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1. Introduction

The self-adjoint operators on Hilbert spaces with their numerous applications play an im-
portant part in the operator theory. The bounds research for self-adjoint operators is a very
useful area of this theory. There is no better inequality in bounds examination than Jensen's
inequality. It is an extensively used inequality in various fields of mathematics.

Let I be a real interval of any type. A continuous function f : I — R is said to be operator
convex if

FAx+(1-A)y) <Af(x)+(1-A)f(y) (id1)

holds for each A € [0, 1] and every pair of self-adjoint operators x and y (acting) on an in-
finite dimensional Hilbert space H with spectra in I (the ordering is defined by setting x < y
if y - x is positive semi-definite).

Let f be an operator convex function defined on an interval I. Ch. Davis [1] provedThere is
small typo in the proof. Davis states that ¢ by Stinespring's theorem can be written on the
form ¢(x) = Pp(x)P where p is a * -homomorphism to B(H) andP is a projection on H. In
fact, H may be embedded in a Hilbert space K on which p and P acts. The theorem then
follows by the calculation f(¢(x)) = f(Pp(x)P) < Pf(p(x))P = Pp(f (x)P = ¢(f(x)), where
the pinching inequality, proved by Davis in the same paper, is applied. a Schwarz inequality

f(p(x)) < p(f (x)) (id3)

where ¢: — B(K) is a unital completely positive linear mapping from a C -algebra to linear

operators on a Hilbert space K, and x is a self-adjoint element in with spectrum in I. Sub-
sequently M. D. Choi [2] noted that it is enough to assume that ¢ is unital and positive. In
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fact, the restriction of ¢ to the commutative C -algebra generated by x is automatically com-
pletely positive by a theorem of Stinespring.

F. Hansen and G. K. Pedersen [3] proved a Jensen type inequality
f (Z‘l x) < ; a; f(x)a (id4)

for operator convex functions f defined on an interval I =[0, &) (with @ < and f(0) <0)
i-14; a; = 1. The restric-

tion on the interval and the requirement f(0) <0 was subsequently removed by B. Mond
and J. Pecaric¢ in [4], cf. also [5].

and self-adjoint operators x;, -, x, with spectra in I assuming that ).’

The inequality (=) is in fact just a reformulation of (=) although this was not noticed at the
time. It is nevertheless important to note that the proof given in [3] and thus the statement of
the theorem, when restricted to n x n matrices, holds for the much richer class of 2n x 2n
matrix convex functions. Hansen and Pedersen used (=) to obtain elementary operations on
functions, which leave invariant the class of operator monotone functions. These results
then served as the basis for a new proof of Lowner's theorem applying convexity theory and
Krein-Milman's theorem.

B. Mond and J. Pecari¢ [6] proved the inequality
f(; wipy(x;)) < ;wi(z)i(f(xi)) (id5)

for operator convex functions f defined on an interval I, where ¢, : B (H) — B(K) are unital
positive linear mappings, x;, -, x, are self-adjoint operators with spectra in I and

w,;, -+, w, are are non-negative real numbers with sum one.

Also, B. Mond, J. Pecari¢, T. Furuta et al. [6], [7], [8], [9], [10], [11] observed conversed of
some special case of Jensen's inequality. So in [10] presented the following generalized con-
verse of a Schwarz inequality (=)

f(M) f(m)

FIO(f(A)), g(@(AN] < max, ey F| f(m) + t-m), g1, (id6)

for convex functions f defined on an interval [m, M ], m <M, where g is a real valued con-
tinuous function on [m, M ], F(u, v) is a real valued function defined on U x V, matrix non-
decreasing in u, U D f[m, M], V D glm, M], ¢ : H, — H, is a unital positive linear
mapping and A is a Hermitian matrix with spectrum contained in [m, M ].

There are a lot of new research on the classical Jensen inequality (=) and its reverse inequali-

ties. For example, J.I. Fujii et all. in [12], [13] expressed these inequalities by externally divid-
ing points.



Recent Research on Jensen's Inequality for Oparators
http://dx.doi.org/10.5772/48468

2. Classic results

In this section we present a form of Jensen's inequality which contains (=), (=) and (=) as
special cases. Since the inequality in (=) was the motivating step for obtaining converses of
Jensen's inequality using the so-called Mond-Pecari¢ method, we also give some results per-
taining to converse inequalities in the new formulation.

We recall some definitions. Let T be a locally compact Hausdorff space and let be a C -alge-

bra of operators on some Hilbert space H. We say that a field (x,), _.. of operators in is con-

tET
tinuous if the function ¢t — x, is norm continuous on T. If in addition u is a Radon measure

on T and the function t — || x,|| is integrable, then we can form the Bochner integral

Jrx, du(t), which is the unique element in such that
¢ rx, dp() = [rp(x) du(t) 0

for every linear functional ¢ in the norm dual B

Assume furthermore that there is a field (¢,), .. of positive linear mappings ¢, : — B from

tET
to another x‘-algebra B of operators on a Hilbert space K. We recall that a linear mapping
¢, : — Bissaid to be a positive mapping if ¢,(x,) = 0 for all x, > 0. We say that such a field is

continuous if the function ¢ — ¢,(x) is continuous for every x € . Let the *—algebras include
the identity operators and the function t — ¢,(1,) be integrable with [;¢,(1,)du(t) =k1,

for some positive scalar k. Specially, if ;- ¢,(1,;)du(t) =1, we say that a field (¢,),_, is uni-

tal.

Let B(H) be the C -algebra of all bounded linear operators on a Hilbert space H. We define
bounds of an operator x € B(H) by

m, =inf o (x&, &) and M, =sups - X&, &) (id7)

for & € H.If (x) denotes the spectrum of x, then (x) < [m,, M, ].

For an operator x € B(H) we define operators | x |, x*, x by
x| =(x"x)", x=(lxl +x)/2 x=(lxl-x)/2 0

Obviously, if x is self-adjoint, then | x | = (x2)"* and x*, x>0 (called positive and nega-

tive parts of x = x " - x").

3
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2.1. Jensen's inequality with operator convexity

Firstly, we give a general formulation of Jensen's operator inequality for a unital field of pos-
itive linear mappings (see [14]).

Theorem 1 Let f : I — R be an operator convex function defined on an interval I and let

and B be unital C -algebras acting on a Hilbert space H and K respectively. If (¢,) o7 isa

unital field of positive linear mappings ¢, : — B defined on a locally compact Hausdorff

space T with a bounded Radon measure i, then the inequality

f(fTth(xt) d#(t)) <Jrdi(f (x,)) du(t) (id10)

holds for every bounded continuous field (x,), .. of self-adjoint elements in with spectra

tET
contained in I.

We first note that the function t — qbt(xt) € B is continuous and bounded, hence integrable
with respect to the bounded Radon measure p. Furthermore, the integral is an element in
the multiplier algebra M (B) acting on K. We may organize the set CB(T, ) of bounded con-

tinuous functions on T with values in as a normed involutive algebra by applying the
point-wise operations and setting

I (yt)teT I =super Iy | (yt)teT e CB(T,) 0

and it is not difficult to verify that the norm is already complete and satisfy the C -identity.

In fact, this is a standard construction in C -algebra theory. It follows that
f((x),e7) = (f(x;)),c7- We then consider the mapping

n: CB(T, ) - M(8B) < B(K) 0

defined by setting

n((xt)teT) = [ (x,) du(t) ()

and note that it is a unital positive linear map. Setting x = (x,), .. € CB(T,), we use in-

teT
equality (=) to obtain

f(r(()er)) = £ ) < m(f G = (£ (x1), 7)) = 7((F () er) 0

but this is just the statement of the theorem.
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2.2. Converses of Jensen's inequality

In the present context we may obtain results of the Li-Mathias type cf. Chapter 3[15] and
[16], [17].

Theorem 2 Let T be a locally compact Hausdorff space equipped with a bounded Radon

measure . Let (x,), . be a bounded continuous field of self-adjoint elements in a unital C -

teT
algebra with spectra in [m, M1, m <M. Furthermore, let (¢,), _, be a field of positive linear
mappings ¢, : — B from to another unital C - algebra B, such that the function t — (1)
is integrable with fr¢,(1,)du(t) = k1 for some positive scalar k. Let m, and M, m, <M, be
the bounds of the self-adjoint operator x=[.¢,(x,)du(t) and f:[m, M]—- R,
g:[m,M,]— R, F:UxV — R be functions such that (kf)([m, M]) C U, g([mx, Mx]) cV

and F is bounded. If F is operator monotone in the first variable, then

el 2], s@ < FlJL o au), gl] o)

(id13)
< sup F[k h( ) g(z)}

m,<z<M,

holds for every operator convex function /1, on [m, M ] such that 1; < f and for every opera-

tor concave function i, on [m, M ] such thath, > f.

We prove only RHS of (=). Let I, be operator concave function on [m, M] such that
f(z) <h,(z) for every z €[m, M]. By using the functional calculus, it follows that
f(x;) Shy(x,) for every t € T. Applying the positive linear mappings ¢, and integrating, we

obtain

Jr i (f (xe))dp(t) < Jr oy (5x,))dpi(t) 0
Furthermore,  replacing ¢, by %q)t in  Theorem =, we  obtain
o oun(x) dute <, Jcpt(xt)dy(t)) which gives

JT¢t(f(xt))dy(t) <k-h ( I ¢p(x,)du ) Since m, 1y < fr¢,(x,)du(t) <M, 1, then using op-
erator monotonicity of F(-, v) we obtain
FU &, (f (x,))du(t), gU é,(x;) dy(t))}
[k h ( .[qbt(xt)dy(t) g(J ¢,(x;) dy(t))}< sup F[k h ( ) g(z)}

m,<z<M

(id14)

5
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Applying RHS of (=) for a convex function f (or LHS of (=) for a concave function f) we
obtain the following generalization of (=).

Theorem 3 Let (x,),., m, M, and (¢,),., be as in Theorem =. Let f :[m, M]— R,
g:[m, M,]— R, F:UxV — Rbe functions such that (kf)([m, M) c U, g([mx, Mx]) cVv

and F is bounded. If F is operator monotone in the first variable and f is convex on the in-
terval [m, M ], then

FUTcpt(f(xt))dy(f), gUT@(xt)dP‘(t)ﬂ

< sup F[MEE pm+ 2 o, g1,

m,<z<M

(id16)

In the dual case (when f is concave) the opposite inequalities hold in (=) with inf instead
of sup .

We prove only the convex case. For convex f the inequality f(z) < % f(m)+ 13— f (M)

holds for every z € [m, M]. Thus, by putting h,(z) = %f(m) + 2= f(M) in (=) we ob-

tain (=). Numerous applications of the previous theorem can be given (see [15]). Applying

Theorem = for the function F(u, v) = u - av and k =1, we obtain the following generaliza-
tion of Theorem 2.4[15].

Corollary 4 Let (x,),_;, 1, M, be as in Theorem = and (¢,), _, be a unital field of positive

teT’
linear mappings ¢, : — B.If f :[m, M] — R is convex on the interval [m, M ], m <M, and

g :[m, M]— R, then forany o € R

Frdi(f (x,))dp(t) < @ g(qubt(xt)dy(t)) +Cly (id18)
where

oo |2 )+ 22 ) - ag )

e |2 )+ 2 M) - ag (=)

@)
Il

IN

If furthermore ag is strictly convex differentiable, then the constant C =C(m, M, f, g, @)
can be written more precisely as

0 Zp-m
C= M _mf(m)+mf(M)-ag(zo) ()

where



Recent Research on Jensen's Inequality for Oparators
http://dx.doi.org/10.5772/48468

\ M) - \ M) - .
(LT i gy < LD ian,)

o = | if ag(m)> % 0
M, if ag(M,)< W

In the dual case (when f is concave and ag is strictly concave differentiable) the opposite
inequalities hold in (=) with min instead of max with the opposite condition while deter-
mining z,.

3. Inequalities with conditions on spectra

In this section we present Jensens's operator inequality for real valued continuous convex
functions with conditions on the spectra of the operators. A discrete version of this result is
given in [18]. Also, we obtain generalized converses of Jensen's inequality under the same
conditions.

Operator convexity plays an essential role in (=). In fact, the inequality (=) will be false if we
replace an operator convex function by a general convex function. For example, M.D. Choi
in Remark 2.6[2] considered the function f(t) = t* which is convex but not operator convex.
He demonstrated that it is sufficient to put dimH = 3, so we have the matrix case as follows.
101
IfA={0 0 1),
111

Let @ : M4(C) — M,(C) be the contraction mapping CD((al-j)1 < j S3) = (“ij)m i

10 9 5
then @(A)* = (O 0) - < (5 3) = ®(A*) and no relation between ®(A)* and ®(A*) under the

operator order.

Example 5 It appears that the inequality (=) will be false if we replace the operator convex
function by a general convex function. We give a small example for the matrix cases and

T ={1,2}. We define mappings @, ©,: M;(C) - M,(C) by @1((ai]-)1gl.,js3) = %(al-j)1 g i<
®, = ®,. Then ®,(I,) + OyL3) = L.

)]
o If
1 01 100
X;=2{0 0 1] and X,=2(0 0 0 0
111 000

then

7
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— =G —mgmgmnmmm- I S-S oo ———o-
m m m M, M, M, my M, My M, M M,

a) b)

Figure 1. Spectral conditions for a convex function f

16 0) (80 40
- <

(Dy(X7) + Dy(X,))* = ( 0 0 40 24) = y(X) + 0,(X) 0

Given the above, there is no relation between (@, (X, ) + ®,(X,))* and @, (X} + d,(X ) un-

der the operator order. We observe that in the above case the following stands

and [m, M,]=[0,2], [m, M,]C[-1.60388, 4.49396],

X =X )+ DyX,) = ((i g)

[m,, M,] =0, 2], i.e.

(my, M) C [my, My]U[my, M,] 0
(see Fig. 1.a).
1)
o If
-14 0 1 15 0 0
X;=10 -2 -1 and X,=|{0 2 0 0
1 -1 -1 0 0 15
then
1 0| (89660 -247
(@1(X,) + Dy(X,)) = | 16 <( )=(D1(X14)+(D2(X24) 0
0 0 -247 51

So we have that an inequality of type (=) now is valid. In the above case the following
1

= 0
stands X =@, (X,)+ Dy(X,)=|> ) and [m, M,]=[0, 0.5],
00

[my, M,] C [ -14.077, -0.328566], [m, M,] =12, 15], ie.
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(mx’ Mx) n [mll Ml] =0 and (mx' Mx) n [mZ' MZ] =9 ()
(see Fig. 1.b).

3.1. Jensen's inequality without operator convexity

It is no coincidence that the inequality (=) is valid in Example =-II). In the following theo-
rem we prove a general result when Jensen's operator inequality (=) holds for convex func-
tions.

Theorem 6 Let (x,), _.. be a bounded continuous field of self-adjoint elements in a unital C -

teT
algebra defined on a locally compact Hausdorff space T equipped with a bounded Radon

measure . Let m, and M,, m, < M,, be the bounds of x,, t € T. Let (¢,), ., be a unital field of

positive linear mappings ¢, : — B from to another unital C " - algebra 8. If
(mx’ Mx) n [mt' Mt] = ®' teT ()

where m, and M,, m, <M, are the bounds of the self-adjoint operator x = [;¢,(x,) du(t),
then

f(fT(Pt(xt) dy(t)) <Jrdi(f(x,)) du(®) (1d25)

holds for every continuous convex function f : I — R provided that the interval I contains
all m,, M,.

If f : I — Ris concave, then the reverse inequality is valid in (=).

We prove only the case when f is a convex function. If we denote m =inf {m,} and
teT

M =sup {M,}, then [m M]IcI and mly<A<Ml,, teT. It follows

teT

mly < frd,(x,)du(t) < M 1. Therefore [m, M ] < [m, M] < I.

a) Let m, <M.,. Since f is convex on[m,, M, ], then

M
f@) <51 x_nj f(m,)+ M fM,), ze€[m,M,] (id26)

X X X X

M, -z z-m, .
f@) 2 g f(m,)+ fM,), z€[m,M,], teT (id27)

X X X

9
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Since m, 1 < fr¢,(x,)du(t) <M, 1, then by using functional calculus, it follows from (=)

M 1y - [ ,(x,)du(t) Jr o, (x,) du(t) -m 1 _
£ (r () du() < KMqunfx) = fm,)+ T¢(xa)4x”-mxm “f(M)  (id2s)

On the other hand, since m,1,; <x, <M,1,, t € T, then by using functional calculus, it fol-

lows from (=)

Mle - X xt_mle
fl)z g fm)+ 3p— f(My), tET 0

X X

Applying a positive linear mapping ¢, and summing, we obtain

M, 1y - [, (x,) du(t) Jr () du(t) -m 1
- f(m,)+

i (f (x,) du(t) 2 M_-m, m, M, -m, M,) (id29)

since [y ¢,(1;;)du(t) = 1. Combining the two inequalities (=) and (=), we have the desired
inequality (=).

b) Let m, = M. Since f is convex on [m, M ], we have
f(z)z f(m,)+1(m,)(z-m,) for every z € [m, M] (id30)

where [ is the subdifferential of f. Since m1,; <x, <M1y, t € T, then by using functional

calculus, applying a positive linear mapping ¢, and summing, we obtain from (=)

Jr o (f (%)) du®) 2 f (m )1 +1(m)(fr @, (x,) dut) - m 1) (id31)

Since m, 1 = [r¢,(x,) du(t), it follows

Jr o (f () dp(®) = f (m )1 = f ([, (x,) du(t)) (id32)

which is the desired inequality (=). Putting ¢,(y) = a,y for every y €, where 4, 20 is a real

number, we obtain the following obvious corollary of Theorem =.

Corollary 7 Let (x,), ., be a bounded continuous field of self-adjoint elements in a unital C -

algebra defined on a locally compact Hausdorff space T equipped with a bounded Radon

measure (. Let m, and M,, m, <M,, be the bounds of x,, t € T. Let (at) et be a continuous

field of nonnegative real numbers such that fra, du(t) = 1. If
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(mx’ Mx) n [mt' Mt] - ®' teT ()
where m, and M, m, < M, are the bounds of the self-adjoint operator x = [;a,x, du(t), then

f(rax, du(t)) < fra, f (x,) du(t) (id34)

holds for every continuous convex function f : I — R provided that the interval I contains
all m,, M,.

3.2. Converses of Jensen's inequality with conditions on spectra

Using the condition on spectra we obtain the following extension of Theorem =.

Theorem 8 Let (xt) be a bounded continuous field of self-adjoint elements in a unital C -

teT
algebra defined on a locally compact Hausdorff space T equipped with a bounded Radon

measure yi. Furthermore, let (¢,), _, be a field of positive linear mappings ¢, : — B from to

another unital C’ - algebra B, such that the function t ~ qbt(l H) is integrable with
Jr¢;(1)du(t) =k1y for some positive scalar k. Let m, and M,, m, < M,, be the bounds of x,,
teT, m=inf {m}, M=sup {M,}, and m, and M, m <M, be the bounds of

teT teT

X = frpy () dp(). T
(mx’ Mx) n [mt' Mt] = ®' teT ()

and f:[m M]-R, g:[m, M]—-R, F:UxV —-R are functions such that
(kf)[m, M]) c U, g(m, M,]) CV, f is convex, F is bounded and operator monotone in
the first variable, then

M k-z z-km

inf F{Mx_m f(m,)+ M _,,;C fM,), 8(2)}1K

F [JTqbt(f (x,))du(t), gUTqbt(xt)du(t)ﬂ (id37)
< sup F[ﬁk_';f(m)+%f(]\/[)/ g(Z)}lK

m,<zsM

In the dual case (when f is concave) the opposite inequalities hold in (=) by replacing inf
and sup withsup and inf , respectively.

We prove only LHS of (=). It follows from (=) (compare it to (=))

1"



12 Linear Algebra

M K1y - by (x,) dut) () du() - m k1
o) dutz S ORI ) OOy

X X

since fr¢,(1,)du(t) = k1. By using operator monotonicity of F (-, v) we obtain

M k1 -] ;) du(t) Jr i (x,) du(t) - m k1
i o T ), gl o) )

X

[l e, (o duco)] =

mxzMx F[Mx k-zMx-mxf(mx)+z-kmxMx-mxf(Mx),g(z)] 1K

0

/2 1

Putting F(u, v) =u-av or F(u, v) =v 124,512 in Theorem =, we obtain the next corollary.

Corollary 9 Let (xt)teT, m, M, m, M, m, M, (¢t)teT be as in Theorem = and
f:lm, M] - R, g:[m, M,] — R be continuous functions. If

(mx’ Mx) n [mt’ Mt] = ®’ teT ()
and f is convex, then for any a € R

Mk -z z-km

X

M, -m, L)+ 3 f (M) -g(z)’lK + agUTqbt(xt)du(t))

min

m<z<M

<[ @, (x)auct) (1d39)

< agUT¢t(xt)dy(t))+ max ‘ﬁk:ﬂj f(m)+ ;/I- ?Zf(M) -g(Z)]lK

m,<z<M

If additionally ¢ >0 on [m,, M, ], then

Mk -z z-km

X

Wf(mx) + Wf(Mx)
¢(2)

min

m,<z<M

al[. o1 )0

[ AA/,IIk__r;f(mH ;I_Z{Zf(M)]
<[ @,/ (x)u(®) < max e

m,<z<M

(id40)

ol] xut0)

In the dual case (when f is concave) the opposite inequalities hold in (=) by replacing min
and max with max and min, respectively. If additionally ¢ >0 on [m,, M_], then the oppo-
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site inequalities also hold in (=) by replacing min and max with max and min, respective-
ly.

4. Refined Jensen's inequality

In this section we present a refinement of Jensen's inequality for real valued continuous con-
vex functions given in Theorem =. A discrete version of this result is given in [19].

To obtain our result we need the following two lemmas.

Lemma 10 Let f be a convex function on an interval I, m, M € I and p;, p, € [0, 1] such

that p; + p, = 1. Then

min {p;, pz}[f(m)+f(M) -2f(m 2M } < pif(m)+ pyf M) - f(pym+ p,M) (id42)

These results follows from Theorem 1, p. 717[20].

Lemma 11 Let x be a bounded self-adjoint elements in a unital C -algebra of operators on

some Hilbert space H. If the spectrum of x is in [m, M ], for some scalars m < M, then

M1 -mly
fe) s ST e S f(M) - 0,7 |
ML - o (id44)
(resp. f(x) 2 Mi%f(m)+M7_me(M)+6f5c )
holds for every continuous convex (resp. concave) function f : [m, M] — R, where
= o+ £ o0 -2 (M) (resp. o, =26 (M) ) - )
21 1 ‘ m+M | 0
and X=5ly-prlx-—5 1y
We prove only the convex case. It follows from (=) that
f(pm+p,M) < pif(m)+p,f (M)
(id45)
- minlpy pall om + p) -2 (M) 1

for every p,, p, € [0, 1] such that p; + p,=1.For any z € [m, M ] we can write

13
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Fz)=f ]I\\/IA__;m+A‘Z:ﬂ;M 0

Then by using (=) for p; = % and p, = 3 we obtain

f@) s S e p ) |
gl 2 N 2zt
since
min| 42 o) = 5 -7 - 0

Finally we use the continuous functional calculus for a self-adjoint operator x:
f,g€(l),Spx) I and f<g on I implies f(x)<g(x); and h(z)= |z | implies
h(x)= | x | . Then by using (=) we obtain the desired inequality (=).

Theorem 12 Let (x,),_, be a bounded continuous field of self-adjoint elements in a unital

C -algebra defined on a locally compact Hausdorff space T equipped with a bounded Ra-
don measure p. Let m, and M,, m, < M,, be the bounds of x,, t € T. Let (q)t) reT be a unital

field of positive linear mappings ¢, : — B from to another unital C = algebra B. Let
(m, M,)n[m, M,]=0, teT, and m<M 0
where m, and M, m, < M, be the bounds of the operator x = [;¢,(x,) du(t) and
m=sup {M;: M, <m, t €T}, M= inf{m:m>M_,tecT} 0

If f: I — Risa continuous convex (resp. concave) function provided that the interval I con-
tains all m,, M,, then

FUrp(x,) du®) < Jr oy (f (x,)) du () - 5f3~c <Jroy(f (x;) du(t) (1d48)
(resp.
f(fT(Pt(xt)d.“(t)) 2 fr ¢, (f (x,)) du(t) - 6f% 2 fry(f (x,) du(t) ) (1d49)

holds, where
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O =0; (i, M) = f(im)+ f(M)- Zf(m M)

(resp. 0, =0 (in, M) = 2f(m M) £ (im) - f(M)) (id50)
U 1 1 M
x=x,(m M) = flK'M-n_q|x'm; 11<|

and m € [m, m,], M e [M,, M], m< M, are arbitrary numbers.

We prove only the convex case. Since x = fr.¢,(x,) du(t) € B is the self-adjoint elements such
that m1y <m 1y <[rd,(x,)du(t) <M, 1 SA_/IlK and f is convex on [, M] S I, then by

Lemma = we obtain

(o) ) < IO ID OGO gy 5 Gasy

where 6, and ¥ are defined by (=).

But since f is convex on [m, M,] and (m, M, )n[m, M,]=C implies
(m,M)ﬁ[mt, 1] =9, then

- il
i f;\—/_n—ﬁle(M), teT 0

M1
flx) = —MTth(n?H

Applying a positive linear mapping ¢,, integrating and adding -6, X, we obtain

_ ) )
ITqbt(f(xt))du(t)-éf%leK fff(;*) Mt)f(ﬁhwt( Z)w”() " CF()-5,%  (id52)

since fr¢,(1,)du(t) = 1. Combining the two inequalities (=) and (=), we have LHS of (=).
Since 6; >0 and x >0, then we have RHS of (=).

If m <M and m, = M,, then the inequality (=) holds, but &;(m,, M,) ¥(m,, M,) is not defined
(see Example = I) and II)).

Example 13 We give examples for the matrix cases and T = {1, 2}. Then we have refined in-

equalities given in Fig. 2.

We put f(t) = t* which is convex but not operator convex in (=). Also, we define mappings
1

D, ©,: M,(C) — My(C) as  follows: (D1((ai]-)lsi’j33) = 7(011-]-)131.’].32, ®,=®; (then

Dy(I5) + DyI5) = I).

15
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0,06 ) +F (92(%,)) <y (F (X)) + 0, (F(%,)) =8, X,
where

8, =f () +f (M)—2f (M +m)/2),

1 1

M+m
E1K ’ﬂ ¢1(x1)+¢2(x2)7T1K

X=

' w M

— -
m M=m m, M, M=m, M,

Figure 2. Refinement for two operators and a convex function f
I) First, we observe an example when 6f X is equal to the difference RHS and LHS of Jen-
sen's inequality. If X, = -3I; and X, =2I,, then X = ®,(X,)+ Dy(X,) = -0.5I,, so m= -3,
M =2.We also putin = -3 and M = 2. We obtain

(D1(X4) + @y(X,))* = 0.06251, < 48.51, = CDl(X14) + ®2(X24) 0
and its improvement
(Dy(X ) + Dy(X,))* = 0.06251, = DX ) + D,(X 1) - 48.43751, 0

since 6f =96.875, X = 0.51,. We remark that in this case m, =M = -1/2 and X(mx, M,) is
not defined.

II) Next, we observe an example when 6; X is not equal to the difference RHS and LHS of

Jensen's inequality and m, = M . If

-1 0 0 200 110
X,=10 -2 0], X,=10 3 0,thenX=§(0 1)andm=-1,M=2 0
0O 0 -1 0 0 4

In this case X(m,, M,) is not defined, since m, = M, =1/2. We have

17
— 0
1(1 0 2
((Dl(Xl) + (DZ(XZ))4 = E(O 1) < 0 97 = ®1(Xl4) + (DZ(X24) ()
2

and putting = -1, M =2 we obtain o =135/8, X =1,/2 which give the following im-

provement

1(1 0 1(1 0 135(1 O
(@1<x1>+@2(x2»4=ﬁ(0 1)m(o 641)=@1(X14>+@2<Xz4>-w(0 1) 0



Recent Research on Jensen's Inequality for Oparators
http://dx.doi.org/10.5772/48468

III) Next, we observe an example with matrices that are not special. If

4 1 1 5 -1 -1 110
X;=|1 -2 -1] and X,=|-1 2 1| then X =§(O O) 0
1 -1 -1 -1 1 3

so m, = -4.8662, M, = - 0.3446, m, =1.3446, M, =5.8662, m = - 0.3446, M =1.3446 and we

put m =m, M =M (rounded to four decimal places). We have

1283

1(1 0 2
(Dy(X,) + DX )t = E(O 0) < -

-255
237 = (Dl(X14) + (DZ(X24) ()
2

and its improvement

(0,(X,) + Dy(X,)* = 11_6((1) 8)

639.9213  -255 ) o,(x )+ 0,(x) (1.5787 0 ) 0
255 117.8559) TN/ TEARITL g geaa1

0.5 0

0 0.2040
m=m, =0, M = M, =0.5, then X =0, so we do not have an improvement of Jensen's in-

(rounded to four decimal places), since o =3.1574, X =( ) But, if we put

_ 1
& =7/8 and 6, X = 0.4375(0 1),

_ — 1
equality. Also, if we put m=0, M =1, then X = 0.5(0 1),

which is worse than the above improvement.

Putting @,(y) = a,y for every y € , where 4, > 0 is a real number, we obtain the following ob-

vious corollary of Theorem =.

Corollary 14 Let (x,),_, be a bounded continuous field of self-adjoint elements in a unital

teT

C -algebra defined on a locally compact Hausdorff space T equipped with a bounded Ra-

don measure p. Let m, and M,, m, < M,, be the bounds of x,, t € T. Let (at)teT be a continu-

ous field of nonnegative real numbers such that [;4, du(t) = 1. Let
(m, M,)n[m, M,]=0, teT, and m<M 0
where m, and M, m, < M, are the bounds of the operator x = fr¢,(x,) du(t) and

m=sup {Mu:M,<m,teT}, M= inf{m:m=2M_,teT} 0

17
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If f:I — Risa continuous convex (resp. concave) function provided that the interval I con-
tains all m,, M,, then

IN

fUTatxt dy(t)) Jray f (x,) du(t) '5f§ <Jra f(x,) du(t)

(resp. fUTatxt dy(t))

\Y

Jra, f (x;) du(t) +6f§ > fra, f (x,) du(t) )

holds, where (Sf is defined by (=), X= %1H - ﬁ |jTatxt du(t) - " J;M 1y | and m € [m, m,],

M e [M,, M], m< M, are arbitrary numbers.

5. Extension Jensen's inequality

In this section we present an extension of Jensen's operator inequality for n - tuples of self-
adjoint operators, unital 7 - tuples of positive linear mappings and real valued continuous
convex functions with conditions on the spectra of the operators.

In a discrete version of Theorem = we prove that Jensen's operator inequality holds for ev-
ery continuous convex function and for every n - tuple of self-adjoint operators (4,, ..., A,),
for every n - tuple of positive linear mappings (®@,, ..., @,) in the case when the interval
with bounds of the operator A =}, @,(A) has no intersection points with the interval with
bounds of the operator A, for each i=1, .., n, ie. when (m,, M,)n[m, M;]=Q for
i=1, .., n, wherem, and M,, m, <M, are the bounds of A, and m; and M,, m; <M,, are
the bounds of A, i=1, .., n It is interesting to consider the case when
(my, M,)n[m, M;]=@ is valid for several i € {1, ..., nl, but not for all i=1, .., n. We
study it in the following theorem (see [21]).

Theorem 15 Let (4,, .., A) be an n - tuple of self-adjoint operators A; € B(H) with the
bounds m; and M;, m;<M,;, i=1, .., n. Let ((D1, L., (Dn) be an n - tuple of positive linear
mappings @, : B(H) — B(K), such that Y, ®,(1y)=1,. For 1<mn <n, we denote
m=min fm, .., m,}, M=max{M,, .., M,} and T ®(1y)=aly, YL, . Oly)=plg,

i=n+1 i
wherea, >0, a+p=1.1f
(m, M)n[m, M;]=O, i=m+1, ., n 0
and one of two equalities

FLo)-5 £ o)-Lo) 0

i=1 n,+1 i=1
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is valid, then

Frola)sEola)sg 5 o((4) (7)

i=n+1

holds for every continuous convex function f : I — R provided that the interval I contains
allm, M, i=1, .., n.If f : 1 — Ris concave, then the reverse inequality is valid in (=).

We prove only the case when f is a convex function. Let us denote

= a19(A)  B=g ¥ 0f4)  C-Lo4) 0

It is easy to verify that A= B or B=C or A= C implies A= B =C.

a) Let m <M. Since f is convex on [m, M]and [m;, M;] < [m, M]fori=1, .., n;, then

f(z) < ]]\\44__51]‘(171)+ A‘Z”:n fM), ze[m, M, fori=1, .., n (id58)

but since f is convex on all [m;, M,] and (m, M) n[m,, M;]= @ fori=n;+1, .., n, then

M - :
f(z)> ﬁf(m) + ]\iI z €[m, M;] fori=n+1, .., n (id59)

Sincem1,; <A <M]1y,,i=1, .., n, it follows from (=)

M -ml,
f(Ai)sMLnff(mnAMmm FM),  i=1, .m 0

Applying a positive linear mapping @, and summing, we obtain

n Maly -y @ O, g
o (riap < Ml L ) ) T A) el 0

since Yy @,(1,) = aly. It follows

1m M1, -A A-mly .
a QM) < g7 flm)+ 3 Mo fM) (id60)

Similarly to (=) in the case m;1;; < A, <M;1,,i=n,+1, .., n, it follows from (=)

19
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1 =» MlK—B B-le .
5L PF(A) 2 g fm)+ - f(M) (id61)

aholra)s g £ off(a) (id62)
It follows
FLo((a) = Lol )+ EE o) by a+p=1)
< Lo(f(a)+ £ olf(4) (by 0)
= Lo(f(a) (1d63)
< FL (AN T off(4) (by 0)
o PR (bya+p=1)

which gives the desired double inequality (=).

b) Let m = M. Since [m;, M;] € [m, M] fori=1, .., n, then A, =ml, and f(A)=f(m)ly

fori=1, .., n;. It follows

FE0(A)=m and T (4) = ddsd)

=1
On the other hand, since f is convex on I, we have
f(z)= f(m)+1(m)(z-m) for every z € I (id65)

where [ is the subdifferential of f. Replacing z by A, for i =n,;+1, .., n, applying @, and

summing, we obtain from (=) and (=)

LS o) > sngsonl} £ o)-m,

flm)1y = %li D,(f(A))
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So (=) holds again. The remaining part of the proof is the same as in the case a).

Remark 16 We obtain the equivalent inequality to the one in Theorem = in the case when

Y D(1y) =y 1, for some positive scalar y. If & + B = y and one of two equalities

1 1 1
aZPA) = L ) =51 0l4) 0
is valid, then
L3 1 1 &
TLOf(A) < L O(f(A) <5 X B(f(4) 0

holds for every continuous convex function f.
Remark 17 Let the assumptions of Theorem = be valid.

1. We observe that the following inequality

n

15 5 o)< £ orm) ()

i=n;+1 =n

holds for every continuous convex function f : I — R.

Indeed, by the assumptions of Theorem = we have

n 1 m 1 n
maly ST O(f(A) <Mal, and R0 (A)-5 £ 0(4) 0
which implies
no ]
mly < i=;+1 Eq)i(f(Ai)) <M1y 0

Also (m, M)n[m;, M;]=@ fori=m+1, ., nand ¥\, 4 %(Di(lH) =14 hold. So we can ap-

ply Theorem = on operators 4, ,;, ..., A, and mappings %(Dl- and obtain the desired inequal-

ity.
2. We denote by m. and M the bounds of C =Y, ®,(A). If (m-, Mc)n[m, M;]= O,

i=1, .., nor f is an operator convex function on [m, M ], then the double inequality (=)

can be extended from the left side if we use Jensen's operator inequality (see Theorem
2.1[16])

21
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Gawm) - (13 ow)
. ) 0
dLoU ) Eofa)s g £ o)

i=1

IN

Example 18 If neither assumptions (m-, M) n[m, M;]=D,i=1, .., n, nor f is operator
convex in Remark = - 2. is satisfied and if 1 <n; <n, then (=) can not be extended by Jen-

sen's operator inequality, since it is not valid. Indeed, for n; =2 we define mappings

a

D, @, : M;(C) - M,(C) by (D1((aij)lsi,js3) = T(Qij)gi,jsz/ @, = @,. Then O, (I,) + O,(I;) = al,. If

100
A=2{0 0 1] and A,=2/0 0 0 0
000
then
1 1 4 1 (16 0 1(80 40\ 1 1
Eq)l(Al) E®2(A2)) _? 0 O)_| S5(4:0 24 _E®1(Al4)+5®2(A24) ()

for every a €(0,1). We observe that f(t)=t* is not operator convex and
20
00

_1
T

(me, M) n[my, M;]# @, since C=A= %(DI(Al) * %‘Dz(Az) ) [me, Mc] =10, 2/a],

[my, M;] C [-1.60388, 4.49396] and [m,, M,] =0, 2].
With respect to Remark =, we obtain the following obvious corollary of Theorem =.

Corollary 19 Let (4, .., A,) be an n - tuple of self-adjoint operators A; € B(H) with the
bounds m; and M;, m;<M,, i =1, .., n. For some 1<n; <n, we denote m = min {ml, .y mnl},

M =max{M,, .., Mm}' Let (p;, ..., p,) be an n - tuple of non-negative numbers, such that

O<Z?L1Pi=1< =Yip I
(m, M)n[m, M;| =, i=n+1, ., n 0
and one of two equalities

li piA; = l; piA; = _L i P4 0

1 =1 1 i=ny+l

is valid, then
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Brfa)sEnfia)s = 5 pia) ar)

holds for every continuous convex function f : I — R provided that the interval I contains
allm, M, i=1, .., n.

If f : I — Ris concave, then the reverse inequality is valid in (=).
As a special case of Corollary = we can obtain a discrete version of Corollary = as follows.

Corollary 20 (Discrete version of Corollary =) Let (4,, ..., A,) be an n - tuple of self-adjoint
operators A; € B(H) with the bounds m; and M;, m; <M, i=1, .., n. Let (o}, ..., a,) be an

n - tuple of nonnegative real numbers such that )., o; = 1. If
(my My)n[m, M]=D,  i=1, ., n (id73)

where m, and M ,, m, <M ,, are the bounds of A=}, o; A, then

f(i a4 < i a;f(4) (id74)

holds for every continuous convex function f : I — R provided that the interval I contains
all m;, M.

We prove only the convex case. We define (n+1)-tuple of operators (B, ..., B,,;),
B,€ B(H),byBj=A=Y",a;A;and B,= A ;,i=2, .., n+1. Then my =m,, My =M, are the
bounds of B, and my =m,;, Mz =M, are the ones of B, i =2, .., n+1. Also, we define
(n +1) - tuple of non-negative numbers (p;, .., p,,;) by py=1and p,=a;,, i=2, .., n+1.

Then Y*'! p; = 2 and by using (=) we have

(mp, Mg )n[mp, Mp]=0, i=2, .,n+l (id75)
Since
gpiBi=Bl+§piBi=§aiAi+§aiAi=ZBl 0
then
1 ns1 w1

p1B; = jgl piB; = é piB; (id76)

23
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Taking into account (=) and (=), we can apply Corollary = for n; =1 and B,, p; as above, and

we get

n+l n+l

pf(B)< 75 nf(B)< 5 pf(B) 0

i=2

which gives the desired inequality (=).

6. Extension of the refined Jensen's inequality

There is an extensive literature devoted to Jensen's inequality concerning different refine-
ments and extensive results, see, for example [22], [23], [24], [25], [26], [27], [28], [29].

In this section we present an extension of the refined Jensen's inequality obtained in Sec-
tion = and a refinement of the same inequality obtained in Section =.

Theorem 21 Let (4,, .., A) be an n - tuple of self-adjoint operators A. € B(H) with the
bounds m; and M;, m;<M,;, i=1, .., n. Let ((131, . (Dn) be an n - tuple of positive linear
mappings @, : B(H) — B(K), such that Y\ @(1,)=aly, ine1 Pi(1y) =1y, where

1<m<n,a p>0anda+p=1Letm, =min{m, .. mn]}, Mg =max{M,, .., Mn]} and

max{M;:M;<m; ,i€{n+1, .. n}}

AIZ : min {m;: m; 2 My, i € {n;+1, ..., n}} 0
If
(m, , Mg)n[m, M=, i=nm+1, ..,n and m<M 0
and one of two equalities
L oa)=5oa)= 5 £ o) 0
is valid, then
TLO(F(A) 5 FEOF(A)+6y A< S0 (4)
(id78)

IN
|
M=
S
S
>
g
Q
\Oﬂ
hN|
IN
=|
M=
S
=
>
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holds for every continuous convex function f : I — R provided that the interval I contains

allm;, M, i=1, .., n, where

5 Eéf(ﬁz,A_/I)=f(171)+f(A_/I)-2f(ﬁ1;M)

-~ = o — 1 1 & m+M
AEAA,%,a(m,M)=51K-———Q(M_ﬁ)gcbi(‘ —1H|)

(id79)

and m €[m, m |, M e [Mg, M], m< M, are arbitrary numbers. If f : I — R is concave,

then the reverse inequality is valid in (=).

We prove only the convex case. Let us denote
-3Eo)  B-z o) c-fou) 0

It is easy to verify that A= B or B=C or A= C implies A= B =C.

Since f is convex on [, M] and (A) € [m, M} < [m, M]fori=1, .., n,, it follows from

Lemma = that

M1, 1y
FA)S 572 A1f( )+A1 m_ fFM) -6, 4, i=1, ., mn 0

holds, where &, = £ (i) + £ (M) -2 ("5™) and 4, = 11, - 37~

positive linear mapping @; and summing, we obtain

Pao(fa) < Mal-Tho(4) o T o4)-mal

M - f i)+ Mo D
0
M
- 5f(§11< M - mZ®(|A7 m+ 1H‘))

since Z?il @,(1,) = aly. It follows that

1 Mlg-A _ A-mlg .

G L O(f(A) < g1 fm+ g5 FMD)-5A (id80)
where A = 71, - 7—;275@(@ medty ).

25
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Additionally, since f is convex on all [m;,, M;] and (i, M)n (m, M;]=9, i=n+1, .., n,

then

M -m M -m B v

It follows

—_

M1y - _ B-mly ~ .
i )+ f(M)-5,A (1d82)

2 o(f(4)-0,A (1d83)

Next, we obtain

IN
—_ M*—‘
S
=
>

+ 2 O(f(4))-po A (by 0) 0

i=n;+1

IN

%i_,;@f(f (4)) - aéfAﬂ_Zl (F(A)-BOA  (by ()
1
B

H'M:
S

(f(A)-5A (bya+p=1)

AL PF(A) ST O(F(A)-poAs 5 3 D(f(4)-0,A (1d34)
Adding oy A in the above inequalities, we get

aL O AN+ A< 0(f(A)< 5 $ 0(7(A)-at e
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= G~ B — ) — — § — — ) —
mg My=m m=m, m, M, M;=Mg M=m, M,

Figure 3. An example a convex function and the bounds of four operators
Now, we remark that 6f >0 and A>0. (Indeed, since f is convex, then

f((n+M)/2) <(f(n) + f(M))/2, which implies that 6, > 0. Also, since

(A) clim, M] = ‘/L.- > 1H|ST-1H, i=1, .., m 0

then

5 —aly 0

which gives

03%1,(-———a(Ml_ﬁ)éq(M-—M;mh|)=Zx) 0
Consequently, the following inequalities
FLO(F(A)) < 32 O F(4)+p, A
al® A-))—ag (f(4)) + B3 A
1 . 1 . 0
5.5 efa)-aydsg § o)

hold, which with (=) proves the desired series inequalities (=). 1.05

Example 22 We observe the matrix case of Theorem = for f (t) =t* which is the convex
function but not operator convex, n = 4, n; = 2 and the bounds of matrices as in Fig. 3.

We show an example such that

27



28 Linear Algebra

—_

L(0,(4f) + o(a)) < ~(@,(47) + d,(4)) + o, A
@, (Af) + 0y(A) + ()+®@4) (id88)

<%<@< af)voaf)-as A< Hoa) s o a)

holds, where 6f =M*+m*-(M +m)*8 and

A 1 ’ M +in ‘) (’ M +in ‘))
A3t amrmioll 45| ol M, v

1

We define mappings @, :M,(C) — M,(C) as follows: q)i((”jk)1gj,kg3)=Z(”jk)gj,kng

i=1, ., 4 Then Y% ®(I)=Landa=f = 3

Let
2 9/8 1 2 9/8 0 4 1/2 1 5/3 1/2 0
A1=29/8 2 0,A2=39/8 1 O,A3=-31/2 4 O,A4=121/2 3/2 0 0
1 0 3 0 0o 2 1 0o 2 0 0 3

Then m, =1.28607, M, =7.70771, m, = 0.53777, M, = 5.46221, m, = -14.15050, M ; = -4.71071,
m, =12.91724, M, =36., so m; =m,, My =M,, m=Mj,and M =m, (rounded to five decimal
places). Also,

1 1 4 9/4
E(®1(A1)+®2(A2))=E(®3(A3)+®4(A4))= 9/4 3 0
and
1 A Il (989.00391 663.46875)
A =E(®1(A1)+®2(A2)) ~ \663.46875 526.12891
68093.14258 48477.98437
C Al)+ D) (A}) + Dy A)) + D, (A)) = ( )
f (A7) + @l 45) + 0,(4) + @A) 48477.98437 51335.39258 0
5 - 1(@ (Ad)+ 0, (A%) - (135197.28125 96292.5 )
r = B AP\ TRl 962925  102144.65625
Then

A <C; < By (id89)
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We will choose three pairs of numbers (i, M), mel[-4.71071, 0.53777],
M €[7.70771, 12.91724] as follows

i) 1 =m;, =0.53777, M = Mg =7.70771, then

0.15678 0.09030) (231.38908 133.26139)

Ay 7 Bpr-4 =03 2951,69249- (0.09030 0.15943/ ~ \133.26139 235.29515
ii)m=m=-4.71071, M = M =12.91724, then

0.36022 0.03573) (5000.89860 496.04498)

Az:ﬁéfA:05'27766'07963'(0.03573 0.36155/ ~ \ 496.04498 5019.50711

iiiyim = -1, M =10, then

0.28203 0.08975) (1294.66 411.999)

Ay =poA=05-9180.875 '(0.08975 027557/ ~\411.999  1265.

New, we obtain the following improvement of (=) (see (=))

Table 1.

Using Theorem = we get the following result.

Corollary 23 Let the assumptions of Theorem = hold. Then

aEowa)s sEauanrodsy § o) oo
and
%Zl Di(f(4)) < %21 D,(f(A)) - 7,0 A< %zl D,(f(A)) (id92)

holds for every y;, y, in the close interval joining « and , where 6, and A are defined by
(=).
Adding ad; A in (=) and noticing 6f171 > 0, we obtain

1 12

TLO(F(a) < .

Yo f(A)rasis g E o (f(4) (1d93)

i=n+1

Q|r—\

Taking into account the above inequality and the left hand side of (=) we obtain (=).
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Similarly, subtracting 6f2{ in (=) we obtain (=).

Remark 24 We can obtain extensions of inequalities which are given in Remark = and =.
Also, we can obtain a special case of Theorem = with the convex combination of operators
A; putting (Di(B) =a;B, fori=1, .., n, similarly as in Corollary =. Finally, applying this re-
sult, we can give another proof of Corollary =. The interested reader can see the details in
[30].
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