture consists of three layers:
Infrastructure, Distribution and Common Services (see Figure 8).

Figure 8. WISeMid Architecture

The Common Services layer includes services that are not particular to a specific application
domain: Aggregation, which performs sensor data aggregation; Grouping, which defines
clusters inside the WSN; Naming and Trader, that store information needed to find and access
a service (they run in the Internet); and SAGe, that is in charge of converting and forwarding
messages from/to WSN (it runs in the Internet). Additionally, SAGe also provides location
transparency acting as a service proxy between both networks, as described in Section 5.

The Distribution layer includes the following elements: Stub, Requestor, Skeleton and
Marshaller, which are basic middleware elements [15]. Those elements handle WIOP
messages. WIOP is the request/reply protocol specified by Smart (see Section 3.3.2).

The Infrastructure layer consists of the Client Request Handler and the Server Request
Handler, which handle network communication using the communication facilities provided
by the operating systems, e.g., sockets (Windows) and ActiveMessageC (TinyOS).

4.3. Implementation

The WISeMid implementation is divided into two parts, one for the WSN nodes, developed
in nesC, and another for Internet hosts, developed in Java. The elements of the infrastructure
layer (Client Request Handler and Server Request Handler) and of the distribution layer (Stub,
Skeleton, Requestor, Marshaller and WIOP) have been implemented in both languages, as
nodes from both networks may play the role of user or provider of the service. Actually, due
to sensor nodes’ limited resources, some elements are not present in the WSN: the Requestor
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is not implemented by the WSN service users (its functions are deployed by the Stub), and
WIOP messages are treated as byte sequences, making the Marshaller unnecessary.

The above elements, except for WIOP, are basic middleware elements, thus their
implementation will not be described here. The Aggregation and the Grouping elements
are common services that run in the WSN. The Aggregation service may be considered as
a method to save energy in the sensor nodes and therefore it is described in Section 4.3.4 with
other energy-saving approaches that have been implemented in WISeMid. The Grouping
service was implemented as a web service composition approach that enables grouping the
WSN nodes into logical regions. This approach is used by Clever and described in Section 6.1.

As SAGe has an essential role in WISeMid, it is described in Section 5. The other architecture
elements (WIOP, Naming and Trader) are described as follows.

4.3.1. WIOP

Specified by the Smart model as the message exchange pattern to enable service
interoperability (see Section 3.3.2), the WISeMid Inter-ORB Protocol (WIOP) is a GIOP-based
protocol that defines the Request/Reply messages between clients and servers. A WIOP
message is divided into header and body, as depicted in Figure 9(a).

(a) WIOP Message header (b) WIOP Message body

Figure 9. WIOP (WISeMid Inter-ORB Protocol)

The WIOP message header is composed by the following fields: endianness (e.g., big endian
or little endian); msgType (e.g., request or reply message); and msgSize, which stores the
message size in bytes. It is worth noting that WIOP messages do not contain fields for
source/destination ID (such as sensor ID or IP address). That happens because, as other
inter-orb protocols (e.g. GIOP), WIOP uses the protocols of the lower layers in both networks
(that is, Active Message in WSN and TCP/IP in the Internet), and WISeMid infrastructure,
more specifically SAGe, handles the information concerning addressing.

The WIOP message body may contain a Request or a Reply message. Those messages, which
have also a header and a body, are illustrated in Figure 9(b).

The Request message header’s main fields are: requestId, which stores the Request message
ID; responseExpected, which signals whether the request expects a Reply message or not;
serviceId, which is the ID of the requested service; and operation, which represents
the name of the operation being invoked. Those are the fields that compose the Request
message header in the Internet version of WIOP (called WIOPi). The version that runs
in the WSN (called WIOPs) contains three additional fields (emphasized in Figure 9(b)):

154 Wireless Sensor Networks – Technology and Applications



A Framework for Integrating Wireless Sensor Networks and the Internet 15

currentPacket and lastPacket, which are the current and last packet ID, respectively,
and operationSize, which represents the length of the operation name. This last field is
necessary because the operation field has no fixed size. It is adjusted to the length of the
operation name, to keep the message as minimal as possible. Furthermore, a single WIOPs

may not be enough to transmit the total amount of data to/from a WSN service, due to the
size limitation imposed by TinyOS’ Active Message [24]. In such cases, the data is divided in
many WIOPs messages, and the currentPacket and lastPacket fields are used to control
the message fragmentation/reassembly at the sensor node and SAGe.

The Request body consists of the number of arguments (numArgs) followed by a sequence of
type and value of each argument. Also, the way arguments are stored in the Request body
is different for the WSN version. In the WIOPi, the arguments are stored one by one, being
each argument composed by a type and a value. For example, three arguments would be
stored in the following sequence: type1, value1, type2, value2, type3, value3. In the WIOPs,
only the first argument is individually stored (with its type and value in a row). From the
second argument on, the arguments are grouped into pairs where the types of both arguments
come first followed by their respective values. That happens because types are represented by
integer numbers between 0 and 11, and therefore each type can be stored in only 4 bits. Hence
two types can be grouped into one byte, being followed by their related argument values. The
first type is a special case as it uses the second half of the byte that carries the numArgs field.
Considering this configuration, three arguments would be stored in the following sequence:
type1, value1, type2, type3, value2, value3.

The Reply message header main fields are: requestId, which stores the related Request
message ID; and replyStatus, which signals whether there was any exception while
executing the request, and its possible values are NO_EXCEPTION (0), USER_EXCEPTION
(1), SYSTEM_EXCEPTION (2) and LOCATION_FORWARD (3). As the Request message
header, the Reply message header in the WIOPs contains the additional fields related to
the message fragmentation/reassembly: currentPacket and lastPacket. The Reply
body is composed by the result type and its value for both formats: Internet and WSN (see
Figure 9(b)).

Besides saving energy by its reduced size, the sensor message format also concerns about
sensor limited processing as it is already deployed as a byte array, avoiding the need for a
Marshaller implementation.

The WISeMid Naming Service, the Trader and Internet services use the Internet format
(WIOPi), while the sensor services use the WSN format (WIOPs). Only SAGe handles both
formats.

4.3.2. Naming service

The WISeMid Naming Service implements the Naming discovery procedure defined by Smart
in Section 3.3.3.1. It stores the references of services executing in the Internet and WSN in such
a way that a service may only be accessed/used after being registered in the Naming Service.

The Naming Service’s interface includes five operations: Bind, to register a service by its name,
associating it with its reference; Lookup, to return the reference associated to a service name;
Rebind, to change the reference that is associated with a service name; Unbind, to unregister a
service name; and List, to list all registered services. The service reference includes the service
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ID, endianness and the Internet end point of the service, which consists of its IP address and
port number. Note that, since the Naming service runs in the Internet, the service references
handled by it have no information about WSN end points. Nevertheless, WSN services may
also be registered using the Internet end point of SAGe, which handles another type of service
reference to store WSN end point information, as described next. It is worth mentioning that
WISeMid Naming Service has a flat architecture, with a global name space.

4.3.3. Trading service

WISeMid’s Trader implements the Trading service, another discovery procedure described by

Smart (see Section 3.3.3.2). It has a graphical user interface (GUI) that allows users to define

service types and property types, as well as export and query service offers.

The service type comprises a name, a reference for the service interface, a parent and a list

of property types (those last two are optional attributes). When defined, each property type

comprises a name, a property value type (e.g., integer, string, float, etc.) and a mode (which

defines whether a property is mandatory and/or readonly) (see Section 3.2.1).

A service offer is the information that is registered in the Trader about a service and the act

of registering that information in the Trader is called exporting a service offer. As stated in

Section 3.3.3.2, a service offer consists of the service type name, a reference to the interface that

provides the service, and zero or more property values for the service, where those properties

correspond to the ones that are listed in the associated service type and specifying a value

to them depends on the mode associated to each one of them. A value must be provided

for every mandatory property (both Mandatory and MandatoryReadOnly modes) of the
service type. On the other hand, providing a value to the other properties is optional, and

properties that have not been specified in the related service type may be added in the service

offer (with values being provided to them). WISeMid implements all those characteristics and

adds a service offer identification number to uniquely identify a service offer.

4.3.4. Energy-saving methods

Since energy is a scarce resource in WSNs, performing energy-saving methods is essential

to extend the sensor nodes lifetime and thus the WSN lifetime. This section presents some

energy-saving approaches that have been implemented in WISeMid [9].

4.3.4.1. Aggregation

Besides this in-network data aggregation, which is used by most middleware, WISeMid

implements an aggregation service which aggregates the last n data sensed by a node. The

effect of this service is to aggregate results of services provided by a sensor node, sending

only one (1) reply message instead of n. In addition to avoiding the transmission of n-1 reply

messages, this procedure also eliminates the need of sending n-1 requests. The service user

may send just one request to receive the same n values but in an aggregated form.

4.3.4.2. Reply storage timeout

Considering that some physical aspects sensed by a sensor node, such as temperature, do

not present a great variability in terms of second/minute time scale, this approach avoids
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sending equivalent Request messages (that is, messages asking for the same service with the

same parameters) during a short period of time, as the returned data are likely to be the same.

Hence, SAGe groups equivalent Request messages and, for a configurable period of time,

only one Request is sent to the sensor service provider, and the received Reply message is
stored and forwarded as an answer to all the equivalent Request messages that arrive during

that period. For the cases where the sensed value changes very often, this procedure may be

turned off by setting to null (i.e., 0 seconds) the Reply message storage timeout.

4.3.4.3. Automatic type conversion

Since the transmission/reception of data is very energy consuming, the more data is
sent/received by a sensor, the more energy is spent. With that in mind, SAGe performs an
additional step when converting an Internet Request message into a sensor Request message.
For each argument in the Request body, it tries to fit the argument value in a smaller type (that
is, a compatible type that uses less bytes). For instance, if the argument is a long (an integer
of 8 bytes) but its value is ‘123’, it can be stored into a byte (an integer of 1 byte). Thus SAGe
converts the argument from a long into a byte and adds only 1 byte to the WIOPs instead of
the original 8 bytes, avoiding the transmission of 7 bytes. The same step is performed for the
result value of WIOPi Reply messages when converting them into WIOPs Reply messages.

4.3.4.4. Asynchronous invocation patterns

Initially, the WISeMid services communicated synchronously. However, synchronous
invocation blocks the service user (client) until the result returned from the service provider
(server) is received. Thus, when a service user is running in a sensor node, it keeps consuming
energy while waiting for the answer without executing any task. For that reason, we extended
WISeMid with asynchronous invocation patterns, which enable the client to resume its work
immediately after a remote invocation is sent. Four asynchronous invocation patterns, which
are presented in [15], have been implemented in WISeMid, namely: Fire and Forget, Sync
with Server, Poll Object and Result Callback. The first two patterns are used for one-way
operations, while the last ones are used for request-response operations. Details on WISeMid
implementation of those patterns can be found in [9].

5. SAGe

As stated previously, SAGe is an important WISeMid service which performs different tasks
to allow the integration of the Internet and WSNs.

SAGe may be considered an advanced version of SerialForwarder [24], a TinyOS application
which allows multiple clients to communicate with a mote working as a base station.
SAGe extends SerialForwarder functionalities by performing some data processing before
forwarding the packets from the WSN (more specifically, the sink node) to the connected
clients and vice-versa. Running in the Internet host connected to the WSN sink node via
a serial port (see Figure 7(b)), SAGe’s main function is to act as a service proxy between
both networks by enabling the communication between services running on Internet hosts
and WSN nodes in a transparent way. Furthermore, SAGe also performs some tasks
concerning the limited resources of sensor nodes, such as reducing the messages size and
avoiding sending unnecessary messages to the WSN. The rest of this section describes SAGe
architecture and functions.
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5.1. SAGe architecture

The SAGe architecture, which is illustrated in Figure 10, comprises three components:

Figure 10. SAGe architecture

• Configuration: provides a user interface (UI) that enables to configure some SAGe
attributes, such as: the port number used by Internet clients to connect to SAGe, and the
period of time that a sensor Reply message should be considered an up-to-date information
(to refrain SAGe from sending unnecessary Request messages to WSN).

• Service Proxy: provides one interface per network (WSN and Internet) through which
SAGe receives/sends WIOP messages to provide communication between the services.

• Message Handling: handles WIOP messages and is divided into three subcomponents:

• Grouping: groups equivalent Internet Request messages during a given period of time
(set by Configuration) to avoid WSN energy waste;

• Conversion: performs the conversion between Internet and WSN WIOP message
formats (namely, WIOPi and WIOPs);

• Storage: stores the messages received from both networks during a given period of
time (set by Configuration), in order to enable message grouping.

Those (sub)components cooperate to perform SAGe functions, which are described next.

5.2. SAGe functions

As mentioned above, the main functions of SAGe are acting as a service proxy and
participating in the energy-saving mechanisms.

In order to enable the interaction of services of both Internet and WSN in a transparent way
while acting as a service proxy, SAGe has an important role in three specific tasks: the binding
of a WSN service in the Naming Service, the invocation of a WSN service (provider) by an
Internet service (user), and the invocation of an Internet service (provider) by a WSN service
(user). Those three tasks as well as SAGe’s participation the methods to conserve the WSN
nodes energy are described as follows.

5.2.1. Binding of a WSN service

Once a WSN service starts, it sends a message invoking the Bind operation of the Naming
Service. When SAGe receives that message, it creates a ServiceReference to the WSN
service including the SAGe’s IP address and port, and then sends a bind request to the Naming
Service, registering the WSN service as a SAGe service. It also keeps the created reference
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cached as a SageServiceReference, which assigns the ServiceReference to the node
ID of the sensor providing the service. In such manner, SAGe knows which sensor node a
Request message to a WSN service must be forwarded to.

5.2.2. Invocation of a WSN service

When the SAGe receives a Request message from the Internet invoking a WSN service,
it converts the message to a WIOPs Request and sends it to the WSN using the
SageServiceReference that has been cached when the WSN service was bound. Once the
Reply message from the sensor service provider is received, SAGe converts it into a WIOPi

Reply message and forwards it to the Internet service user. If no SageServiceReference is
found, SAGe does not forward the request to the WSN since no sensor provides this service.
Instead, it sends a Reply message reporting an error to the Internet host that requested the
service.

5.2.3. Invocation of an Internet service

When a sensor node service performs a lookup for an Internet service, SAGe checks if this
service is already known, i.e., if its reference is cached. If the service is unknown, SAGe
converts and forwards the lookup request to the WISeMid Naming Service. When it receives
the WIOPi Reply, it stores the returned ServiceReference and sends the service ID to the
sensor node service. Using the received service ID, the WSN service invokes the Internet
service operation. When SAGe receives the sensor Request message, it uses the cached
ServiceReference to invoke the requested operation and, once the Reply message arrives,
SAGe converts and forwards it to the sensor node service user.

5.2.4. Saving WSN limited resources

As exposed in Section 4.3.4, WISeMid implements some energy-saving mechanisms. SAGe
has an essential role in some of these mechanisms, as explained below.

In the Reply Storage Timeout mechanism, SAGe is in charge of everything: allowing
the configuration of the period of time the Reply message will be considered up-to-date;
recognizing and grouping equivalent Request messages; storing and forwarding the Reply
message for every Request message that arrives in the configured period of time.

The Automatic Type Conversion is also performed by SAGe. When converting a WIOPi

Request message into a WIOPs one, it tries to fit each argument value in the Request body
in a compatible type that uses less bytes. The same procedure is performed for the result
value of WIOPi Reply messages when converting them into WIOPs Reply messages.

Besides its active participation in those mechanisms, SAGe also performs small actions that
help saving the sensor nodes energy. An example has already been described in Section 5.2.2:
SAGe does not forward to WSN any Internet Request which asks for a sensor service that has
not been registered. It would be useless and energy wasting since no sensor announced that
service. Another example occurs when a sensor requests an Internet service (Section 5.2.3).
It consists in not giving up at the first unsuccessful attempt to connect to the Internet service
provider. Considering that it may be a sporadic problem, SAGe tries to connect to the server
a configurable number of times before returning an error to the sensor node. This procedure
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aims to refrain the sensor from sending another Request in case the answer is fundamental for
its application. Details of SAGe implementation are given in [10].

6. Clever

Several applications require particular attention to specific parts (regions) of a WSN. For
instance, monitoring applications like a security surveillance may define the border region as
a critical one to be monitored, whereas forest fire detecting applications may define clearings
that resulted from previous fires as the critical regions to be monitored (since they tend to be
more propitious for new fires due to their dry vegetation and soil) [25]. For this purpose, the
WSN may be divided into logical regions, as illustrated in Figure 11(a).

Considering the given examples, Region 1 would be defined as the critical area for the security
surveillance application and Region 4 would represent a clearing and be the critical area of the
forest fire detection application.

(a) Logical regions in a WSN (b) Service composition defining regions in a WSN

Figure 11. Defining logical regions in a WSN

With that in mind, Clever is added to the framework as a tool that allows defining these logical
regions by composing Web services available in the Internet. Although the notion of logical
regions have already been presented in the literature, to the best of our knowledge this is the
first approach that uses web service composition to define logical regions in WSNs.

It is worth mentioning that regions intersection may occur since a single web service (which
represents a sensor node) may participate in more than one composition. The next section
describes the composition approach used by Clever.

6.1. Composition approach

Besides WISeMid services (that is, Internet’s or WSN’s services which use WIOP messages
to interact with each other), Web services are also supported by WISeMid. In other words,
WISeMid enables transparent communication among WISeMid services and Web services.
That is possible by using two different kinds of proxy: one that plays the role of a Web service,
allowing other Web services to access the WISeMid service it represents, and one that acts as a
WISeMid service, to enable the communication between other WISeMid services and the Web
service it is related to. Both kinds of proxies are automatically generated by ProxiesGen from
WIDL and WSDL files and have the same operations that the services they represent.

160 Wireless Sensor Networks – Technology and Applications



A Framework for Integrating Wireless Sensor Networks and the Internet 21

Considering that, each WSN node may provide a (WISeMid) service, which may be
represented by a Web service that acts as a proxy. Therefore, composing Web services which
represent services that are running on sensor nodes can result in the creation of a logical
region in the WSN. Figure 11(b) illustrates two Web service compositions that define two
logical regions in a WSN. On both compositions, when an operation (e.g., getTemperature)
belonging to the interface of the Web service composition is invoked, the invocation is passed
to all sensor nodes belonging to the WSN’s logical region and represented by the composition.

As explained above, the Web services depicted in Figure 11(b) are actually proxies to WISeMid
services running in the sensor nodes. Thus, the Web services that constitute the composition
(which is itself a Web service) do not access directly the sensor nodes. Rather, they convert
and forward the received requests to the associated WISeMid service provided by the nodes.

When many sensors provide the same (WISeMid) service, only one Web service is used as a
proxy to them. That happens because the Web service proxy is automatically generated by the
ProxiesGen based on the service’s WIDL, which is identical for all sensors providing the same
service. Hence, to create a logical region with sensors that provide the same service, a user
must add that service n times, where n is the number of sensors that will comprise the region.

To identify to which sensor a request needs to be sent, a parameter is set in the URL of the
Web service. For example, if the URL of a temperature Web service is

http://localhost/jaxws-Temperature/Temperature

then the resulting parameterized URL is
http://localhost/jaxws-Temperature/Temperature?id=1 or
http://localhost/jaxws-Temperature/Temperature?id=2

where the id parameter is the identifier of the WSN node that provides the service.

The process of defining a WSN logical region by creating a Web service composition comprises
three steps: (1) to choose the Web services to be used in the composition; (2) to set the order
and the parameters for each Web service invocation; and (3) to set the URL parameter (node
id) of each web service invocation. The first two steps are commonly used in Web service
composition and are typically performed using BPEL and a modeling and verification tool
that supports it. The third step requires modifying the WSDL file that results from the
composition to add a partner link for each sensor that is supposed to compose the logical
region, as explained in the following.

The BPEL partner links are the Web services used in the composition. Their URLs are static
by default and obtained from the respective WSDL file. However, in the case that a Web
service represents more than one WSN service, it is necessary to change these URLs updating
dynamically the sensor identification number parameter, as there will be only one web service
for them. This process is called Dynamic Addressing and an example of code is shown below:

1: <assign name="SetupPartnerlink"><copy>

2: <from><literal><EndpointReference xmlns="http://schemas.xmlsoap.org/ws/2004/08/addressing"

xmlns:tns="http://stub.mid/">

3: <Address>http://localhost:8081/jaxws-Temp/Temp?id=6</Address>

4: <ServiceName PortName="TempServicePort">tns:TempServiceWS</ServiceName>

5: </EndpointReference></literal></from>

6: <to variable="partnerReference"></to>

7: </copy></assign>

8: <assign name="AssignPL"><copy>

9: <from>bpws:doXslTransform(’urn:stylesheets:wrap2serviceref.xsl’, $partnerReference)</from>

10: <to partnerLink="Temp1PL"/>

11:</copy></assign>
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12:<invoke name="Invoke1" partnerLink="Temp1PL" operation="getTemp" xmlns:tns="http://stub.mid/"

portType="tns:TempService" inputVariable="GetTempIn" outputVariable="GetTempOut"/>

First, the new URL is assigned to an EndPointReference variable (1-7). Then, this variable is
copied to a partner link (8-11). Finally, the invocation to the updated partner link is done (12).

The Clever tool is responsible for automating the third step by allowing the user to choose
the nodes that should be part of the region and then automatically creating a partner link
for each selected sensor node. Clever is implemented as a NetBeans plug-in, being accessed
through a button. When that button is pressed, a wizard is opened to guide the user in
choosing the nodes that will join the logical region. First, the Web service that represents the
desired WSN service must be selected from a list of the services that have been added to the
composition. Actually, the listed names are the partner link names of the invokes contained in
the composition, with their respective WSDL file location. Once the Web service (partner link)
is selected, the next window shows all the invokes to that service, as illustrated in Figure 12(a).
For each invoke, a node ID must be set. To choose the node of interest, the user may search the
WSN for all nodes that satisfy certain constraints, which are represented by property values
of the offered service. For that purpose, Clever provides an interface that communicates with
the Trader, as depicted in Figure 12(b). Using this window, the user is able to perform a query
in the Trader, receiving a list of the nodes that satisfy that query to choose one of them.

(a) Step 2 for defining a logical region: selecting the nodes (b) Finding and setting the node ID

Figure 12. Clever interface

When every invoke has a node associated, Clever automatically updates the BPEL file (of the
Web service composition) to change the URL parameter before each partner link invocation.
After that, the new (composite) Web service is ready and the related WSN logical region is
created. Once the Web service composition is designed and deployed, a new Web service is
created representing that composition. An invocation to this service corresponds to invoking
each Web service involved in the composition and those Web services in turn request the
related WSN service provided by each selected sensor node.

It is worth mentioning that, although the approach focuses on creating compositions with
WSN Web services (more specifically, Web services representing WSN services) in order
to form the logical regions in the WSN, it is possible to include Internet Web services in
the composition, creating heterogeneous compositions. This possibility raises the level of
integration since the (composite) service itself is distributed among nodes of both networks.
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7. Energy consumption evaluation

This section presents results of experiments that analyze how WISeMid (including SAGe and
the energy-saving mechanisms) and Clever affects the energy consumption in a sensor node.

For all scenarios, we use one Iris mote connected to a MTS400 basic environment sensor board,
running the application defined in the studied scenario; and one Iris mote connected to a
MIB520 USB programming board, working as a base station (BS), i.e., the sink node. The BS
is connected to an Internet host that runs SAGe. Also, two other services run on an Internet
host: the Naming service and the service/application under evaluation.

To estimate the energy consumption of the sensor node, an oscilloscope (Agilent DSO03202A)
has been used. A PC is connected to the oscilloscope that captures the code snippet execution
start and end times by monitoring a led of the sensor, which is turned on/off to signalize
execution start/end. The PC runs a tool called AMALGHMA [26], which is responsible for
calculating the energy consumption. In order to make the results more reliable, all values
presented here are actually a mean value of 100 executions of the code in study.

Previous evaluation results have shown that WISeMid infrastructure has an impact over the
energy consumption. Comparing an application that uses WISeMid infrastructure to a similar
application that uses only TinyOS, the results shows that the service abstraction provided
by WISeMid brings an energy consumption increase of 16.11% compared to the TinyOS
application version (see [8] for details). Although it is not a negligible increase, the facilities
offered by the WISeMid service abstraction as well as the energy saving brought by the energy
aware mechanisms, which are presented next, compensate that.

Aggregation: To analyze the energy-saving offered by the Aggregation service, a scenario
composed by an Internet service user requesting a WSN service that provides the sensed
temperature is studied. When the Aggregation service is off, the Internet service sends 30
requests in a row; when it is on, only one request is sent by the Internet service user, and
the WSN service provider returns one value which corresponds to the aggregation (average)
of the last 30 sensed values. As Figure 13(a) shows, the Aggregation service saves 96.57% of
energy. That significative rate is due to avoiding the transmission of 58 messages (29 requests
and 29 replies), which would be necessary if the Aggregation service was not available.

Automatic Type Conversion: The evaluation scenario for the Automatic Type Conversion
comprises a simple WSN service, which has an operation that sets an attribute of type
long (an 8-byte integer) and returns an acknowledgement, and an Internet service user
that requests this operation with value "1" (one). As this value fits in type byte, when the
Automatic Type Conversion feature is on, SAGe converts the parameter type from long to
byte and only one byte is used to transmit the value "1", instead of 8 bytes. The results are
illustrated in Figure 13(a) and show that, for the described scenario, the energy-saving gain
is 4% when the Automatic Type Conversion is performed. To confirm whether that decrease
in energy consumption is statistically significant, we performed a Paired t-test with those
measurements. The resulting p-value is less than 4.352e-05, indicating the means are really
different. Although 4% is not a very expressive gain, it is still an important gain as every little
bit of energy that is saved in a WSN contributes to preserve and extend its lifetime.

Reply Storage Timeout in Logical Regions: The next scenario involves the use of a WSN logical
region composed by two sensor nodes providing a Temperature service, which may also be
invoked as a web service called TemperatureWS. As explained previously, only one proxy
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(a) Aggregation service and Automatic Type
Conversion

(b) Reply Storage Timeout used in Logical Regions

(c) Asynchronous Patterns instead of Synchronous
communication

(d) Sensor position estimation method being
performed by the WSN or by the Internet

Figure 13. Energy consumption of energy-saving mechanisms and real application

represents all sensors that provide the same service, hence TemperatureWS represents both
sensors’ service. A Web service composition (WSComposition) with the two Temperature
services (actually, the TemperatureWS proxy) is created using Clever for selecting the nodes of
interest. Finally, a service that runs on the Internet (TempMon) and monitors the temperature
in that area calls WSComposition, which actually calls TemperatureWS twice in a row, once for
each sensor node. The proxy calls the Temperature service in the sensors and then forwards
their replies to the WSComposition, which calculates the mean value of the received results
and returns it to the TempMon service.

To evaluate this logical region composition with the Reply Storage feature, the TempMon
service requests the Temperature service composition (WSComposition) 25 consecutive times
with random interval between messages, and a timeout of 4s. Figure 13(b) presents the results,
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which show that the Reply Storage feature saves 91.28% of energy in the studied scenario,
which is a very significant energy-saving rate.

Asynchronous invocation patterns: The asynchronous patterns are evaluated in groups
according to their type of operations: one-way or request-response. The one-way scenario
is composed by a Logging service provided by an Internet host that is used by a WSN service
to record log messages. The patterns evaluated here are Fire and Forget and Sync with Server.

The request-response scenario consists of the first distributed application described in
Section 2, with a Surveillance service running in a sensor node, which captures images of
any moving target and sends them to a Recognition service running in the Internet.

The results of both scenarios are presented in Figure 13(c). For one-way operations, a
sensor saves 61.27% of energy when Fire and Forget is adopted instead of Sync with Server.
That significant difference was expected since the former ends the process the moment the
invocation is sent, whereas the latter involves the tasks performed in SAGe (such as message
translation) plus the round-trip delay time from SAGe to the server. For response-reply
operations, comparing to synchronous communication, the Poll Object pattern saves 43.91%
of energy whilst the Result Callback obtains 50.83% of energy-saving. Those results confirm
that the asynchronous invocation patterns can be adopted to extend the WSN lifetime.

Requesting Internet Services: One of WISeMid’s main characteristics is that it allows sensor
nodes to be not only service providers, but also service users. There are several situations
in which asking for a node outside the network to perform a task is more suitable than
performing it in-network. It may be even less costly in terms of energy consumption to request
the service outside the WSN. Next scenario evaluates an environment monitoring application
that shows this strategy. This application is composed by a Monitoring service that runs in a
mobile sensor node and therefore needs to know the node position before reporting measured
data (see [27] for examples of real applications with mobile sensor nodes). The Monitoring
service may estimate the node position or it may request the position estimation from another
service (called Positioning), which is provided by an Internet node. This scenario evaluates
the energy consumption of the sensor node that provides the Monitoring service in both
situations: performing and requesting the node position estimation.

To estimate the node position, we adopted an approach that has been developed with two
versions: centralized and distributed. Both versions use measurements of distance between
every node and its neighbors. In the centralized version, all sensor nodes send information
about their neighbors to a central machine (outside WSN) with plenty of computation power
where the nodes position are calculated and sent back to the network. In the distributed
version, each node is responsible for calculating its position using information about its
neighbors. Details of this localization approach, including implementation description and
accuracy evaluation results, can be found in [28, 29].

Considering those information, we were able to estimate the energy consumption for both
versions of this approach. The centralized version consumption comprises the energy
that a node spends by requesting its location to a service that is provided by the Internet
(Positioning service). It is worth mentioning that synchronous communication is being used,
therefore this energy consumption includes the time the sensor keeps waiting for the reply.
Moreover, to perform the localization algorithm, the Positioning service must have received
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the neighbor information of all WSN nodes. Hence, we have added to this calculation the
energy consumption of all sensor nodes sending a message with their neighbors information.

For the distributed version, the values represent the estimated energy consumption of all
messages that have to be exchanged for the position calculation. That value actually comprises
the estimation of the number of messages that each node sends during all the localization
algorithm execution, which involves several iterations in the optimization process [29] and
different types of messages [28]. This estimated number of messages was used to measure
the power a sensor node consumes to send all those messages, then this measured value was
multiplied by the number of sensor nodes that compose the WSN.

Figure 13(d) shows the estimated energy consumption for both versions considering different
sizes of network. As one can observe, in some situations, asking for a node outside
the network to perform a task is more suitable than performing it in-network. For this
specific application which uses this localization algorithm, the centralized version consumes
approximately 98% less energy than the distributed version. That huge energy-saving rate
is due to the great number of messages that have to be exchanged by the sensor nodes in the
distributed version. In a network with 200 nodes, for instance, approximately 22,400 messages
are transmitted.

8. Concluding remarks

This chapter introduced a framework for integrating WSNs and the Internet at service level,
by allowing the interoperability of their services. The framework is composed by four
components: Smart, a service model to describe services from both networks (Internet and
WSNs); WISeMid, a middleware that enables the interoperability of WSN’s and Internet’s
services; SAGe, an advanced gateway which is responsible for providing the location and
access transparency for the services’ communication; and Clever, a service composition tool
which enables the creation of logical regions in the WSN by just composing Web services that
are available on the Internet.

Some evaluation results concerning the energy consumption of those elements have been
presented. Those results lead to the conclusion that by using some WISeMid’s energy-saving
mechanisms, a sensor node may save significant amount of energy. For instance, using the
Aggregation service, a sensor node can save 96.57% of energy, whereas by using the Reply
Storage Timeout feature in a logical region, a saving of 91.28% is obtained. Furthermore, a real
application which requests an Internet service that estimates the sensor positioning instead of
computing it in-network saved approximately 98% of energy, emphasizing the usefulness of
the sensor nodes’ capability of being service requestors.

In terms of future work, there are a number of possibilities to improve and extend the
framework elements. The Smart model may be improved by detailing some elements,
such as MessageExchangePattern’s Publish/Subscribe, and those elements may be
implemented in WISeMid. Some features may also be added to SAGe, such as turning it
into a distributed service, to refrain it from becoming a bottleneck in large-scale WSN. Also,
some energy-saving mechanisms may be improved. For instance, the Reply Storage Timeout
feature current implementation, which uses a global and fixed timeout value, would probably
increase its energy gains by implementing an adaptive method to automatically update the
timeout value per service, based on the variation history of the data sensed by the WSN nodes.
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