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1. Introduction 

The concept of wireless mesh networks (WMN) has emerged as a promising technology for 

the provision of affordable and low-cost solutions for a wide range of applications such as 

broadband wireless internet access in developing regions with no or limited wired infra-

structure, security surveillance, and emergency networking, One concrete example is 

WMNs for public safety teams like firefighters who can still be connected with the help of 

mesh nodes mounted on street poles even if all infrastructure communications fail. The 

main reason for this vast acceptance of mesh networks in the industry and academia is be-

cause of their self-maintenance feature and the low cost of wireless routers. In addition, the 

self-forming features of WMNs make the deployment of a mesh network easy thereby ena-

bling large-scale networks. Mesh networks which are of most commercial interests are char-

acterized as fixed backbone WMNs where mesh nodes (routers or access points) are general-

ly static and are mostly supplied by a permanent power source. Such a wireless mesh net-

work architecture is illustrated in Figure 1, consisting of mesh routers, clients, and gateway 

nodes. Mesh routers (MR) communicate with peers in a multi hop fashion such that packets 

are mostly transmitted over multiple wireless links (hops). Therefore, nodes forward pack-

ets to other nodes that are on the route but may not be within direct transmission range of 

each other. Routers which are connected to the outside world are called gateway nodes 

(GWN). These GWNs carry traffic in and out of the mesh network. The collection of such 

routers and gateway nodes connected together in a multi hop fashion form the basis for an 

infrastructure WMN (also called backbone mesh). Moreover, the multi hop packet transmis-

sion in an infrastructure WMN extends the area of wireless broadband coverage without 

wiring the network; thus WMNs can be used as extensions to cellular networks, ad hoc 

networks (MANET), sensor and vehicular networks, IEEE 802.11 WLANs (Wi-Fi), and IEEE 

802.16 based broadband wireless (WiMax) networks [1].  
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Figure 1. A typical wireless mesh network architecture. 

WMNs can be classified based on the number of radios on each mesh router. In single-radio 

mesh networks, each node is equipped with only one radio. In multi-radio mesh networks, 

multiple radios are installed on each mesh node in the backbone mesh. Depending upon the 

radio to channel configuration (also called interface to channel assignment), mesh networks 

can be further classified into single-radio single-channel (SRSC), single-radio multi-channel 

(SRMC), and multi-radio multi-channel (MRMC) wireless mesh networks. (Note, that we 

did not list multi-radio single-channel WMNs as that would mean that nodes are equipped 

with multiple radios but all of the radios in the network are configured on the same single 

channel defeating any purpose of multi-radios.) In a SRSC-WMN, as the name suggests, all 

nodes are configured to use the same wireless channel. This ensures network connectivity; 

however, capacity of the network is greatly affected as all nodes are competing to access the 

same channel. Therefore, interference minimization is the major issue in such networks. 

SRMC-WMNs can achieve parallel transmissions by assigning different orthogonal channels 
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(OCs) to radios belonging to different nodes, thus improving network capacity. However, 

such networks severely suffer from network disconnections due to having a single radio at 

each node possibly configured at different channels. In, MRMC-WMNs, with the availability 

of off-the-shelf, low cost, IEEE 802.11 based networking hardware, it is possible to incorpo-

rate multiple radio interfaces operating on different radio channels on a single mesh router. 

This enables a potentially large improvement in the capacity of the WMN (compared to all 

the previous forms of mesh networks) [20].  

Wireless mesh networks, particularly infrastructure WMNs, have some unique characteristics 

that set them apart from other wireless networks, such as MANETs and sensor networks. For 

example, nodes (at least relay nodes) in a typical infrastructure mesh network are generally 

static and have no significant constraints on power consumption, as opposed to MANETs, 

where nodes have limited energy and are mostly mobile. Similarly, due to the shared nature 

of the wireless medium, nodes compete with each other for channel access when they trans-

mit on the same channel resulting in possible interference among the nodes. Unlike MA-

NETs, where the general traffic model describes traffic flows between any pair of mobile 

nodes, in WMNs data flows are typically between mesh nodes and GWNs. In general, in 

WMNs certain paths and nodes are much more likely to be saturated as the distribution of 

flows over nodes is less uniform compared to that in MANETs. Therefore, load balancing is 

of utmost importance to avoid hot spots and to increase network utilization.  

In a typical multi radio mesh network, the total number of radios within the network is 

usually significantly higher than the number of available channels in the network (e.g. only 

11 channels are available in the U.S.A. for IEEE 802.11b/g). This forces many links to operate 

on the same (set of) channels, resulting in possible interference among transmissions. The 

existence of such interference if not accounted for, can affect the capacity of the network. 

Therefore, understanding and mitigating interference has become one of the fundamental 

issues in WMNs; recently a number of channel assignment (CA) solutions have been pro-

posed to address this problem [5, 10-13, 15-20, 33-35]. 

The problem of channel assignment (frequency assignment) has been widely studied in cellu-

lar networks [2]. However, with the proliferation of IEEE 802.11 based technologies in the 

wireless arena (WLANs, sensor networks, WMNs), the need for channel assignment solutions 

outside of cellular networks has surfaced. CA algorithms are usually designed based on the 

peculiar characteristics of individual networks; since the differences in characteristics are 

vast, CA algorithms for WMNs must be significantly different from those of cellular net-

works. For example, base stations in a cellular network are typically connected by cables, 

whereas mesh nodes in a mesh network are connected wirelessly (and usually on the same 

channels as are used for providing service). This brings up several interference issues in mesh 

networks between mesh nodes which are not found in cellular networks between base sta-

tions (as in cellular networks BSs are not competing for the shared medium as they have 

dedicated bandwidth for intra-BS communication). The bottleneck in cellular networks is 

from the base stations to the client devices, whereas, in WMNs, the bottleneck is usually 

inside the mesh backbone, typically along the route from the mesh routers to the gateway 
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nodes. In addition nearby BSs are usually configured on completely orthogonal channels 

(OCs) to avoid interference; this is rarely possible in backbone meshes, as the nodal density of 

a typical WMN can be high and the number of available orthogonal channels is limited. Most 

existing deployed mesh networks are IEEE 802.11 technology based; among the standards of 

IEEE 802.11, the most widely used are IEEE 802.11b/g, which support up to 14 channels in the 

unlicensed Industrial, Scientific, and Medical (ISM) radio bands at the nominal 2.4 GHz carri-

er frequency [32]. Out of these 14 channels, only 11 channels are available for use in the 

U.S.A., 13 channels are open in EU, while Japan has made all of them available. Figure 2. 

shows the 2.4 GHz ISM band’s division into 11 IEEE 802.11b/g channels in the U.S.A.; the 

channel numbers have a one-to-one relationship with the corresponding center frequency of 

that channel. (For example, channel 6 operates at 2.437GHz.) Each channel’s bandwidth is 22 

MHz and each channel's center frequency is separated from the next channel’s by 5MHz. 

Therefore, in general, a channel overlaps with 4 of its neighboring channels leaving only three 

non-overlapping (orthogonal) channels, i.e., channels 1, 6, and 11 as depicted in Figure 2. 

Similarly, IEEE 802.11a operates in 5GHz ISM band and provides 12 orthogonal channels, but 

since it operates in a higher frequency band, it has a shorter range as opposed to 802.11b/g 

(higher frequencies in general have higher inabilities to penetrate walls and obstructions). 

Recently, the IEEE 802.11n standard was proposed which operates in both the 2.4GHz and 5 

GHz bands and provides legacy support to devices operating based on previous standards 

(b/g). It provides data rates of up to 600Mbps using Multiple Input, Multiple Output (MIMO) 

technology with Orthogonal Frequency Division Multiplexing (OFDM).      

Most existing research on CA algorithms in WMNs has been focused on assigning 

orthogonal (non-overlapping) channels [33-35] to links belonging to neighboring nodes in 

order to minimize the interference in the network. Since, links operating on orthogonal 

channels do not interfere at all, multiple parallel transmissions can be possible resulting in 

overall network throughput improvement. The number of non-overlapping channels in 

commodity wireless platforms such as 802.11b/g is very small (again, only three orthogonal 

channels out of total 11 channels) while nodal density in a typical MRMC-WMN is high. 

This realization has recently drawn significant attention to the study of partially overlapped 

channels (POC) for channel assignment [5]. The basic idea is to make all channels available 

to nodes for channel selection as a result of which, partially overlapped channels may be 

employed. This could enable multiple concurrent transmissions on radios configured on 

POCs and therefore could increase network capacity assuming that the interference is 

lessened in POCs compared to completely overlapping channels.  

Previously, an algorithm for channel assignment based solely on orthogonal channels had to 

deal with only co-channel interference. However, one of the major issues in designing 

efficient channel assignment schemes using POCs is the adjacent channel interference, 

which is the interference between two neighbors configured on adjacent (partially 

overlapping) channels. The effect of such adjacent channel interference has a direct 

relationship with the geographical location of these two nodes, i.e., the farther two nodes are 

apart, the less interference is created on adjacent channels. Nonetheless, the assignment of 

orthogonal and non-orthogonal channels in high density mesh networks needs to be 



 
Partially Overlapping Channel Assignments in Wireless Mesh Networks 

 

107 

carefully coordinated; the key issue lies in the fact that the interference between adjacent 

channels has to be considered. This needs to be done intelligently so that channel capacity is 

maximized, otherwise the shared nature of wireless medium can lead to serious 

performance degradation of the whole mesh network. Thus, recently POCs for channel 

assignment in wireless networks has received some attention [5, 10-13, 15-20].  

Within the scope of this chapter, we focus on the problem of channel assignment using par-

tially overlapping channels in the context of both single- and multi-radio WMNs. The rest of 

the chapter is organized as follows. Section 2 describes different types of interferences that 

may exist in a typical WMN. Section 3 demonstrates the benefits of using partially overlap-

ping channels for channel assignment in WMNs with the help of experiments performed on 

a real testbed. In Section 4, we provide a comprehensive review of some of the recent well-

known channel assignment schemes exploiting POCs in WMNs and classify these POC-

based CA schemes according to their most prominent attributes together with the objectives 

and limitations of each of the approaches. In Section 5, we discuss open issues and challeng-

es in the design of partially overlapping channel assignment schemes, followed by the chap-

ter’s conclusion in Section 6.   

 

Figure 2. IEEE 802.11b/g channels, showing the three orthogonal channels in bold 

2. Interference in Wireless Networks 

In a typical WMN, flows on links belonging to different nodes compete with each other to 

access the wireless medium. This results in possible interference among the nodes therefore 

severely affecting network performance. Multiple types of interferences exist in WMNs de-

pending on flow characteristics and on interface to channel configurations. We first explain 

what the different types of flow interferences are particularly in infrastructure WMNs. We 

will also present another interference classification in mesh networks based on the configura-

tion of the channels to radios and also on the number of radios installed in nodes.  

2.1. Flow based interference  

2.1.1. Inter-flow Interference 

This type of interference occurs when neighboring nodes carrying different flows compete 

for channel access when they transmit on the same channel as depicted in Figure 3(a). This 
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effectively means that whenever a node is involved in a transmission; its neighboring nodes 

should not communicate at the same time.  

2.1.2. Intra-flow Interference 

Nodes on the path of a same flow compete with each other for channel access when they 

transmit on the same channel. This is referred to as intra-flow interference and is shown in 

Figure 3(b).  

 

 
 

Figure 3. Flow based interference. (a) Inter-flow interference (b) Intra-flow interference 

2.2. Interference based on interface to channel configuration  

A wireless mesh network utilizing both orthogonal and non-orthogonal channels may suffer 

from interferences which can be characterized as follows. 

2.2.1. Co-channel Interference (CCI) 

Co-channel interference is the most common type of interference that exists in almost all 

wireless networks (depicted in Figure 4-a). It refers to the fact that radios belonging to two 

nodes, operating on the same channel would interfere with each other, if they are within the 

interference range of each other. This effectively means that parallel communications from 

two separate in-range nodes is not possible. 

2.2.2. Adjacent Channel Interference (ACI) 

We talk about adjacent channel interference when radios on two nearby nodes are config-

ured to partially overlapping channels. For example, in Figure 4(b), a radio on node A is 

configured on channel-4 while another radio at neighboring node C is configured on chan-

nel-1; then the transmission from either node would experience some sort of partial interfer-

ence. This type of interference also restricts parallel communication depending upon the 

channel separation and the physical distance between the two nodes.  
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2.2.3. Self-Interference (SI) 

Self-interference is defined as a transmission from a node interfering with one of its own 

transmissions. This is related to situations when nodes are equipped with multiple radios in a 

mesh network. Parallel communication cannot be achieved using multiple radios installed on a 

node, unless they are configured on completely orthogonal channels as shown in Figure 4(c). 

All of the above types of interferences have to be considered when designing channel 

assignment algorithms to exploit the full potential of the available wireless spectrum. 

Therefore, the first step in developing mechanisms which take advantage of the partial 

overlap is to build a model that captures the channel overlap in a quantitative fashion. 

 

Figure 4. Types of interferences (a) co-channel interference (b) adjacent channel interference (c) self-

interference 

3. Benefits of using Partially Overlapped Channels 

In this section, we will discuss the benefits of using POCs in WMNs. First, we will explain 

what the different scenarios are, where the use of partial overlap among channels will be 

useful. We follow that by a quick testbed experiment to demonstrate the effectiveness of 

using POCs in WMNs. 

Mishra, et al., in [6] have performed detailed experiments to demonstrate the effectiveness of 

using partial overlap among channels in WMNs. The authors have measured the signal to 

noise ratio (SNR) of two communicating nodes configured on adjacent channels and mapped 

them onto a normalized [0,1] scale with 0 representing the minimum signal received. Their 

results are shown in Table I. 

 

Channel 1 2 3 4 5 6 7 8 9 10 11 

Normalized SNR (I-factor) 0 0.22 0.60 0.72 0.77 1.0 0.96 0.77 0.66 0.39 0 

Table 1. SNR of transmission made on channel 6 as received on channels 1 ... 11. 

A typical bandwidth of an IEEE 802.11b channel which uses direct sequence spread spec-

trum (DSSS) is 44MHz. It is distributed equally on each side of the center frequency of that 
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channel i.e. 22MHz on each side. A transmit spectrum mask (band pass filter) is applied to 

the signal at the transmitting station (with a typical example shown in Figure 5) which is 

basically used by the transmitter to limit the output power on nearby frequencies. As it can 

be seen in the figure, the mask is set to 0dB at the center frequency where signals are passed 

without any attenuation. However, at frequencies beyond 11MHz on either side of the cen-

ter frequency, the signal's power is attenuated by as much as 30dB and at 22MHz as much as 

50dB. The receiver also uses a band pass filter centered around the nominal transmission 

frequency of the channel. Three scenarios are discussed in [6] where the use of partial over-

lap among the channels can be useful in the context of wireless mesh networks: 

 Multi-channel communication: The first scenario is when a node can communicate with 

two of its neighboring nodes configured on orthogonal channels (OCs) by operating on 

a partial overlapping channel. Basically, for a little reduction in throughput, one can use 

partially overlapping channels and this can give flexibility in topology construction 

while reducing the extra overhead in channel switching to enable communication.  

 Throughput improvement: The second scenario is when nodes in a mesh network have 

only one radio and therefore, they can be configured to only one channel at a time. 

There is a possibility of network disconnection while assigning different channels to 

nodes in the network. Channels with partial overlap can be assigned to nodes in such a 

manner that improves the overall network throughput capacity. In this way, the as-

signment of partially overlapping channels has to be intelligent enough to utilize the 

maximum bandwidth available and therefore can result in significant throughput im-

provements.  

 Channel re-use: Shorter ranges for frequency reuse can be obtained if two interfering 

links are assigned partially overlapping channels rather than orthogonal channels. It is 

possible to significantly improve the overall channel re-use (i.e., by reducing the dis-

tance between nodes using POCs) by careful assignment of channels which will result 

in higher peak throughputs. 

 

Figure 5. A typical IEEE 802.11b transmit spectrum mask 

Later, in [3], the same authors have shown the advantage of using POCs in two different 

types of networks, i.e., WLANs and WMNs. In a WLAN setup, nearby access points can be 

assigned POCs such that the signal attenuation due to the overlap degrades to a tolerable 

level. In other words, the interference range of APs is reduced as perceived by neighboring 

APs operating on a partially overlapping channel. This provides efficient spatial re-use of 

channels and more APs can operate concurrently providing better service to clients. Similar-

ly, in a single radio WMN environment, throughput can be improved when nodes can be 
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configured to overlapping channels in order to avoid network disconnection and also to 

avoid any channel switching overhead. 

3.1. Experimental evaluation  

Next we will show results from experiments performed on a real testbed in order to 

evaluate the benefits of using partially overlapping channels in mesh networks. Our 

experimental testbed consists of four Linksys WRT54GLv1.1 wireless routers, each equipped 

with one radio. We installed the Freifunk firmware [28] on these routers for more freedom 

in our experiments. We created two point-to-point networks between two router pairs and 

thus formed two links each consisting of two routers as shown in Figure 6. Link-1 belongs to 

Pair-1 and Link-2 belongs to Pair-2. Each radio on Link-1 is fixed on channel 6; we varied the 

channels of Pair-2 from 1 to 6. The distance between nodes belonging to the same link is 

kept constant throughout the experiment. Pair-1 nodes have fixed locations while Pair-2 is 

moved to various distances from Pair-1 ranging from 5 to 30 meters (but Pair-2 nodes are 

kept equidistance to each other during the experiments). UDP and TCP traffic is generated 

on both links lasting for 10 seconds. The throughput on Link-2 is measured and the results 

are averaged over several runs. Three different IEEE 802.11b defined data rates are used for 

conducting the experiments, i.e. 2Mbps, 5.5Mbps and 11Mbps.  

 

Figure 6. POC measurement testbed 

Figure 7(a), (b), and (c) show the UDP throughput on Link-2 with different channel separations 

for the three data rates. It can be seen that as the distance between the two interfering links is 

increased, the throughput increases due to the reduced amount of interference. In this setup 

we did not see any further improvements when nodes were more than 30 meters apart. How-

ever, the same maximum throughput can be achieved at significantly lower distances with 

increased channel separation between the two links. For example, at about 20 meters, Link-2 

achieves the maximum benchmark throughput, when the channel separation between the two 

links is three. For data rates 5.5Mbps and 11Mbps, we notice similar results; however, maxi-

mum throughput can be achieved by eliminating interference at a much lower distances i.e. 

about 15 meters, when the channel separation is three as compared to 30 meters, when both 

the channels are separated by only one.  Figures 8 (a), (b), and (c) show the comparable results 

when TCP traffic is used on all the three 802.11b data rates. 
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From these results, we can extrapolate the interference ranges of nodes with varying 

channel separations and at different data rates; this comprehension is shown in Figure 9. 

Each point in the graph represents the minimum distance that is required between the two 

links in order for them to experience no interference and achieve maximum throughput 

when they are on particular partially overlapping channels (with a given channel 

separation). We can observe that the interference ranges are decreasing with increasing 

channel separation and increasing data rates. From these measurements, we can empirically 

conclude that the interference range of nodes operating on POCs is significantly less than 

the range when they are on the same channel. (Similar experiments have been performed 

before in [3, 5-7, 16]; however, those experiments were done either on wireless card 

equipped computers or a computer attached to an access point. We believe, that our setup is 

easier to reproduce and is more representative for a WMN and thus provides a better 

understanding of POCs in mesh networks.) 

Therefore, there is a tradeoff between efficient utilization of the wireless spectrum and a 

slight decrease in the throughput. An intelligent assignment of partially overlapping chan-

nels can decrease the impact of interference, eventually resulting in more efficient utilization 

of the spectrum. 

 

Figure 7. UDP throughput of two interfering links as a function of channel separation. (a) 2 Mbps (b) 

5.5 Mbps (c) 11 Mbps 
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Figure 8. TCP throughput of two interfering links as a function of channel separation. (a) 2 Mbps (b) 5.5 

Mbps (c) 11 Mbps 

 

 

Figure 9. Interference range as a function of data rates 
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4. Classification of POCA Schemes in Wireless Mesh Networks 

Partially overlapping channel assignment (POCA) schemes can be classified based on differ-

ent criteria and approaches. The criteria that we have used for classification is the interference 

model, which is defined as the technique for capturing interference of radios belonging to 

nodes operating on partially overlapping channels in a WMN. Figure 10 presents the classi-

fication on which the rest of the section is based. Note that our classification based on inter-

ference model may not create disjoint categories and thus, a particular scheme may have 

significant overlaps with another scheme belonging to a different category.  

 

Figure 10. Classification of partially overlapping channel assignment algorithms based on the interfer-

ence model employed. 

4.1. Interference factor model (I-Factor)  

4.1.1. Revised Channel Assignment Schemes for Wireless Networks 

One of the first models to capture partial interference in wireless networks was presented by 

A. Mishra, et al. in [5]. They have extensively studied the practicality of using POCs in 

WLANs and WMNs. Through analytical formulation they have shown the benefits of POCs 

in terms of how they increase network capacity and improve channel-reuse. In order to 

model the interference generated by nodes operating on channels with partial overlaps, they 

have proposed a novel concept called interference factor (I-factor) capturing the extent of 

overlap between two communicating nodes. They define I-factor as:  

( , )( ) = 	 ( ) ( − )  

where t and r are indices of the transmitting and receiving nodes, and δ denotes the differ-

ence of the frequencies of the transmitting and receiving nodes. In other words, parameter δ 

represents the amount of overlap between the two frequencies and is defined as a continu-

ous variable. St(f) is the transmitter’s signal's power distribution and Br(f) denotes the fre-

quency response of the receiver's band pass filter. In lay man terms: if we measure the area 
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of intersection between a transmitter's signal spectrum and receiver's band-pass filter, we 

can calculate how much overlap there is between these signals; this is defined as the inter-

ference factor (I-factor). Since, IEEE 802.11 standards operate on a set of discrete channels, 

the continuous variable δ can be discretized as follows: δ = 5|i-j| (in MHz).  

The authors of [5] have also revised two existing channel assignment algorithms in the con-

text of WLANs and WMNs and have applied the I-factor model to these algorithms. First, an 

existing algorithm [22] was modified which is a centralized greedy-style approach for CA in 

WLANs using only orthogonal channels with the objective of increasing overall spectrum 

utilization. The algorithm employs an indicator variable to model the interference in WLANs 

and the authors have modified this indicator variable to capture not only the orthogonal 

channels (which was previously the case) but also channels with partial overlap (using their 

I-factor model). The actual channel assignment problem is formulated as a conflict set color-

ing problem where a conflict is present when clients belonging to a particular AP experience 

interference from neighboring clients (which are attached to their respective APs). The objec-

tive function is a min-max formulation to capture the total interference experienced by each 

client. The algorithm starts with a random permutation on how channels are assigned to APs; 

this is followed by the computation of the objective function. The best channel with minimum 

interference among the available channels is chosen and the process repeats for each AP. The 

modification lies in the interference calculation function to incorporate POCs into the algo-

rithm. Interferences among channels with partial overlaps are calculated based on the I-factor 

interference model either empirically or analytically; this enables the possibility of assigning 

all available channels to the WLAN.  

Still in [5], another CA algorithm which was designed for wireless mesh networks using 

only orthogonal channels [21] was modified to include POCs. It is a joint channel assign-

ment, routing and link scheduling approach and a mathematical formulation in the form of 

a linear program (LP) is presented. The formulation also includes an indicator variable to 

model interference in the network. The authors have modified the link scheduling part of 

the joint mathematical formulation to change the conflict links’ constraints to include the I-

factor model (partial interference). They have evaluated the performance of this modified LP 

to show improved throughput in WMNs. The revised algorithms demonstrate that careful 

use of POCs can lead to significant improvements in spectrum utilization and application 

performance. They have performed extensive simulations to show that the use of POCs can 

improve network throughput (the extent of which depends on the nodal density of the net-

work).  

4.1.2. Channel Assignment Exploiting Partially Overlapping Channels (CAEPO) 

The authors in [12] have proposed a POC channel assignment scheme called CAEPO. The 

main contribution of their work is the design of a traffic-aware metric that captures the 

degree of overlap among the channels when measuring interference. It is a hybrid 

distributed channel assignment protocol, where each node collects information locally and 

hence performs the channel assignment locally. The proposed I-factor based metric captures 
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the interference experienced by nodes operating on channels with partial interference. Each 

node measures the interference according to the degree of overlap between channels and 

scales it to the traffic load experienced by its neighboring node (this information is 

maintained by each node). Each node does this for all of its neighbors and combines the 

results to determine the total interference it is “suffering” due to its neighboring nodes. 

Thus, the interference metric at node i is calculated as:   = ∗ ( )∈ ( )  

where B(j) is the proportion of the busy time of a neighboring node j, and N(i) is the set of 

neighbors of node i; f[i][j] captures the extent of overlap a node operating on a particular 

channel has from its neighboring nodes configured on another channel. This is based on the 

extent of the channel separation between the channels used by the two nodes (taken from 

[23]). 

More precisely, CAEPO works as follows: each node in the network is equipped with two 

interfaces; the first interface is configured to a fixed channel while the other interface can be 

dynamically switched between channels. The algorithm starts with each node assigning a 

fixed channel to its fixed interface and a default channel to its switchable interface using the 

interference estimation metric with the initial value of B(j)=1. Then, this channel assignment 

information, together with the interference measurements are relayed to all neighbors. After 

this initial channel assignment, each node periodically calculates the interference using the 

interference metric described above and if the fixed interface channel needs to be changed, 

then that information is relayed on the default channel of the switchable interface. Similarly, 

when a node has data to send, it switches its dynamic interface to the fixed channel of the 

receiver node's interface. Performance evaluations of CAEPO show improved network per-

formance when all 11 channels of IEEE 802.11b are used.   

4.1.3. Load-Aware Channel Assignment Exploiting Partially Overlapping Channels (Load-

Aware CAEPO-G) 

The authors of [13] present an extension to the previously discussed CAEPO [12] to make it 

traffic load-aware in addition to being interference-aware. A grouping algorithm is also 

proposed with the goal of achieving better aggregate network throughput. In the grouping 

algorithm, each node sends periodic hello messages; based on a node's weight (which is 

determined by how many hello messages it has received so far from its one-hop neighbors) 

the node may become a group leader. There can only be one group leader in the one-hop 

vicinity of any particular node. New nodes can join the group by sending a join message and 

similarly existing nodes can leave the group by sending a quit message to the group leader. 

Once the group leaders have been assigned (grouping is done), channels are assigned to 

links similarly to that in [12], with only one major difference: any update of the channel (i.e., 

channel switching) has to be initiated by the group leader. If a node “feels a need” to switch 

to a new, less contentious channel, it will send a "channel switch" request to its corresponding 
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group leader who if agrees relays the information onwards to the other members in the 

group. Because of the addition of a new grouping algorithm and the load-aware feature, 

load-aware CAEPO-G achieves much better performance than the original CAEPO.  

4.1.4. Minimum Interference for Channel Allocation (MICA) 

In [10], the authors have introduced the concept of node orthogonality: two nodes, operating 

over adjacent and partially overlapping channels, are considered orthogonal if they are 

sufficiently physically apart. A novel interference model is proposed that captures the adja-

cent channel interference and also takes into account the physical distance of the two nodes 

configured on POCs. The proposed interference factor Ic(i,j) is defined as follows: ( , ) = 1 −min	{ , , ( , )}( , )  

where Di(ci,cj) is the adjacent channel interference range between channels i and j, extracted 

from the physical model of the I-factor described in [3-6]. Di(ci,cj) captures both the channel 

separation and physical distance among the nodes to model the interference due to POCs. 

The proposed interference factor Ic(i,j) can be used to define node orthogonality by stating that 

two nodes are orthogonal if and only if their interference factor value is equal to 0. 

Given a particular channel assignment, a weighted interference graph can be constructed 

with weights on the edges measured by the interference factor Ic(i,j); Figure 11 shows an 

example. Here, it is assumed that the data rate and the transmit power for all the APs are the 

same. 

 

Figure 11. Construction of a weighted interference graph 

Using the weighted interference graph model, a minimum weighted interference 

optimization problem is formulated with the objective of minimizing the sum of weights in 

the interference graph. A centralized heuristic is proposed called minimum interference for 

channel allocation (MICA) to obtain a near-optimal solution which relaxes the formulated 

minimum interference problem in order to find fractional interference in polynomial time 

and eventually to assign POCs to APs (after rounding off the fractional solution to the 

nearest integer).  
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In addition to the above approaches, there have been other research efforts in designing 

MAC protocols that exploit POCs in wireless networks. One such scheme is presented in 

[11] in which some of the challenges that may be faced when using overlapping channels in 

the design of a MAC protocol are discussed. Analytical models are designed to capture 

partial interference at the MAC layer in order to improve channel utilization and to enhance 

network capacity. Based on the model, an efficient medium access scheme with collision 

avoidance mechanism is developed which increases network throughput (exploiting 

multiple channel transmissions).  

The authors of [14] study the use of POCs for data aggregation in sensor networks. In a typi-

cal sensor network, the job of each sensor node is to collect the data, aggregate it and send it 

back to the sink for further processing. Arguably, reducing latency of data aggregation is 

therefore one of the fundamental issues in sensor networks. This is also called the minimum 

latency scheduling (MLS) problem in which a conflict free transmission schedule is designed 

with the objective of minimizing the overall data transmission latency. The concept of POCs 

is used in order to reduce the data aggregation latency; a joint tree construction, channel 

assignment and scheduling algorithm is proposed to solve the MLS problem. The basic idea 

is to compute a partially overlapping channel assignment algorithm for the sensor network, 

and then construct a data aggregation tree for the whole network followed by finally design-

ing a link schedule so that the data aggregation latency is minimized.  

Table II provides a side-by-side comparison for the above four POCA schemes based on 

their objectives, the procedures that are used in obtaining a partially overlapping channel 

assignment algorithm and their limitations. 

4.2. Interference matrix model (I-Matrix) 

The second type of interference model we consider for POCA schemes was originally 

presented in [19]. The model is called I-Matrix, and is designed to measure the adjacent 

channel interference (ACI) among different POCs on adjacent nodes as well as self-

interference (SI) among different radios on a single node. I-Matrix captures the interference 

that a channel belonging to a particular radio experiences due to all other possible channels 

(10 channels in the case of 802.11b). The proposed interference model (I-Matrix) is made up 

of three components, namely the interference factor, the interference vector, and the I-Matrix 

itself. The interference factor is derived from the I-factor of [5] and is the ratio of the 

interference range and the physical distance between two radios configured on adjacent 

channels ( , = ( )/ ). In other words, the interference factor captures both the physical 

distance and the channel separation between nodes. This means that even if the respective 

channels of two nodes are overlapping, but their physical distance is greater than the 

interference range (demonstrated by IR(δ) and taken from [8, 24]), the value of fi,j will be 

zero. The interference factor is computed for all the channels with respect to a particular 

channel and put in a vector called the interference vector as shown in Table III. Similarly, 

each node combines all the interference vectors it has calculated for each channel and 

constructs the I-Matrix as outlined in Table IV.    
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Technique Objective Methodology Limitations 

A. Mishra [5] 

Maximization of the 

total throughput 

(maximizes 

simultaneous link 

activations) 

Routing, channel 

assignment, and link 

flow scheduling; 

performed stepwise 

until optimal CA and 

routing solution is 

found 

Complexity; ignoring 

switching overhead; 

SI not considered 

MICA [10] 

Minimization of the 

sum of the weighted 

interference in an 

interference graph 

Approximate 

algorithm for channel 

allocation using 

integer linear 

programming (ILP) 

formulation. 

Offline solution; only 

designed for single 

radio networks; SI 

not considered 

CAEPO [12] 
Minimization of the 

network interference 

Heuristic distributed 

load-aware algorithm. 

Channel assignment 

based on traffic-aware 

interference 

estimation and packet 

loss ratio metrics 

Simplistic 

interference model; 

SI not considered; 

scalability issues 

Load-Aware 

CAEPO-G [13] 

Minimization of the 

network interference 

Extension of [12] with 

the addition of self-

interference factor 

and a grouping 

algorithm to make 

CA scalable. 

Simplistic 

interference model 

Table 2. Comparison of POCA schemes based on the I-factor model. 

 

CH di 
Interference Factor experienced at channels

1 2 3 4 5 6 7 8 9 10 11 

6 d6 0 f6,2 f6,3 f6,4 f6,5 ∞ f6,7 f6,8 f6,9 f6,10 0 

Table 3. Interference vector for channel 6. 

 

CH di 
Interference Factor experienced at channels

1 2 3 4 5 6 7 8 9 10 11 

1 d1 ∞ f1,2 f1,3 f1,4 f1,5 0 0 0 0 0 0 

2 d2 f2,1 ∞ f2,3 f2,4 f2,5 f2,6 0 0 0 0 0 ... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

11 d11 0 0 0 0 0 0 f11,7 f11,8 f11,9 f11,10 ∞ 

Table 4. I-Matrix 
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[19] also proposes a heuristic channel assignment algorithm exploiting POCs based on the I-

Matrix model. The algorithm assigns channels to the maximum number of links with the 

objective of minimizing network interference. The algorithm starts with an input describing 

the number of links that need to have channel assignments. The links are then assigned to 

their respective nodes and those nodes are sorted in descending order of their degrees. For 

each node, its incident link is assigned a channel which has the minimum interference calcu-

lated from the I-Matrix; accordingly after the channel assignment, the interference vectors of 

the corresponding channel are updated. This in turn forces the node to update the I-Matrix 

with the new channel's interference measurements against all other channels. [19] shows 

that using POCs can improve network capacity by as much as 15% compared to when only 

non-overlapping channels are used. 

4.2.1. Channel assignment based on I-Matrix model 

In [20], the authors have extended the work of [19] by trying to remove some of the limita-

tions in the proposed I-Matrix interference model and the channel assignment algorithm. 

More precisely, the CA algorithm in [19] sorts the links in descending order based on nodal 

degrees; however, this is not practical in multi hop WMNs as most of the traffic is targeted 

to gateway nodes. Therefore, the descending order should be based on the traffic load, im-

plying that the busiest link should be assigned the channel first, i.e., gateway links should be 

first (thus being in accordance with typical WMN traffic characteristics). Another, shortcom-

ing of [19] pointed out is that it suffers from the network partitioning problem, in the sense 

that some of the links may remain unassigned because the CA algorithm only assigns POCs 

and never assigns the same channel (as it tries to completely avoid the co-channel interfer-

ence). To overcome this limitation, the I-Matrix model is modified to consider co-channel 

interference by adding a co-channel column to the matrix. This ensures network connectivi-

ty (because now the links can be assigned the same channels).  

The algorithm of [20] consists of two phases. In the first phase, instead of the number of 

links as the input, links with traffic load information are provided as input and they are 

sorted in descending order of the traffic they carry. Then a suitable channel with the mini-

mum interference is extracted from the I-Matrix. The second phase guarantees network 

connectivity in which the algorithm looks for those nodes that do not have a path to the 

gateway and if such nodes are found, their radios can be configured to the same channel on 

which one of their neighbor node’s radio is already configured on. This ensures full network 

connectivity at the cost of co-channel interference. They have shown through experiments 

that the existence of such co-channel interference does not strongly influence the network 

performance (as such formerly disconnected nodes are likely to be at the peripheral of the 

network). 

Table V summarizes the I-Matrix POCA schemes. It states the objective of each algorithm, 

the procedures used in obtaining a partially overlapping channel assignment algorithm, and 

the limitations of each scheme. 
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Technique Objective Methodology Limitations 

M. Hoque [19] 
Maximization of 

network capacity 

Greedy heuristic 

channel assignment 

algorithm based on I-

Matrix interference 

model, links are 

visited in descending 

order of the node 

degrees 

Simplistic 

interference model, 

network can be 

disconnected, CCI is 

not considered, 

topology is not 

preserved 

P. Duarte [20] 
Minimization of 

network interference 

Extended [19] to 

incorporate traffic 

load into I-Matrix for 

channel assignment, 

ensures network 

connectivity, links are 

visited in descending 

order of the traffic 

load 

Simplistic 

interference model 

Table 5. Summary of the two I-Matrix based approaches. 

4.3. Channel Overlapping Matrix Model (CO-Matrix) 

In order to model orthogonal and non-orthogonal channels, a novel interference model 

called channel overlapping matrix is proposed in [18]. Consider a MRMC-WMN consisting of 

N routers, each equipped with I radios and C available frequency channels. For any two 

routers a,b ∈ N, a channel assignment vector  xab of size C x 1 can be defined which defines 

the channel on which the two routers are communicating (that particular element in the 

matrix becomes 1). Similarly, a vector of size I x1 defines an interface assignment vector yab, 

which tells which radio belonging to a particular router a is used to communicate with rout-

er b (by changing the value of that element in the vector to 1). To model the partial overlap 

among channels, a C x C channel overlapping matrix W was proposed whose mth row, rth 

column entry can be calculated as: 

= F (w)F (w)dwF (w)dw  

where Fm(w) denotes the power spectral density (PSD) function of the band-pass filter for 

channel m and consequently the same for channel n. Based on this channel overlap matrix, 

the authors have formulated a linear mixed-integer program consisting of few integer varia-

bles in order to solve a joint channel assignment, interface assignment and scheduling prob-

lem when the whole spectrum of the IEEE 802.11 frequencies is to be used.  
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4.3.1. Channel Assignment based on Channel Overlapping Matrix Model 

Another channel assignment algorithm based on the channel overlapping matrix was pro-

posed in [15]. Here, a joint channel assignment and flow allocation problem in MRMC 

WMNs is considered. [15] formulates this joint problem into a mixed integer linear program 

with the objectives of maximizing aggregate end-to-end throughput while minimizing 

queuing delays in the network (given that the traffic characteristics are known). In order to 

model the partially overlapping channels, the I-factor of [5] is used, capturing the overlap 

between two different nodes configured on two different channels. Based on the I-factor a C 

x C symmetric channel overlapping matrix O is proposed:  

= 1																	 =( | |)( ) 										  

where oij represents an entry in the ith  row and jth column of the matrix O. To model the 

impact of interference, a physical model is employed [25].  

Table VI provide a side-by-side comparison of the two algorithms surveyed above based on 

their objectives, the methodology used to assign POCs, and their limitations.  

 

Technique Objective Methodology Limitations 

A. Rad [18] 

Minimization of the 

maximum link 

utilization  

Joint CA, interface 

assignment and flow 

scheduling algorithm based 

on channel overlapping 

matrix to model POCs / 

linear mixed-integer 

program formulation  

SI is not 

considered, 

extensive 

computational 

complexity 

V. Bukkapatanam 

[15] 

Maximization of 

the aggregate end-

to-end flow 

allocations 

Joint CA and flow allocation 

algorithm based on CO 

matrix / mixed integer linear 

program formulation 

extensive 

computational 

complexity, offline 

solution; no bounds 

on completion 

Table 6. Comparison of the two CO-Matrix based POCA schemes. 

4.4. Conflict Graph based Model (CGM) 

4.4.1. Channel Assignment with Partially Overlapped Channels  

A weighted conflict graph model is proposed in [7] to more accurately model interference 

among nodes operating on overlapping channels. In order to measure the partial interfer-

ence, a metric called interference factor (IF) is defined:  =  
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where t1 and t2 are the throughputs of two links (link-1 and link-2) each belonging to a pair 

of nodes which are placed at various locations to measure interference when the other link is 

idle. Similarly, t'1 and t'2 are the corresponding link throughputs when both links are active. 

As it can be seen from the formula, a higher IF value indicates lower interference. 

Experimental studies of [7] measured link interference (IF) and found out that for a 

particular channel separation, the interference between two links degrades quickly (higher 

IF factor) even with a slight increase in distance. From this IF metric, the interference range 

of two links separated by a fixed number of channels can be extracted. Multiple interference 

ranges are calculated for all five possible channel separations under different IEEE 802.11b 

bitrates (i.e., 2Mbps, 5.5Mbps, and 11Mbps).  

The concept of interference range is then applied to formulate the channel assignment prob-

lem into a weighted conflict graph model where the edges in the conflict graph are labeled 

by the minimum channel separation that two interfering links must have in order to have a 

conflict free communication. This weighted graph serves as an input to select the edges 

having minimum weights, eventually minimizing the overall network interference. A 

greedy partially overlapping channel assignment algorithm is proposed to solve the 

weighted conflict graph problem. The algorithm consists of two parts, namely select and 

assign. During select, the link with the minimum expected interference among all available 

links is selected. In the assign phase, a channel is assigned to this link with the minimum 

interference to all previously assigned channels. These steps are repeated until all links are 

covered, i.e., all links are assigned channels. In addition, the authors in [7] have also de-

signed a novel genetic algorithm for channel assignment which produces slightly better 

results compared to the greedy algorithm for solving the assignment using the conflict 

graph. In order to map the partially overlapping channel assignment algorithm, a channel 

assigned to a single link is considered as a DNA sequence and the channel assignments of 

the all the links are mapped to an individual. In a typical genetic algorithm, a generation 

consists of a set of individuals; therefore, in this case, it will be a series of channel assign-

ment solutions. An example of this mapping of the channel assignment problem to a genetic 

algorithm is shown in Figure 12 [7].  

 

Figure 12. Example of POCA using a genetic algorithm [7] 

The procedure for encoding the channel assignment scheme into an individual in a genetic 

algorithm requires first to sort the links, convert them to fixed length binary strings (a DNA 

sequence), and then to concatenate the binary strings together to form a single individual. 

The fitness function is defined as the inverse of the total interference in the network. The 

algorithm starts with randomly generating N channel assignment schemes (individuals). 
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The selection strategy selects two individuals (from the N sized population) by using the 

roulette wheel selection method and then choosing the better one of them according to the 

tournament selection strategy. These two strategies are commonly referred to as the stochas-

tic selection strategy. After the selection stage, a reproduction step is performed in which 

one-point crossover and two-point crossover and mutation is applied to the selected two 

individuals. Both the greedy and genetic channel assignment algorithms are evaluated on 

various sets of topologies. The greedy algorithm is faster but the genetic algorithm provides 

better results and thus can generate better channel assignment schemes which eventually 

result in improved network capacity. 

4.4.2. Partially Overlapped Channel Assignment (POCAM) 

In [16], a new partially overlapped channel assignment for multi-radio multi-channel wire-

less mesh networks called POCAM is proposed, where the interference model stems from 

measurements of commercial radios using real testbeds. An extensive set of testbed experi-

ments were performed to analyze the effect of partial interference and self-interference in 

WMNs. Through these tests it is shown that the self-interference issue is worse than it is 

usually assumed as it still needs to be considered even if the two radios on the same node 

are configured on non-overlapping channels. The proposed POCAM algorithm consists of 

two steps and incorporates the traffic load distribution. First, a transformation of the partial-

ly overlapped channel assignment problem into a weighted conflict graph (WCG) is per-

formed followed by calculation on that weighted conflict graph. The WCG is a graph G = 

(V,E) where V represents the number of nodes in a WMN. For each edge in E, edge weights 

are assigned based on a table in [7] capturing interference ranges against each channel sepa-

ration. The WCG is constructed with links represented as vertices in the conflict graph and 

there is a weighted edge between two vertices in the conflict graph if those two links inter-

fere. The WCG formulation becomes a constraint satisfaction problem (CSP) which is an NP 

hard problem. CSPs are usually solved by applying backtracking search algorithms [27], 

thus [7] shows a design of three heuristics specially tailored for WMN characteristics. 

4.4.3. Minimum Interference Channel Assignment 

The authors in [17] propose a centralized channel assignment algorithm based on the tabu-

search heuristic [26] which is used to find quasi-optimal solution for a graph coloring prob-

lem. The objective of the channel assignment algorithm is to minimize the overall network 

interference by assigning channels to links in a WMN. Network interference is captured as a 

graph coloring problem by assigning colors (channels) to the vertices of a conflict graph 

using K colors while maintaining interface constraints. The interface constraints limit the 

number of different channels assigned to interfaces belonging to a single node by the num-

ber of interfaces on that node. The proposed tabu-search based channel assignment algo-

rithm consists of two phases. In the first phase, the algorithm starts with a random solution 

by assigning random colors to each vertex in the conflict graph, followed by a series of solu-

tions which are created with the objective of minimizing overall network interference by 
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assigning colors to vertices such that the conflicts is minimized. In each iteration, a tabu list 

of the colors (channels) that have already been assigned is maintained to avoid their as-

signment a second time and to achieve fast convergence. This phase terminates after a cer-

tain number of iterations (solutions). In the second phase, the interface constraints are satis-

fied by a merge operation in which, those nodes who have been assigned more distinct 

colors (channels) to links than how many radios they have, have their colors merged to 

bring them to be equal to their number of radios. To ensure network connectivity by this 

merge operation, the just changed color is propagated to all the other links that were as-

signed the old color to repeat the merge operation on them (those links must be part of the 

common node).  

A distributed greedy heuristic channel assignment algorithm based on Max K-cut is also 

proposed by the authors [17]. Given a conflict graph, the max K-cut problem deals with 

dividing vertices into K partitions to maximize the number of edges that lie in different 

partitions. Two formulations of their proposed channel assignment problem are provided, 

one is a semi-definite programming (SDP) formulation and the other is a linear programming 

formulation in order to obtain tighter lower bounds on optimal network interference. The 

linear programming formulation is modified to capture partial interference that exist when 

overlapping channels are being used and in order to make the formulation compatible to 

POCs. The SDP formulation however turns out to be too complex and therefore, it is not 

been evaluated.  

Mishra et al., in [4] formulate the channel assignment problem as a weighted variant of the 

graph coloring problem incorporating realistic channel interference based on the I-factor 

model. The channel assignment problem is formulated as a weighted graph coloring 

problem with APs representing vertices in the graph and potential interference among them 

is represented by an edge between the vertices in the weighted graph. The weight on each 

edge depicts the significance of using different colors for the vertices that are connected by 

that edge. The weights are defined as the number of clients attached to an AP, scaled by the 

degree of interference between the chosen channels (I-factor). Therefore, the goal of the 

weighted graph coloring solution is to minimize the objective function. A higher weight 

translates to higher amounts of partial overlap between the channels; the algorithm attempts 

to assign different channels or channels with higher spatial difference to the edges in the 

graph. An edge weight of zero means that there is no interference among the clients of the 

corresponding APs. It is proved that the proposed weighted graph coloring problem is NP-

hard, therefore, two distributed channel assignment techniques are proposed with the 

objective of minimizing the overall network interference. The first technique tries to 

minimize each individual AP’s interference and does not require any inter-AP 

communication. It consists of two steps; i.e. an initialization and an optimization step. The 

initialization step starts with assigning the same channel to all the APs. In the optimization 

step (which is incremental in nature), each AP performs the greedy optimization trying to 

minimize its local maximum interference by taking the maximum weight edge (which 

eventually minimizes the objective function). The algorithm stops when the network 

achieves an acceptable “coloring” configuration. The second channel assignment algorithm 
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requires collaboration among APs and is intended to minimize interference by reducing the 

number of clients that are experiencing interference. Simulations and testbed experiments 

show that the proposed channel assignment algorithms achieve 45.5% reduction in 

interference when the network is sparse. The algorithms are scalable and provide better 

performance than existing channel assignment algorithms.  

A heuristic-based channel assignment and link scheduling algorithm is proposed in [9] to 

enhance network capacity by exploiting partially overlapping channels in WMNs. Since, 

finding optimal channel assignment and link scheduling together for a given network is NP-

hard, heuristic based policies are summoned to provide a sub-optimal solution. The prob-

lem is divided into two parts; first channel assignment is performed and then based on that 

an optimal link scheduling is explored. For the channel allocation, a genetic algorithm [28] is 

used. The authors have also studied some of the factors that influence the performance of 

POCs in channel assignment in a wireless mesh network (such as node density and node 

distribution).  

All of the above three POCA schemes make use of graph-theory to model partial overlap 

among nodes in MRMC-WMNs except [7] which is designed for single radio WMNs. The 

approaches then apply a heuristic for channel assignment. Table VII provides a side-by-

side comparison of the three POCA schemes based on their objectives, methodology, limi-

tations. 

 

Technique Objective Methodology Limitations 

POCAM [16] 
Minimization of 

network interference 

Weighted conflict 

graph, constraint 

satisfaction problem, 

heuristic based 

backtracking search 

algorithm  

Simplistic 

interference model, 

no SI is considered 

Y. Ding [7] 
Minimization of 

network interference 

Weighted conflict 

graph, graph 

coloring, greedy CA 

algorithm, genetic 

algorithm based on 

partially overlapped 

channel assignment 

SI is not considered, 

extensive 

computational 

complexity, edge 

weight assignment is 

difficult, does not 

consider traffic load 

A. Subramanian [17] 
Minimization of 

network interference 

Conflict graph, Max 

K-cut, SDP and ILP 

formulation, tabu 

based CA and 

heuristic based 

greedy CA algorithm 

Extensive 

computational 

complexity, SI is not 

considered, ignores 

switching overhead 

Table 7. Comparison on the objective, methodology and limitations of POCA schemes based on CGM. 
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4.5. Summary of all POCA approaches 

In this section, we provided a survey of existing POCA schemes in WMNs and summarized 

them based on their objectives, methodologies and limitations. Table VIII presents an overall 

summary of all the POCA approaches examined; the table shows the comparison of these 

schemes based on the following six questions:  

 Implementation: Is the proposed POCA centralized or distributed? 

 Multi-radio support: Is the POCA scheme designed for multi-radio WMNs? 

 Interference: What type of interference does the proposed POCA capture? 

 Routing dependency: Is the POCA dependent on a particular routing algorithm? 

 Channel switching frequency: How frequently are the channels switched? 

 Connectivity: Does the algorithm ensure network connectivity? 

5. Open issues in POCA design 

In spite of a reasonable amount of research in the late literature, there are still some chal-

lenges and open issues that need to be addressed in designing efficient channel assignment 

schemes exploiting POCs, particularly in WMNs. Below, we outline what we believe some 

of these challenges and open issues are. 

5.1. Capturing self interference 

As explained in Section 2.2, self-interference restricts parallel communication originating 

from a node having more than one radio unless these radios operate on completely orthog-

onal channels (OCs). Since, there are only three OCs for IEEE 802.11b/g in the 2.4GHz band, 

there is a need to further investigate how the self-interference issue can be better addressed. 

Few CA schemes have addressed self-interference in multi radio MWNs and we believe that 

there is room for improvement. 

5.2. Modeling interference of POCs 

More robust and efficient modeling schemes are required to intelligently capture the interfer-

ence experienced by neighboring nodes operating on POCs in MRMC-WMNs. Although exist-

ing approaches do partially capture one or two types of interferences in a WMN, they are not 

complete solutions (they do not capture all the different types of interferences realistically). 

Furthermore issues arising from geographical positions of neighboring nodes and the availabil-

ity of variable data rates still pose major challenges for POCA algorithms.    

5.3. Lack of simulation tools 

Most existing simulators [29-31] still do not support underlying physical models and easy 

POC evaluation scripting to capture partial interference between adjacent nodes in WMNs. 

However, we believe the reason for the lack of this feature is because the concept of POCs in 

CA schemes is relatively new and is still progressing and evolving to its maturity.       
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5.4. Multi-rate capability 

To the best of our knowledge, there is no partially overlapping channel assignment algorithm 

that has been proposed to explore the multi-rate capability of IEEE 802.11 based hardware in 

MRMC-WMNs. Almost all the aforementioned works have assumed a fixed transmission 

rate (homogeneous links) which make the problem of channel assignment simple, whereas a 

POCA scheme with adaptive rates could potentially achieve significantly better performance.  

 

Characteristics Implementation

Multi-

radio 

Support

Interference 

Routing 

Dependenc

y 

Channel 

Switching 

Frequency 

Focus on 

Connectivity 

A. Mishra [5] Centralized No ACI No Dynamic No 

MICA [10] Centralized No ACI No Fixed Yes 

CAEPO [12] Distributed No ACI Yes Hybrid Yes 

Load-Aware CAEPO-G [13] Distributed Yes ACI Yes Hybrid Yes 

M. Hoque [19] Centralized Yes ACI and SI No Dynamic No 

P. Duarte [20] Centralized Yes ACI, SI and CCI No Dynamic Yes 

A. Rad [18] Centralized Yes ACI and CCI Joint Fixed Yes 

V. Bukkapatanam [15] Centralized Yes ACI Joint Fixed Yes 

POCAM [16] Centralized Yes ACI and SI No Hybrid Yes 

Y. Ding [7] Centralized No ACI No Dynamic No 

A. Subramanian [17] Both Yes ACI No Dynamic Yes 

Table 8. Summary of characteristics of all POCA approaches in wireless mesh networks. 

6. Conclusions 

In this chapter, we have discussed the problem of assigning channels with partial overlaps 

to radios in single- and multi-radio WMNs. We have characterized different types of inter-

ferences that may exist in a WMN depending on the flow characteristics and on the particu-

lar configuration of interfaces to channel assignments. We then presented IEEE 802.11 

standard constraints on communications and evaluated the benefits of using partially over-

lapped channels (POCs) for the design of efficient channel assignment schemes with the 

help of experiments performed on a real testbed. Our, and previous experiments demon-

strated that the use of POCs: i) improves network capacity by enabling more parallel com-

munications and ii) provides more efficient utilization of the available spectrum. We have 

also provided a survey of some of the existing POC assignment schemes in WMNs and have 

classified them based on the interference models that they employ. Finally, we discussed 

some of the challenges and open issues in designing efficient channel assignment schemes 

utilizing both orthogonal and non-orthogonal channels in WMNs. 
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