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1. Introduction

The self-adjoint operators on Hilbert spaces with their numerous applications play an im‐
portant part in the operator theory. The bounds research for self-adjoint operators is a very
useful area of this theory. There is no better inequality in bounds examination than Jensen's
inequality. It is an extensively used inequality in various fields of mathematics.

Let I  be a real interval of any type. A continuous function f : I → ℝ is said to be operator
convex if

f (λx + (1 - λ)y) ≤ λf (x) + (1 - λ) f (y) (id1)

holds for each λ ∈ 0, 1  and every pair of self-adjoint operators x and y (acting) on an in‐
finite dimensional Hilbert space H  with spectra in I  (the ordering is defined by setting x ≤ y
if y - x is positive semi-definite).

Let f  be an operator convex function defined on an interval I . Ch. Davis [1] provedThere is
small typo in the proof. Davis states that φ by Stinespring's theorem can be written on the
form φ(x) = Pρ(x)P  where ρ is a * -homomorphism to B(H ) andP  is a projection on H . In
fact, H  may be embedded in a Hilbert space K  on which ρ and P  acts. The theorem then
follows by the calculation f (φ(x)) = f (Pρ(x)P) ≤ Pf (ρ(x))P = Pρ( f (x)P = φ( f (x)),  where
the pinching inequality, proved by Davis in the same paper, is applied. a Schwarz inequality

f (φ(x)) ≤ φ( f (x)) (id3)

where φ: ��→ B(K ) is a unital completely positive linear mapping from a C *-algebra  to linear
operators on a Hilbert space K ,  and x is a self-adjoint element in  with spectrum in I . Sub‐
sequently M. D. Choi [2] noted that it is enough to assume that φ is unital and positive. In
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fact, the restriction of φ to the commutative C *-algebra generated by x is automatically com‐
pletely positive by a theorem of Stinespring.

F. Hansen and G. K. Pedersen [3] proved a Jensen type inequality

f (∑
i=1

n
ai

*xiai) ≤ ∑
i=1

n
ai

* f (xi)ai (id4)

for operator convex functions f  defined on an interval I = 0, α) (with α ≤ ∞ and f (0) ≤ 0)
and self-adjoint operators x1, ⋯ , xn with spectra in I  assuming that ∑i=1

n ai
*ai = 1. The restric‐

tion on the interval and the requirement f (0) ≤ 0 was subsequently removed by B. Mond
and J. Pečarić in [4], cf. also [5].

The inequality (▭) is in fact just a reformulation of (▭) although this was not noticed at the
time. It is nevertheless important to note that the proof given in [3] and thus the statement of
the theorem, when restricted to n × n matrices, holds for the much richer class of 2n × 2n
matrix convex functions. Hansen and Pedersen used (▭) to obtain elementary operations on
functions, which leave invariant the class of operator monotone functions. These results
then served as the basis for a new proof of Löwner's theorem applying convexity theory and
Krein-Milman's theorem.

B. Mond and J. Pečarić [6] proved the inequality

f (∑
i=1

n
wiφi(xi)) ≤ ∑

i=1

n
wiφi( f (xi)) (id5)

for operator convex functions f  defined on an interval I ,  where φi : B(H ) → B(K ) are unital
positive linear mappings, x1, ⋯ , xn are self-adjoint operators with spectra in I  and
w1, ⋯ , wn are are non-negative real numbers with sum one.

Also, B. Mond, J. Pečarić, T. Furuta et al. [6], [7], [8], [9], [10], [11] observed conversed of
some special case of Jensen's inequality. So in [10] presented the following generalized con‐
verse of a Schwarz inequality (▭)

F φ( f (A)), g(φ(A)) ≤ maxm≤t≤M F f (m) +
f (M ) - f (m)

M - m (t - m), g(t) 1ñ (id6)

for convex functions f  defined on an interval m, M , m < M , where g  is a real valued con‐
tinuous function on m, M , F (u, v) is a real valued function defined on U × V , matrix non-
decreasing in u, U ⊃ f m, M , V ⊃ g m, M , φ : Hn → H ñ is a unital positive linear
mapping and A is a Hermitian matrix with spectrum contained in m, M .

There are a lot of new research on the classical Jensen inequality (▭) and its reverse inequali‐
ties. For example, J.I. Fujii et all. in [12], [13] expressed these inequalities by externally divid‐
ing points.
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2. Classic results

In this section we present a form of Jensen's inequality which contains (▭), (▭) and (▭) as
special cases. Since the inequality in (▭) was the motivating step for obtaining converses of
Jensen's inequality using the so-called Mond-Pečarić method, we also give some results per‐
taining to converse inequalities in the new formulation.

We recall some definitions. Let T  be a locally compact Hausdorff space and let  be a C *-alge‐
bra of operators on some Hilbert space H . We say that a field (xt)t∈T  of operators in  is con‐

tinuous if the function t ↦ xt  is norm continuous on T . If in addition μ is a Radon measure
on T  and the function t ↦ ∥ xt∥  is integrable, then we can form the Bochner integral

∫T xt dμ(t), which is the unique element in  such that

ϕ(∫T xt dμ(t)) = ∫T ϕ(xt) dμ(t) ()

for every linear functional ϕ in the norm dual ��*.

Assume furthermore that there is a field (φt)t∈T  of positive linear mappings φt : ��→ ℬ from 

to another ��*-algebra ℬ of operators on a Hilbert space K . We recall that a linear mapping
φt : ��→ ℬ is said to be a positive mapping if φt(xt) ≥ 0 for all xt ≥ 0. We say that such a field is

continuous if the function t ↦ φt(x) is continuous for every x ∈ ��. Let the ��*-algebras include
the identity operators and the function t ↦ φt(1H ) be integrable with ∫T φt(1H ) dμ(t) = k1K

for some positive scalar k . Specially, if ∫T φt(1H ) dμ(t) = 1K ,  we say that a field (φt)t∈T  is uni‐

tal.

Let B(H ) be the C *-algebra of all bounded linear operators on a Hilbert space H . We define
bounds of an operator x ∈ B(H ) by

mx = inf∥ξ∥=1 xξ, ξ and Mx = sup∥ξ∥=1 xξ, ξ (id7)

for ξ ∈ H . If ����(x) denotes the spectrum of x, then ����(x) ⊆ mx, Mx .

For an operator x ∈ B(H ) we define operators | x | , x +, x - by

| x | = (x *x)1/2, x + = ( | x | + x) / 2, x - = ( | x | - x) / 2 ()

Obviously, if x is self-adjoint, then | x | = (x 2)1/2 and x +, x - ≥ 0 (called positive and nega‐
tive parts of x = x + - x -).
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2.1. Jensen's inequality with operator convexity

Firstly, we give a general formulation of Jensen's operator inequality for a unital field of pos‐
itive linear mappings (see [14]).

Theorem 1 Let f : I → ℝ be an operator convex function defined on an interval I  and let 
and ℬ be unital C *-algebras acting on a Hilbert space H  and K  respectively. If (φt)t∈T  is a

unital field of positive linear mappings φt : ��→ ℬ defined on a locally compact Hausdorff
space T  with a bounded Radon measure μ,  then the inequality

f (∫T φt(xt) dμ(t)) ≤ ∫T φt( f (xt)) dμ(t) (id10)

holds for every bounded continuous field (xt)t∈T  of self-adjoint elements in  with spectra

contained in I .

We first note that the function t ↦ φt(xt) ∈ ℬ is continuous and bounded, hence integrable
with respect to the bounded Radon measure μ. Furthermore, the integral is an element in
the multiplier algebra M (ℬ) acting on K . We may organize the set CB(T , ��) of bounded con‐
tinuous functions on T  with values in  as a normed involutive algebra by applying the
point-wise operations and setting

∥ (yt)t∈T ∥ = supt∈T ∥ yt ∥ (yt)t∈T ∈ CB(T , ��) ()

and it is not difficult to verify that the norm is already complete and satisfy the C *-identity.
In fact, this is a standard construction in C *-algebra theory. It follows that
f ((xt)t∈T ) = ( f (xt))t∈T . We then consider the mapping

π: CB(T , ��) → M (ℬ) ⊆ B(K ) ()

defined by setting

π((xt)t∈T ) = ∫T φt(xt) dμ(t) ()

and note that it is a unital positive linear map. Setting x = (xt)t∈T ∈ CB(T , ��),  we use in‐

equality (▭) to obtain

f (π((xt)t∈T )) = f (π(x)) ≤ π( f (x)) = π( f ((xt)t∈T )) = π(( f (xt))t∈T ) ()

but this is just the statement of the theorem.

Linear Algebra4



2.2. Converses of Jensen's inequality

In the present context we may obtain results of the Li-Mathias type cf. Chapter 3[15] and
[16], [17].

Theorem 2 Let T  be a locally compact Hausdorff space equipped with a bounded Radon
measure μ. Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital C *-

algebra  with spectra in m, M , m < M . Furthermore, let (φt)t∈T  be a field of positive linear

mappings φt : ��→ ℬ from  to another unital C * - algebra ℬ, such that the function t ↦ φt(1H )
is integrable with ∫T φt(1H ) dμ(t) = k1K  for some positive scalar k . Let mx and Mx, mx ≤ Mx, be
the bounds of the self-adjoint operator x = ∫T φt(xt) dμ(t) and f : m, M → ℝ,
g : mx, Mx → ℝ, F : U × V → ℝ be functions such that (kf )( m, M ) ⊂ U ,  g( mx, Mx ) ⊂ V
and F  is bounded. If F  is operator monotone in the first variable, then

inf
mx≤z≤Mx

F k · h 1( 1
k z), g(z) 1K ≤ F ∫T φt( f (xt))dμ(t), g(∫T φt(xt)dμ(t))
≤ sup

mx≤z≤Mx

F k · h 2( 1
k z), g(z) 1K

(id13)

holds for every operator convex function h 1 on m, M  such that h 1 ≤ f  and for every opera‐
tor concave function h 2 on m, M  such that h 2 ≥ f .

We prove only RHS of (▭). Let h 2 be operator concave function on m, M  such that
f (z) ≤ h 2(z) for every z ∈ m, M . By using the functional calculus, it follows that
f (xt) ≤ h 2(xt) for every t ∈ T . Applying the positive linear mappings φt  and integrating, we
obtain

∫T φt( f (xt))dμ(t) ≤ ∫T φt(h 2(xt))dμ(t) ()

Furthermore, replacing φt  by 1
k φt  in Theorem ▭, we obtain

1
k ∫T φt(h 2(xt)) dμ(t) ≤ h 2( 1

k ∫T φt(xt) dμ(t)), which gives

∫T φt( f (xt))dμ(t) ≤ k · h 2( 1
k ∫T φt(xt) dμ(t)). Since mx 1K ≤ ∫T φt(xt)dμ(t) ≤ Mx 1K , then using op‐

erator monotonicity of F ( · , v) we obtain

F ∫T φt( f (xt))dμ(t), g(∫T φt(xt)dμ(t))
≤ F k · h 2( 1

k ∫T φt(xt) dμ(t)), g(∫T φt(xt)dμ(t)) ≤ sup
mx≤z≤Mx

F k · h 2( 1
k z), g(z) 1K

(id14)
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Applying RHS of (▭) for a convex function f  (or LHS of (▭) for a concave function f ) we
obtain the following generalization of (▭).

Theorem 3 Let (xt)t∈T , mx, Mx and (φt)t∈T  be as in Theorem ▭. Let f : m, M → ℝ,
g : mx, Mx → ℝ, F : U × V → ℝ be functions such that (kf )( m, M ) ⊂ U ,  g( mx, Mx ) ⊂ V
and F  is bounded. If F  is operator monotone in the first variable and f  is convex on the in‐
terval m, M , then

F ∫T φt( f (xt))dμ(t), g(∫T φt(xt)dμ(t))
≤ sup

mx≤z≤Mx

F
Mk - z
M - m f (m) +

z - km
M - m f (M ), g(z) 1K

(id16)

In the dual case (when f  is concave) the opposite inequalities hold in (▭) with inf  instead
of sup .

We prove only the convex case. For convex f  the inequality f (z) ≤ M - z
M - m f (m) + z - m

M - m f (M )

holds for every z ∈ m, M . Thus, by putting h 2(z) = M - z
M - m f (m) + z - m

M - m f (M ) in (▭) we ob‐
tain (▭). Numerous applications of the previous theorem can be given (see [15]). Applying
Theorem ▭ for the function F (u, v) = u - αv and k = 1, we obtain the following generaliza‐
tion of Theorem 2.4[15].

Corollary 4 Let (xt)t∈T , mx, Mx be as in Theorem ▭ and (φt)t∈T  be a unital field of positive

linear mappings φt : ��→ ℬ. If f : m, M → ℝ is convex on the interval m, M , m < M , and
g : m, M → ℝ, then for any α ∈ ℝ

∫T φt( f (xt))dμ(t) ≤ α g(∫T φt(xt)dμ(t)) + C1K (id18)

where

C = maxmx≤z≤M x
{ M - z

M - m f (m) +
z - m

M - m f (M ) - αg(z)}
≤ maxm≤z≤M { M - z

M - m f (m) +
z - m

M - m f (M ) - αg(z)} ()

If furthermore αg  is strictly convex differentiable, then the constant C ≡ C(m, M , f , g , α)
can be written more precisely as

C =
M - z0
M - m f (m) +

z0 - m
M - m f (M ) - αg(z0) ()

where

Linear Algebra6



z0 = {g '-1( f (M ) - f (m)
α(M - m) ) if αg '(mx) ≤ f (M ) - f (m)

M - m ≤ αg '(Mx)

mx if αg '(mx) ≥ f (M ) - f (m)
M - m

Mx if αg '(Mx) ≤ f (M ) - f (m)
M - m

()

In the dual case (when f  is concave and αg  is strictly concave differentiable) the opposite
inequalities hold in (▭) with min  instead of max  with the opposite condition while deter‐
mining z0.

3. Inequalities with conditions on spectra

In this section we present Jensens's operator inequality for real valued continuous convex
functions with conditions on the spectra of the operators. A discrete version of this result is
given in [18]. Also, we obtain generalized converses of Jensen's inequality under the same
conditions.

Operator convexity plays an essential role in (▭). In fact, the inequality (▭) will be false if we
replace an operator convex function by a general convex function. For example, M.D. Choi
in Remark 2.6[2] considered the function f (t) = t 4 which is convex but not operator convex.
He demonstrated that it is sufficient to put dimH = 3, so we have the matrix case as follows.

Let Φ : M3(ℂ) → M2(ℂ) be the contraction mapping Φ((aij)1≤i , j≤3) = (aij)1≤i , j≤2. If A = (1 0 1
0 0 1
1 1 1

),
then Φ(A)4 = (1 0

0 0) ¬ ≤ (9 5
5 3) = Φ(A 4) and no relation between Φ(A)4 and Φ(A 4) under the

operator order.

Example 5 It appears that the inequality (▭) will be false if we replace the operator convex
function by a general convex function. We give a small example for the matrix cases and

T = {1, 2}. We define mappings Φ1, Φ2 : M3(ℂ) → M2(ℂ) by Φ1((aij)1≤i , j≤3) = 1
2 (aij)1≤i , j≤2,

Φ2 = Φ1. Then Φ1(I3) + Φ2(I3) = I2.

I)

• If

X1 = 2(1 0 1
0 0 1
1 1 1

) and X2 = 2(1 0 0
0 0 0
0 0 0

) ()

then

Recent Research on Jensen's Inequality for Oparators
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(Φ1(X1) + Φ2(X2))4 = (16 0
0 0) ¬ ≤ (80 40

40 24) = Φ1(X1
4) + Φ2(X2

4) ()

Given the above, there is no relation between (Φ1(X1) + Φ2(X2))4 and Φ1(X1
4) + Φ2(X2

4) un‐
der the operator order. We observe that in the above case the following stands

X = Φ1(X1) + Φ2(X2) = (2 0
0 0) and mx, Mx = 0, 2 , m1, M1 ⊂ - 1.60388, 4.49396 ,

m2, M2 = 0, 2 , i.e.

(mx, Mx) ⊂ m1, M1 ∪ m2, M2 ()

(see Fig. 1.a).

II)

• If

X1 = (-14 0 1
0 -2 -1
1 -1 -1

) and X2 = (15 0 0
0 2 0
0 0 15

) ()

then

(Φ1(X1) + Φ2(X2))4 = ( 1
16 0

0 0
) < (89660 -247

-247 51 ) = Φ1(X1
4) + Φ2(X2

4) ()

So we have that an inequality of type (▭) now is valid. In the above case the following

stands X = Φ1(X1) + Φ2(X2) = ( 1
2 0

0 0
) and mx, Mx = 0, 0.5 ,

m1, M1 ⊂ - 14.077, - 0.328566 , m2, M2 = 2, 15 , i.e.

Figure 1. Spectral conditions for a convex function f

Linear Algebra8



(mx, Mx) ∩ m1, M1 = ∅ and (mx, Mx) ∩ m2, M2 = ∅ ()

(see Fig. 1.b).

3.1. Jensen's inequality without operator convexity

It is no coincidence that the inequality (▭) is valid in Example ▭-II). In the following theo‐
rem we prove a general result when Jensen's operator inequality (▭) holds for convex func‐
tions.

Theorem 6 Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital C *-

algebra  defined on a locally compact Hausdorff space T  equipped with a bounded Radon
measure μ. Let mt  and M t , mt ≤ M t , be the bounds of xt , t ∈ T . Let (φt)t∈T  be a unital field of

positive linear mappings φt : ��→ ℬ from  to another unital C * - algebra ℬ. If

(mx, Mx) ∩ mt , M t = ∅, t ∈ T ()

where mx and Mx, mx ≤ Mx, are the bounds of the self-adjoint operator x = ∫T φt(xt) dμ(t),
then

f (∫T φt(xt) dμ(t)) ≤ ∫T φt( f (xt)) dμ(t) (id25)

holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mt , M t .

If f : I → ℝ is concave, then the reverse inequality is valid in (▭).

We prove only the case when f  is a convex function. If we denote m = inf
t∈T

{mt} and

M = sup
t∈T

{M t}, then m, M ⊆ I  and m1H ≤ At ≤ M 1H , t ∈ T . It follows

m1K ≤ ∫T φt(xt) dμ(t) ≤ M 1K . Therefore mx, Mx ⊆ m, M ⊆ I .

a) Let mx < Mx. Since f  is convex on mx, Mx , then

f (z) ≤
Mx - z

Mx - mx
f (mx) +

z - mx
Mx - mx

f (Mx), z ∈ mx, Mx (id26)

but since f  is convex on mt , M t  and since (mx, Mx) ∩ mt , M t = ∅, then

f (z) ≥
Mx - z

Mx - mx
f (mx) +

z - mx
Mx - mx

f (Mx), z ∈ mt , M t , t ∈ T (id27)
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Since mx1K ≤ ∫T φt(xt) dμ(t) ≤ Mx1K ,  then by using functional calculus, it follows from (▭)

f (∫T φt(xt) dμ(t)) ≤
Mx1K - ∫T φt(xt) dμ(t)

Mx - mx
f (mx) +

∫T φt(xt) dμ(t) - mx1K
Mx - mx

f (Mx) (id28)

On the other hand, since mt1H ≤ xt ≤ M t1H , t ∈ T , then by using functional calculus, it fol‐
lows from (▭)

f (xt) ≥
Mx1H - xt
Mx - mx

f (mx) +
xt - mx1H
Mx - mx

f (Mx), t ∈ T ()

Applying a positive linear mapping φt  and summing, we obtain

∫T φt( f (xt)) dμ(t) ≥
Mx1K - ∫T φt(xt) dμ(t)

Mx - mx
f (mx) +

∫T φt(xt) dμ(t) - mx1K
Mx - mx

f (Mx) (id29)

since ∫T φt(1H ) dμ(t) = 1K . Combining the two inequalities (▭) and (▭), we have the desired
inequality (▭).

b) Let mx = Mx. Since f  is convex on m, M , we have

f (z) ≥ f (mx) + l(mx)(z - mx) for every z ∈ m, M (id30)

where l  is the subdifferential of f . Since m1H ≤ xt ≤ M 1H , t ∈ T , then by using functional
calculus, applying a positive linear mapping φt  and summing, we obtain from (▭)

∫T φt( f (xt)) dμ(t) ≥ f (mx)1K + l(mx)(∫T φt(xt) dμ(t) - mx1K ) (id31)

Since mx1K = ∫T φt(xt) dμ(t),  it follows

∫T φt( f (xt)) dμ(t) ≥ f (mx)1K = f (∫T φt(xt) dμ(t)) (id32)

which is the desired inequality (▭). Putting φt(y) = at y for every y ∈ ��, where at ≥ 0 is a real
number, we obtain the following obvious corollary of Theorem ▭.

Corollary 7 Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital C *-

algebra  defined on a locally compact Hausdorff space T  equipped with a bounded Radon
measure μ. Let mt  and M t , mt ≤ M t , be the bounds of xt , t ∈ T . Let (at)t∈T  be a continuous
field of nonnegative real numbers such that ∫T at dμ(t) = 1. If

Linear Algebra10



(mx, Mx) ∩ mt , M t = ∅, t ∈ T ()

where mx and Mx, mx ≤ Mx, are the bounds of the self-adjoint operator x = ∫T at xt dμ(t), then

f (∫T at xt dμ(t)) ≤ ∫T at f (xt) dμ(t) (id34)

holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mt , M t .

3.2. Converses of Jensen's inequality with conditions on spectra

Using the condition on spectra we obtain the following extension of Theorem ▭.

Theorem 8 Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital C *-

algebra  defined on a locally compact Hausdorff space T  equipped with a bounded Radon
measure μ. Furthermore, let (φt)t∈T  be a field of positive linear mappings φt : ��→ ℬ from  to

another unital C * - algebra ℬ, such that the function t ↦ φt(1H ) is integrable with
∫T φt(1H ) dμ(t) = k1K  for some positive scalar k . Let mt  and M t , mt ≤ M t , be the bounds of xt ,
t ∈ T , m = inf

t∈T
{mt}, M = sup

t∈T
{M t}, and mx and Mx, mx < Mx, be the bounds of

x = ∫T φt(xt) dμ(t). If

(mx, Mx) ∩ mt , M t = ∅, t ∈ T ()

and f : m, M → ℝ, g : mx, Mx → ℝ, F : U × V → ℝ are functions such that
(kf )( m, M ) ⊂ U ,  g( mx, Mx ) ⊂ V , f  is convex, F  is bounded and operator monotone in
the first variable, then

inf
mx≤z≤Mx

F
Mxk - z
Mx - mx

f (mx) +
z - kmx
Mx - mx

f (Mx), g(z) 1K

F ∫T φt( f (xt))dμ(t), g(∫T φt(xt)dμ(t))
≤ sup

mx≤z≤Mx

F
Mk - z
M - m f (m) +

z - km
M - m f (M ), g(z) 1K

(id37)

In the dual case (when f  is concave) the opposite inequalities hold in (▭) by replacing inf
and sup  with sup  and inf , respectively.

We prove only LHS of (▭). It follows from (▭) (compare it to (▭))
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∫T φt( f (xt)) dμ(t) ≥
Mxk1K - ∫T φt(xt) dμ(t)

Mx - mx
f (mx) +

∫T φt(xt) dμ(t) - mxk1K
Mx - mx

f (Mx) ()

since ∫T φt(1H ) dμ(t) = k1K . By using operator monotonicity of F ( · , v) we obtain

F ∫T φt( f (xt))dμ(t), g(∫T φt(xt) dμ(t)) ≥ F
Mxk1K - ∫T φt(xt) dμ(t)

Mx - mx
f (mx) +

∫T φt(xt) dμ(t) - mxk1K
Mx - mx

f (Mx), g(∫T φt(xt) dμ(t))()

mxzMx F[Mx k-zMx-mxf(mx)+z-kmxMx-mxf(Mx),g(z)] 1K

()

Putting F (u, v) = u - αv or F (u, v) = v -1/2uv -1/2 in Theorem ▭, we obtain the next corollary.

Corollary 9 Let (xt)t∈T , mt , M t , mx, Mx, m, M , (φt)t∈T  be as in Theorem ▭ and
f : m, M → ℝ, g : mx, Mx → ℝ be continuous functions. If

(mx, Mx) ∩ mt , M t = ∅, t ∈ T ()

and f  is convex, then for any α ∈ ℝ

min
mx≤z≤Mx

{ Mxk - z
Mx - mx

f (mx) +
z - kmx
Mx - mx

f (Mx) - g(z)}1K + αg(∫T φt(xt)dμ(t))
≤ ∫T φt( f (xt))dμ(t)

≤ αg(∫T φt(xt)dμ(t)) + max
mx≤z≤Mx

{ Mk - z
M - m f (m) +

z - km
M - m f (M ) - g(z)}1K

(id39)

If additionally g > 0 on mx, Mx , then

min
mx≤z≤Mx

{ Mxk - z
Mx - mx

f (mx) +
z - kmx
Mx - mx

f (Mx)
g(z)

}g(∫T φt(xt)dμ(t))

≤ ∫T φt( f (xt))dμ(t) ≤ max
mx≤z≤Mx

{ Mk - z
M - m f (m) +

z - km
M - m f (M )

g(z)
}g(∫T φt(xt)dμ(t))

(id40)

In the dual case (when f  is concave) the opposite inequalities hold in (▭) by replacing min
and max  with max  and min , respectively. If additionally g > 0 on mx, Mx , then the oppo‐
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site inequalities also hold in (▭) by replacing min  and max  with max  and min , respective‐
ly.

4. Refined Jensen's inequality

In this section we present a refinement of Jensen's inequality for real valued continuous con‐
vex functions given in Theorem ▭. A discrete version of this result is given in [19].

To obtain our result we need the following two lemmas.

Lemma 10 Let f  be a convex function on an interval I , m, M ∈ I  and p1, p2 ∈ 0, 1  such
that p1 + p2 = 1. Then

min {p1, p2} f (m) + f (M ) - 2 f ( m + M
2 ) ≤ p1 f (m) + p2 f (M ) - f (p1m + p2M ) (id42)

These results follows from Theorem 1, p. 717[20].

Lemma 11 Let x be a bounded self-adjoint elements in a unital C *-algebra  of operators on
some Hilbert space H . If the spectrum of x is in m, M , for some scalars m < M , then

f (x) ≤
M 1H - x

M - m f (m) +
x - m1H
M - m f (M ) - δf x̃

(resp. f (x) ≥
M 1H - x

M - m f (m) +
x - m1H
M - m f (M ) + δf x̃ ) (id44)

holds for every continuous convex (resp. concave) function f : m, M → ℝ, where

δf = f (m) + f (M ) - 2 f ( m + M
2 ) (resp. δf = 2 f ( m + M

2 ) - f (m) - f (M ))
and x̃ =

1
2 1H -

1
M - m |x -

m + M
2 1H | ()

We prove only the convex case. It follows from (▭) that

f (p1m + p2M ) ≤ p1 f (m) + p2 f (M )

- min {p1, p2}( f (m) + f (M ) - 2 f ( m + M
2 )) (id45)

for every p1, p2 ∈ 0, 1  such that p1 + p2 = 1 . For any z ∈ m, M  we can write
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f (z) = f ( M - z
M - m m +

z - m
M - m M ) ()

Then by using (▭) for p1 = M - z
M - m  and p2 = z - m

M - m  we obtain

f (z) ≤ M - z
M - m f (m) +

z - m
M - m f (M )

- ( 1
2 -

1
M - m |z -

m + M
2 |)( f (m) + f (M ) - 2 f ( m + M

2 )) (id46)

since

min { M - z
M - m ,

z - m
M - m } =

1
2 -

1
M - m |z -

m + M
2 | ()

Finally we use the continuous functional calculus for a self-adjoint operator x:
f , g ∈ ��(I ), Sp(x) ⊆ I  and f ≤ g  on I  implies f (x) ≤ g(x); and h (z) = | z |  implies
h (x) = | x | . Then by using (▭) we obtain the desired inequality (▭).

Theorem 12 Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital

C *-algebra  defined on a locally compact Hausdorff space T  equipped with a bounded Ra‐
don measure μ. Let mt  and M t , mt ≤ M t , be the bounds of xt , t ∈ T . Let (φt)t∈T  be a unital

field of positive linear mappings φt : ��→ ℬ from  to another unital C * - algebra ℬ. Let

(mx, Mx) ∩ mt , M t = ∅, t ∈ T , and m < M ()

where mx and Mx, mx ≤ Mx, be the bounds of the operator x = ∫T φt(xt) dμ(t) and

m = sup {M t : M t ≤ mx, t ∈ T }, M = inf {mt : mt ≥ Mx, t ∈ T } ()

If f : I → ℝ is a continuous convex (resp. concave) function provided that the interval I  con‐
tains all mt , M t , then

f (∫T φt(xt) dμ(t)) ≤ ∫T φt( f (xt)) dμ(t) - δf x̃ ≤ ∫T φt( f (xt)) dμ(t) (id48)

(resp.

f (∫T φt(xt) dμ(t)) ≥ ∫T φt( f (xt)) dμ(t) - δf x̃ ≥ ∫T φt( f (xt)) dμ(t) ) (id49)

holds, where
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δf ≡ δf (m̄, M̄ ) = f (m̄) + f (M̄ ) - 2 f ( m̄ + M̄
2 )

(resp. δf ≡ δf (m̄, M̄ ) = 2 f ( m̄ + M̄
2 ) - f (m̄) - f (M̄ ) )

x̃ ≡ x̃ x(m̄, M̄ ) = 1
2 1K -

1
M̄ - m̄ |x -

m̄ + M̄
2 1K |

(id50)

and  m̄ ∈ m, mA , M̄ ∈ MA, M , m̄ < M̄ ,   are arbitrary numbers.

We prove only the convex case. Since x = ∫T φt(xt) dμ(t) ∈ ℬ is the self-adjoint elements such
that m̄1K ≤ mx1K ≤ ∫T φt(xt) dμ(t) ≤ Mx1K ≤ M̄ 1K  and f  is convex on m̄, M̄ ⊆ I , then by
Lemma ▭ we obtain

f (∫T φt(xt) dμ(t)) ≤
M̄ 1K - ∫T φt(xt) dμ(t)

M̄ - m̄ f (m̄) +
∫T φt(xt) dμ(t) - m̄1K

M̄ - m̄ f (M̄ ) - δf x̃ (id51)

where δf  and x̃ are defined by (▭).

But since f  is convex on mt , M t  and (mx, Mx) ∩ mt , M t = ∅ implies
(m̄, M̄ ) ∩ mt , M t = ∅, then

f (xt) ≥
M̄ 1H - xt

M̄ - m̄ f (m̄) +
xt - m̄1H
M̄ - m̄ f (M̄ ), t ∈ T ()

Applying a positive linear mapping φt , integrating and adding -δf x̃, we obtain

∫T φt( f (xt)) dμ(t) - δf x̃ ≥
M̄ 1K - ∫T φt(xt) dμ(t)

M̄ - m̄ f (m̄) +
∫T φt(xt) dμ(t) - m̄1K

M̄ - m̄ f (M̄ ) - δf x̃ (id52)

since ∫T φt(1H ) dμ(t) = 1K . Combining the two inequalities (▭) and (▭), we have LHS of (▭).
Since δf ≥ 0 and x̃ ≥ 0, then we have RHS of (▭).

If m < M  and mx = Mx, then the inequality (▭) holds, but δf (mx, Mx) x̃(mx, Mx) is not defined
(see Example ▭ I) and II)).

Example 13 We give examples for the matrix cases and T = {1, 2}. Then we have refined in‐
equalities given in Fig. 2.

We put f (t) = t 4 which is convex but not operator convex in (▭). Also, we define mappings

Φ1, Φ2 : M3(ℂ) → M2(ℂ) as follows: Φ1((aij)1≤i , j≤3) = 1
2 (aij)1≤i , j≤2, Φ2 = Φ1 (then

Φ1(I3) + Φ2(I3) = I2).
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I) First, we observe an example when δf X̃  is equal to the difference RHS and LHS of Jen‐
sen's inequality. If X1 = - 3I3 and X2 = 2I3, then X = Φ1(X1) + Φ2(X2) = - 0.5I2, so m = - 3,
M = 2. We also put m̄ = - 3 and M̄ = 2. We obtain

(Φ1(X1) + Φ2(X2))4 = 0.0625I2 < 48.5I2 = Φ1(X1
4) + Φ2(X2

4) ()

and its improvement

(Φ1(X1) + Φ2(X2))4 = 0.0625I2 = Φ1(X1
4) + Φ2(X2

4) - 48.4375I2 ()

since δf = 96.875, X̃ = 0.5I2. We remark that in this case mx = Mx = - 1 / 2 and X̃ (mx, Mx) is
not defined.

II) Next, we observe an example when δf X̃  is not equal to the difference RHS and LHS of
Jensen's inequality and mx = Mx. If

X1 = (-1 0 0
0 -2 0
0 0 -1

), X2 = (2 0 0
0 3 0
0 0 4

), then X =
1
2 (1 0

0 1) and m = - 1, M = 2 ()

In this case x̃(mx, Mx) is not defined, since mx = Mx = 1 / 2. We have

(Φ1(X1) + Φ2(X2))4 =
1
16 (1 0

0 1) < ( 17
2 0

0 97
2

) = Φ1(X1
4) + Φ2(X2

4) ()

and putting m̄ = - 1, M̄ = 2 we obtain δf = 135 / 8, X̃ = I2 / 2 which give the following im‐
provement

(Φ1(X1) + Φ2(X2))4 =
1
16 (1 0

0 1) <
1
16 (1 0

0 641) = Φ1(X1
4) + Φ2(X2

4) -
135
16 (1 0

0 1) ()

Figure 2. Refinement for two operators and a convex function f
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III) Next, we observe an example with matrices that are not special. If

X1 = (-4 1 1
1 -2 -1
1 -1 -1

) and X2 = ( 5 -1 -1
-1 2 1
-1 1 3

), then X =
1
2 (1 0

0 0) ()

so m1 = - 4.8662, M1 = - 0.3446, m2 = 1.3446, M2 = 5.8662, m = - 0.3446, M = 1.3446 and we
put m̄ = m, M̄ = M  (rounded to four decimal places). We have

(Φ1(X1) + Φ2(X2))4 =
1

16 (1 0
0 0) < ( 1283

2 -255

-255 237
2

) = Φ1(X1
4) + Φ2(X2

4) ()

and its improvement

(Φ1(X1) + Φ2(X2))4 =
1
16 (1 0

0 0)
< (639.9213 -255

-255 117.8559) = Φ1(X1
4) + Φ2(X2

4) - (1.5787 0
0 0.6441) ()

(rounded to four decimal places), since δf = 3.1574, X̃ = (0.5 0
0 0.2040). But, if we put

m̄ = mx = 0, M̄ = Mx = 0.5, then X̃ = 0, so we do not have an improvement of Jensen's in‐

equality. Also, if we put m̄ = 0, M̄ = 1, then X̃ = 0.5(1 0
0 1), δf = 7 / 8 and δf X̃ = 0.4375(1 0

0 1),
which is worse than the above improvement.

Putting Φt(y) = at y for every y ∈ ��, where at ≥ 0 is a real number, we obtain the following ob‐
vious corollary of Theorem ▭.

Corollary 14 Let (xt)t∈T  be a bounded continuous field of self-adjoint elements in a unital

C *-algebra  defined on a locally compact Hausdorff space T  equipped with a bounded Ra‐
don measure μ. Let mt  and M t , mt ≤ M t , be the bounds of xt , t ∈ T . Let (at)t∈T  be a continu‐
ous field of nonnegative real numbers such that ∫T at dμ(t) = 1. Let

(mx, Mx) ∩ mt , M t = ∅, t ∈ T , and m < M ()

where mx and Mx, mx ≤ Mx, are the bounds of the operator x = ∫T φt(xt) dμ(t) and

m = sup {M t : M t ≤ mx, t ∈ T }, M = inf {mt : mt ≥ Mx, t ∈ T } ()
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If f : I → ℝ is a continuous convex (resp. concave) function provided that the interval I  con‐
tains all mt , M t , then

f (∫T at xt dμ(t)) ≤ ∫T at f (xt) dμ(t) - δf x̃̃ ≤ ∫T at f (xt) dμ(t)

(resp. f (∫T at xt dμ(t)) ≥ ∫T at f (xt) dμ(t) + δf x̃̃ ≥ ∫T at f (xt) dμ(t) )
()

holds, where δf  is defined by (▭), x̃̃ = 1
2 1H - 1

M̄ - m̄ |∫T at xt dμ(t) - m̄ + M̄
2 1H | and m̄ ∈ m, mA ,

M̄ ∈ MA, M , m̄ < M̄ , are arbitrary numbers.

5. Extension Jensen's inequality

In this section we present an extension of Jensen's operator inequality for n - tuples of self-
adjoint operators, unital n - tuples of positive linear mappings and real valued continuous
convex functions with conditions on the spectra of the operators.

In a discrete version of Theorem ▭ we prove that Jensen's operator inequality holds for ev‐
ery continuous convex function and for every n - tuple of self-adjoint operators (A1, ..., An),
for every n - tuple of positive linear mappings (Φ1, ..., Φn) in the case when the interval
with bounds of the operator A = ∑i=1

n Φi(Ai) has no intersection points with the interval with
bounds of the operator Ai for each i = 1, ..., n, i.e. when (mA, MA) ∩ mi, M i = ∅ for
i = 1, ..., n,  where mA and MA, mA ≤ MA, are the bounds of A, and mi and M i, mi ≤ M i, are
the bounds of Ai, i = 1, ..., n. It is interesting to consider the case when
(mA, MA) ∩ mi, M i = ∅ is valid for several i ∈ {1, ..., n}, but not for all i = 1, ..., n. We
study it in the following theorem (see [21]).

Theorem 15 Let (A1, ..., An) be an n - tuple of self-adjoint operators Ai ∈ B(H ) with the
bounds mi and M i, mi ≤ M i, i = 1, ..., n. Let (Φ1, ..., Φn) be an n - tuple of positive linear
mappings Φi : B(H ) → B(K ), such that ∑i=1

n Φi(1H ) = 1K . For 1 ≤ n1 < n, we denote

m = min {m1, ..., mn1
}, M = max {M1, ..., Mn1

} and ∑i=1
n1 Φi(1H ) = α 1K , ∑i=n1+1

n Φi(1H ) = β 1K ,
where α, β > 0, α + β = 1. If

(m, M ) ∩ mi, M i = ∅, i = n1 + 1, ..., n ()

and one of two equalities

1
α ∑i=1

n1

Φi(Ai) =
1
β ∑

i=n1+1

n
Φi(Ai) = ∑

i=1

n
Φi(Ai) ()
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is valid, then

1
α ∑i=1

n1

Φi( f (Ai)) ≤ ∑
i=1

n
Φi( f (Ai)) ≤

1
β ∑

i=n1+1

n
Φi( f (Ai)) (id57)

holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mi, M i, i = 1, ..., n. If f : I → ℝ is concave, then the reverse inequality is valid in (▭).

We prove only the case when f  is a convex function. Let us denote

A =
1
α ∑i=1

n1

Φi(Ai), B =
1
β ∑

i=n1+1

n
Φi(Ai), C = ∑

i=1

n
Φi(Ai) ()

It is easy to verify that A = B or B = C  or A = C  implies A = B = C .

a) Let m < M . Since f  is convex on m, M  and mi, M i ⊆ m, M  for i = 1, ..., n1, then

f (z) ≤
M - z
M - m f (m) +

z - m
M - m f (M ), z ∈ mi, M i for i = 1, ..., n1 (id58)

but since f  is convex on all mi, M i  and (m, M ) ∩ mi, M i = ∅ for i = n1 + 1, ..., n, then

f (z) ≥
M - z
M - m f (m) +

z - m
M - m f (M ), z ∈ mi, M i for i = n1 + 1, ..., n (id59)

Since mi1H ≤ Ai ≤ M i1H , i = 1, ..., n1, it follows from (▭)

f (Ai) ≤
M 1H - Ai

M - m f (m) +
Ai - m1H

M - m f (M ), i = 1, ..., n1
()

Applying a positive linear mapping Φi and summing, we obtain

∑
i=1

n1

Φi( f (Ai)) ≤
Mα1K -∑i=1

n1 Φi(Ai)
M - m f (m) +

∑i=1
n1 Φi(Ai) - mα1K

M - m f (M ) ()

since ∑i=1
n1 Φi(1H ) = α1K . It follows

1
α ∑i=1

n1

Φi( f (Ai)) ≤
M 1K - A

M - m f (m) +
A - m1K
M - m f (M ) (id60)

Similarly to (▭) in the case mi1H ≤ Ai ≤ M i1H , i = n1 + 1, ..., n, it follows from (▭)
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1
β ∑

i=n1+1

n
Φi( f (Ai)) ≥

M 1K - B
M - m f (m) +

B - m1K
M - m f (M ) (id61)

Combining (▭) and (▭) and taking into account that A = B, we obtain

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) (id62)

It follows

1
α ∑i=1

n1

Φi( f (Ai)) = ∑
i=1

n1

Φi( f (Ai)) +
β
α ∑i=1

n1

Φi( f (Ai)) (by α + β = 1)

≤ ∑
i=1

n1

Φi( f (Ai)) + ∑
i=n1+1

n
Φi( f (Ai)) (by ())

= ∑
i=1

n
Φi( f (Ai))

≤
α
β ∑

i=n1+1

n
Φi( f (Ai)) + ∑

i=n1+1

n
Φi( f (Ai)) (by ())

=
1
β ∑

i=n1+1

n
Φi( f (Ai)) (by α + β = 1)

(id63)

which gives the desired double inequality (▭).

b) Let m = M . Since mi, M i ⊆ m, M  for i = 1, ..., n1, then Ai = m1H  and f (Ai) = f (m)1H

for i = 1, ..., n1. It follows

1
α ∑i=1

n1

Φi(Ai) = m1K and
1
α ∑i=1

n1

Φi( f (Ai)) = f (m)1K (id64)

On the other hand, since f  is convex on I , we have

f (z) ≥ f (m) + l(m)(z - m) for every z ∈ I (id65)

where l  is the subdifferential of f . Replacing z by Ai for i = n1 + 1, ..., n, applying Φi and
summing, we obtain from (▭) and (▭)

1
β ∑

i=n1+1

n
Φi( f (Ai)) ≥ f (m)1K + l(m)( 1

β ∑
i=n1+1

n
Φi(Ai) - m1K )

= f (m)1K =
1
α ∑i=1

n1

Φi( f (Ai))
()
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So (▭) holds again. The remaining part of the proof is the same as in the case a).

Remark 16 We obtain the equivalent inequality to the one in Theorem ▭ in the case when
∑i=1

n Φi(1H ) = γ 1K , for some positive scalar γ. If α + β = γ and one of two equalities

1
α ∑i=1

n1

Φi(Ai) =
1
β ∑

i=n1+1

n
Φi(Ai) =

1
γ ∑i=1

n
Φi(Ai) ()

is valid, then

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
γ ∑i=1

n
Φi( f (Ai)) ≤

1
β ∑

i=n1+1

n
Φi( f (Ai)) ()

holds for every continuous convex function f .

Remark 17 Let the assumptions of Theorem ▭ be valid.

1. We observe that the following inequality

f ( 1
β ∑

i=n1+1

n
Φi(Ai)) ≤ 1

β ∑
i=n1+1

n
Φi( f (Ai)) (id68)

holds for every continuous convex function f : I → ℝ.

Indeed, by the assumptions of Theorem ▭ we have

mα1H ≤ ∑
i=1

n1

Φi( f (Ai)) ≤ Mα1H and
1
α ∑i=1

n1

Φi(Ai) =
1
β ∑

i=n1+1

n
Φi(Ai) ()

which implies

m1H ≤ ∑
i=n1+1

n 1
β Φi( f (Ai)) ≤ M 1H ()

Also (m, M ) ∩ mi, M i = ∅ for i = n1 + 1, ..., n and ∑i=n1+1
n 1

β Φi(1H ) = 1K  hold. So we can ap‐

ply Theorem ▭ on operators An1+1, ..., An and mappings 1
β Φi and obtain the desired inequal‐

ity.

2. We denote by mC  and MC  the bounds of C = ∑i=1
n Φi(Ai). If (mC , MC) ∩ mi, M i = ∅,

i = 1, ..., n1 or f  is an operator convex function on m, M , then the double inequality (▭)
can be extended from the left side if we use Jensen's operator inequality (see Theorem
2.1[16])
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f (∑
i=1

n
Φi(Ai)) = f ( 1

α ∑i=1

n1

Φi(Ai))
≤

1
α ∑i=1

n1

Φi( f (Ai)) ≤ ∑
i=1

n
Φi( f (Ai)) ≤

1
β ∑

i=n1+1

n
Φi( f (Ai))

()

Example 18 If neither assumptions (mC , MC) ∩ mi, M i = ∅, i = 1, ..., n1, nor f  is operator
convex in Remark ▭ - 2. is satisfied and if 1 < n1 < n, then (▭) can not be extended by Jen‐
sen's operator inequality, since it is not valid. Indeed, for n1 = 2 we define mappings

Φ1, Φ2 : M3(ℂ) → M2(ℂ) by Φ1((aij)1≤i , j≤3) = α
2 (aij)1≤i , j≤2, Φ2 = Φ1. Then Φ1(I3) + Φ2(I3) = αI2. If

A1 = 2(1 0 1
0 0 1
1 1 1

) and A2 = 2(1 0 0
0 0 0
0 0 0

) ()

then

( 1
α Φ1(A1) +

1
α Φ2(A2))4

=
1

α 4 (16 0
0 0) ¬ ≤

1
α (80 40

40 24) =
1
α Φ1(A1

4) +
1
α Φ2(A2

4) ()

for every α ∈ (0, 1). We observe that f (t) = t 4 is not operator convex and

(mC , MC) ∩ mi, M i ≠∅,  since C = A = 1
α Φ1(A1) + 1

α Φ2(A2) = 1
α (2 0

0 0),  mC , MC = 0, 2 / α ,

m1, M1 ⊂ - 1.60388, 4.49396  and m2, M2 = 0, 2 .

With respect to Remark ▭, we obtain the following obvious corollary of Theorem ▭.

Corollary 19 Let (A1, ..., An) be an n - tuple of self-adjoint operators Ai ∈ B(H ) with the
bounds mi and M i, mi ≤ M i, i = 1, ..., n. For some 1 ≤ n1 < n, we denote m = min {m1, ..., mn1

},
M = max {M1, ..., Mn1

}. Let (p1, ..., pn) be an n - tuple of non-negative numbers, such that

0 < ∑i=1
n1 pi = ����1 < ����= ∑i=1

n pi. If

(m, M ) ∩ mi, M i = ∅, i = n1 + 1, ..., n ()

and one of two equalities

1
����1
∑
i=1

n1

pi Ai =
1
����
∑
i=1

n
pi Ai =

1
����- ����1

∑
i=n1+1

n
pi Ai ()

is valid, then
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1
����1
∑
i=1

n1

pi f (Ai) ≤
1
����
∑
i=1

n
pi f (Ai) ≤

1
����- ����1

∑
i=n1+1

n
pi f (Ai) (id71)

holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mi, M i, i = 1, ..., n.

If f : I → ℝ is concave, then the reverse inequality is valid in (▭).

As a special case of Corollary ▭ we can obtain a discrete version of Corollary ▭ as follows.

Corollary 20 (Discrete version of Corollary ▭) Let (A1, ..., An) be an n - tuple of self-adjoint
operators Ai ∈ B(H ) with the bounds mi and M i, mi ≤ M i, i = 1, ..., n. Let (α1, ..., αn) be an

n - tuple of nonnegative real numbers such that ∑i=1
n αi = 1. If

(mA, MA) ∩ mi, M i = ∅, i = 1, ..., n (id73)

where mA and MA, mA ≤ MA, are the bounds of A = ∑i=1
n αi Ai, then

f (∑
i=1

n
αi Ai) ≤ ∑

i=1

n
αi f (Ai) (id74)

holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mi, M i.

We prove only the convex case. We define (n + 1) - tuple of operators (B1, ..., Bn+1),
Bi ∈ B(H ), by B1 = A = ∑i=1

n αi Ai and Bi = Ai-1, i = 2, ..., n + 1. Then mB1
= mA, M B1

= MA are the
bounds of B1 and mBi

= mi-1, M Bi
= M i-1 are the ones of Bi, i = 2, ..., n + 1. Also, we define

(n + 1) - tuple of non-negative numbers (p1, ..., pn+1) by p1 = 1 and pi = αi-1, i = 2, ..., n + 1.

Then ∑i=1
n+1 pi = 2 and by using (▭) we have

(mB1
, M B1

) ∩ mBi
, M Bi

= ∅, i = 2, ..., n + 1 (id75)

Since

∑
i=1

n+1
pi Bi = B1 + ∑

i=2

n+1
pi Bi = ∑

i=1

n
αi Ai + ∑

i=1

n
αi Ai = 2B1 ()

then

p1B1 =
1
2 ∑i=1

n+1
pi Bi = ∑

i=2

n+1
pi Bi (id76)
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Taking into account (▭) and (▭), we can apply Corollary ▭ for n1 = 1 and Bi, pi as above, and
we get

p1 f (B1) ≤
1
2 ∑i=1

n+1
pi f (Bi) ≤ ∑

i=2

n+1
pi f (Bi) ()

which gives the desired inequality (▭).

6. Extension of the refined Jensen's inequality

There is an extensive literature devoted to Jensen's inequality concerning different refine‐
ments and extensive results, see, for example [22], [23], [24], [25], [26], [27], [28], [29].

In this section we present an extension of the refined Jensen's inequality obtained in Sec‐
tion ▭ and a refinement of the same inequality obtained in Section ▭.

Theorem 21 Let (A1, ..., An) be an n - tuple of self-adjoint operators Ai ∈ B(H ) with the
bounds mi and M i, mi ≤ M i, i = 1, ..., n. Let (Φ1, ..., Φn) be an n - tuple of positive linear

mappings Φi : B(H ) → B(K ), such that ∑i=1
n1 Φi(1H ) = α 1K , ∑i=n1+1

n Φi(1H ) = β 1K , where
1 ≤ n1 < n, α, β > 0 and α + β = 1. Let mL = min {m1, ..., mn1

}, MR = max {M1, ..., Mn1
} and

m = max {M i: M i ≤ mL , i ∈ {n1 + 1, ..., n}}
M = min {mi: mi ≥ MR, i ∈ {n1 + 1, ..., n}} ()

If

(mL , MR) ∩ mi, M i = ∅, i = n1 + 1, ..., n, and m < M ()

and one of two equalities

1
α ∑i=1

n1

Φi(Ai) = ∑
i=1

n
Φi(Ai) =

1
β ∑

i=n1+1

n
Φi(Ai) ()

is valid, then

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
α ∑i=1

n1

Φi( f (Ai)) + βδf Ã ≤ ∑
i=1

n
Φi( f (Ai))

≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) - αδf Ã ≤

1
β ∑

i=n1+1

n
Φi( f (Ai))

(id78)
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holds for every continuous convex function f : I → ℝ provided that the interval I  contains
all mi, M i, i = 1, ..., n, where

δf ≡ δf (m̄, M̄ ) = f (m̄) + f (M̄ ) - 2 f ( m̄ + M̄
2 )

Ã ≡ ÃA,Φ,n1,α
(m̄, M̄ ) =

1
2 1K -

1
α(M̄ - m̄)∑

i=1

n1

Φi(|Ai -
m̄ + M̄

2 1H |) (id79)

and   m̄ ∈ m, mL , M̄ ∈ MR, M , m̄ < M̄ ,   are arbitrary numbers. If f : I → ℝ is concave,

then the reverse inequality is valid in (▭).

We prove only the convex case. Let us denote

A =
1
α ∑i=1

n1

Φi(Ai), B =
1
β ∑

i=n1+1

n
Φi(Ai), C = ∑

i=1

n
Φi(Ai) ()

It is easy to verify that A = B or B = C  or A = C  implies A = B = C .

Since f  is convex on m̄, M̄  and ����(Ai) ⊆ mi, M i ⊆ m̄, M̄  for i = 1, ..., n1, it follows from

Lemma ▭ that

f (Ai) ≤
M̄ 1H - Ai

M̄ - m̄ f (m̄) +
Ai - m̄1H

M̄ - m̄ f (M̄ ) - δf Ãi, i = 1, ..., n1
()

holds, where δf = f (m̄) + f (M̄ ) - 2 f ( m̄ + M̄
2 ) and Ãi = 1

2 1H - 1
M̄ - m̄ |Ai - m̄ + M̄

2 1H |. Applying a

positive linear mapping Φi and summing, we obtain

∑
i=1

n1

Φi( f (Ai)) ≤ M̄ α1K -∑i=1
n1 Φi(Ai)

M̄ - m̄ f (m̄) +
∑i=1

n1 Φi(Ai) - m̄α1K
M̄ - m̄ f (M̄ )

- δf ( α
2 1K -

1
M̄ - m̄∑i=1

n1

Φi(|Ai -
m̄ + M̄

2 1H |))
()

since ∑i=1
n1 Φi(1H ) = α1K . It follows that

1
α ∑i=1

n1

Φi( f (Ai)) ≤
M̄ 1K - A

M̄ - m̄ f (m̄) +
A - m̄1K
M̄ - m̄ f (M̄ ) - δf Ã (id80)

where Ã = 1
2 1K - 1

α(M̄ - m̄)∑i=1
n1 Φi(|Ai - m̄ + M̄

2 1H |).
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Additionally, since f  is convex on all mi, M i  and (m̄, M̄ ) ∩ mi, M i = ∅, i = n1 + 1, ..., n,

then

f (Ai) ≥
M̄ 1H - Ai

M̄ - m̄ f (m̄) +
Ai - m̄1H

M̄ - m̄ f (M̄ ), i = n1 + 1, ..., n (id81)

It follows

1
β ∑

i=n1+1

n
Φi( f (Ai)) - δf Ã ≥

M̄ 1K - B
M̄ - m̄ f (m̄) +

B - m̄1K
M̄ - m̄ f (M̄ ) - δf Ã (id82)

Combining (▭) and (▭) and taking into account that A = B, we obtain

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) - δf Ã (id83)

Next, we obtain

1
α ∑i=1

n1

Φi( f (Ai))

= ∑
i=1

n1

Φi( f (Ai)) +
β
α ∑i=1

n1

Φi( f (Ai)) (by α + β = 1)

≤ ∑
i=1

n1

Φi( f (Ai)) + ∑
i=n1+1

n
Φi( f (Ai)) - βδf Ã (by ())

≤
α
β ∑

i=n1+1

n
Φi( f (Ai)) - αδf Ã + ∑

i=n1+1

n
Φi( f (Ai)) - βδf Ã (by ())

=
1
β ∑

i=n1+1

n
Φi( f (Ai)) - δf Ã (by α + β = 1)

()

which gives the following double inequality

1
α ∑i=1

n1

Φi( f (Ai)) ≤ ∑
i=1

n
Φi( f (Ai)) - βδf Ã ≤

1
β ∑

i=n1+1

n
Φi( f (Ai)) - δf Ã (id84)

Adding βδf Ã in the above inequalities, we get

1
α ∑i=1

n1

Φi( f (Ai)) + βδf Ã ≤ ∑
i=1

n
Φi( f (Ai)) ≤

1
β ∑

i=n1+1

n
Φi( f (Ai)) - αδf Ã (id85)
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Now, we remark that δf ≥ 0 and Ã ≥ 0. (Indeed, since f  is convex, then
f ((m̄ + M̄ ) / 2) ≤ ( f (m̄) + f (M̄ )) / 2, which implies that δf ≥ 0. Also, since

����(Ai) ⊆ m̄, M̄ ⇒ |Ai -
M̄ + m̄

2 1H | ≤ M̄ - m̄
2 1H , i = 1, ..., n1 ()

then

∑
i=1

n1

Φi(|Ai -
M̄ + m̄

2 1H |) ≤ M̄ - m̄
2 α1K ()

which gives

0 ≤
1
2 1K -

1
α(M̄ - m̄)∑

i=1

n1

Φi(|Ai -
M̄ + m̄

2 1H |) = Ã ) ()

Consequently, the following inequalities

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
α ∑i=1

n1

Φi( f (Ai)) + βδf Ã

1
β ∑

i=n1+1

n
Φi( f (Ai)) - αδf Ã ≤

1
β ∑

i=n1+1

n
Φi( f (Ai))

()

hold, which with (▭) proves the desired series inequalities (▭). 1.05

Example 22 We observe the matrix case of Theorem ▭ for f (t) = t 4, which is the convex
function but not operator convex, n = 4, n1 = 2 and the bounds of matrices as in Fig. 3.

We show an example such that

Figure 3. An example a convex function and the bounds of four operators
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1
α (Φ1(A1

4) + Φ2(A2
4)) <

1
α (Φ1(A1

4) + Φ2(A2
4)) + βδf Ã

< Φ1(A1
4) + Φ2(A2

4) + Φ3(A3
4) + Φ4(A4

4)

<
1
β (Φ3(A3

4) + Φ4(A4
4)) - αδf Ã <

1
β (Φ3(A3

4) + Φ4(A4
4))

(id88)

holds, where δf = M̄ 4 + m̄4 - (M̄ + m̄)48 and

Ã =
1
2 I2 -

1
α(M̄ - m̄) (Φ1(| A1 -

M̄ + m̄
2 Ih | ) + Φ2(| A2 -

M̄ + m̄
2 I3| )) ()

We define mappings Φi : M3(ℂ) → M2(ℂ) as follows: Φi((a jk )1≤ j ,k≤3) = 1
4 (a jk )1≤ j ,k≤2,

i = 1, ..., 4. Then ∑i=1
4 Φi(I3) = I2 and α = β = 1

2 .

Let

A1 = 2( 2 9 / 8 1
9 / 8 2 0

1 0 3
), A2 = 3( 2 9 / 8 0

9 / 8 1 0
0 0 2

), A3 = - 3( 4 1 / 2 1
1 / 2 4 0

1 0 2
), A4 = 12(5 / 3 1 / 2 0

1 / 2 3 / 2 0
0 0 3

) ()

Then m1 = 1.28607, M1 = 7.70771, m2 = 0.53777, M2 = 5.46221, m3 = - 14.15050, M3 = - 4.71071,
m4 = 12.91724, M4 = 36., so mL = m2, MR = M1, m = M3 and M = m4 (rounded to five decimal
places). Also,

1
α (Φ1(A1) + Φ2(A2)) =

1
β (Φ3(A3) + Φ4(A4)) = ( 4 9 / 4

9 / 4 3 ) ()

and

Af ≡
1
α (Φ1(A1

4) + Φ2(A2
4)) = (989.00391 663.46875

663.46875 526.12891)
Cf ≡ Φ1(A1

4) + Φ2(A2
4) + Φ3(A3

4) + Φ4(A4
4) = (68093.14258 48477.98437

48477.98437 51335.39258)
Bf ≡

1
β (Φ3(A3

4) + Φ4(A4
4)) = (135197.28125 96292.5

96292.5 102144.65625)
()

Then

Af < Cf < Bf (id89)
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holds (which is consistent with (▭)).

We will choose three pairs of numbers (m̄, M̄ ), m̄ ∈ - 4.71071, 0.53777 ,
M̄ ∈ 7.70771, 12.91724  as follows

i) m̄ = mL = 0.53777, M̄ = MR = 7.70771, then

Δ̃1 = βδf Ã = 0.5 · 2951.69249 · (0.15678 0.09030
0.09030 0.15943) = (231.38908 133.26139

133.26139 235.29515)
ii) m̄ = m = - 4.71071, M̄ = M = 12.91724, then

Δ̃2 = βδf Ã = 0.5 · 27766.07963 · (0.36022 0.03573
0.03573 0.36155) = (5000.89860 496.04498

496.04498 5019.50711)
iii) m̄ = - 1, M̄ = 10, then

Δ̃3 = βδf Ã = 0.5 · 9180.875 · (0.28203 0.08975
0.08975 0.27557) = (1294.66 411.999

411.999 1265. )
New, we obtain the following improvement of (▭) (see (▭))

Table 1.

Using Theorem ▭ we get the following result.

Corollary 23 Let the assumptions of Theorem ▭ hold. Then

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
α ∑i=1

n1

Φi( f (Ai)) + γ1δf Ã ≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) (id91)

and

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) - γ2δf Ã ≤

1
β ∑

i=n1+1

n
Φi( f (Ai)) (id92)

holds for every γ1, γ2 in the close interval joining α and β, where δf  and Ã are defined by
(▭).

Adding αδf Ã in (▭) and noticing δf Ã ≥ 0, we obtain

1
α ∑i=1

n1

Φi( f (Ai)) ≤
1
α ∑i=1

n1

Φi( f (Ai)) + αδf Ã ≤
1
β ∑

i=n1+1

n
Φi( f (Ai)) (id93)

Taking into account the above inequality and the left hand side of (▭) we obtain (▭).
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Similarly, subtracting βδf Ã in (▭) we obtain (▭).

Remark 24 We can obtain extensions of inequalities which are given in Remark ▭ and ▭.
Also, we can obtain a special case of Theorem ▭ with the convex combination of operators
Ai putting Φi(B) = αi B, for i = 1, ..., n, similarly as in Corollary ▭. Finally, applying this re‐
sult, we can give another proof of Corollary ▭. The interested reader can see the details in
[30].
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