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1. Introduction

In this chapter, we review 3-algebras that appear as fundamental properties of string theory.
3-algebra is a generalization of Lie algebra; it is defined by a tri-linear bracket instead of by a
bi-linear bracket, and satisfies fundamental identity, which is a generalization of Jacobi iden‐
tity [1], [2], [3]. We consider 3-algebras equipped with invariant metrics in order to apply
them to physics.

It has been expected that there exists M-theory, which unifies string theories. In M-theory,
some structures of 3-algebras were found recently. First, it was found that by using
u(N )⊕u(N ) Hermitian 3-algebra, we can describe a low energy effective action of N coinci‐
dent supermembranes [4], [5], [6], [7], [8], which are fundamental objects in M-theory.

With this as motivation, 3-algebras with invariant metrics were classified [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22]. Lie 3-algebras are defined in real vector
spaces and tri-linear brackets of them are totally anti-symmetric in all the three entries. Lie
3-algebras with invariant metrics are classified into ��4 algebra, and Lorentzian Lie 3-algebras,
which have metrics with indefinite signatures. On the other hand, Hermitian 3-algebras are
defined in Hermitian vector spaces and their tri-linear brackets are complex linear and anti-
symmetric in the first two entries, whereas complex anti-linear in the third entry. Hermitian
3-algebras with invariant metrics are classified into u(N )⊕u(M ) and sp(2N )⊕u(1) Hermi‐
tian 3-algebras.

Moreover, recent studies have indicated that there also exist structures of 3-algebras in the
Green-Schwartz supermembrane action, which defines full perturbative dynamics of a su‐
permembrane. It had not been clear whether the total supermembrane action including fer‐
mions has structures of 3-algebras, whereas the bosonic part of the action can be described
by using a tri-linear bracket, called Nambu bracket [23], [24], which is a generalization of
Poisson bracket. If we fix to a light-cone gauge, the total action can be described by using
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Poisson bracket, that is, only structures of Lie algebra are left in this gauge [25]. However, it
was shown under an approximation that the total action can be described by Nambu bracket
if we fix to a semi-light-cone gauge [26]. In this gauge, the eleven dimensional space-time of
M-theory is manifest in the supermembrane action, whereas only ten dimensional part is
manifest in the light-cone gauge.

The BFSS matrix theory is conjectured to describe an infinite momentum frame (IMF) limit
of M-theory [27] and many evidences were found. The action of the BFSS matrix theory can
be obtained by replacing Poisson bracket with a finite dimensional Lie algebra's bracket in
the supermembrane action in the light-cone gauge. Because of this structure, only variables
that represent the ten dimensional part of the eleven-dimensional space-time are manifest in
the BFSS matrix theory. Recently, 3-algebra models of M-theory were proposed [26], [28],
[29], by replacing Nambu bracket with finite dimensional 3-algebras' brackets in an action
that is shown, by using an approximation, to be equivalent to the semi-light-cone super‐
membrane action. All the variables that represent the eleven dimensional space-time are
manifest in these models. It was shown that if the DLCQ limit of the 3-algebra models of M-
theory is taken, they reduce to the BFSS matrix theory [26], [28], as they should [30], [31],
[32], [33], [34], [35].

2. Definition and classification of metric Hermitian 3-algebra

In this section, we will define and classify the Hermitian 3-algebras equipped with invariant
metrics.

2.1. General structure of metric Hermitian 3-algebra

The metric Hermitian 3-algebra is a map V × V × V → V  defined by (x, y, z) ↦ x, y; z ,
where the 3-bracket is complex linear in the first two entries, whereas complex anti-linear in
the last entry, equipped with a metric < x, y > , satisfying the following properties:

the fundamental identity

x, y; z , v; w = x, v; w , y; z + x, y, v; w ; z - x, y; z, w; v (id2)

the metric invariance

< x, v; w , y > - < x, y, w; v > = 0 (id3)

and the anti-symmetry

x, y; z = - y, x; z (id4)

for
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x, y, z, v, w ∈ V (id5)

The Hermitian 3-algebra generates a symmetry, whose generators D(x, y) are defined by

D(x, y)z : = z, x; y (id6)

From (▭), one can show that D(x, y) form a Lie algebra,

D(x, y), D(v, w) = D(D(x, y)v, w) - D(v, D(y, x)w) (id7)

There is an one-to-one correspondence between the metric Hermitian 3-algebra and a class
of metric complex super Lie algebras [19]. Such a class satisfies the following conditions
among complex super Lie algebras S = S0⊕S1, where S0 and S1 are even and odd parts, re‐

spectively. S1 is decomposed as S1 = V ⊕ V̄ , where V  is an unitary representation of S0: for

a ∈ S0, u, v ∈ V ,

a, u ∈ V (id8)

and

< a, u , v > + < u, a *, v > = 0 (id9)

v̄ ∈ V̄  is defined by

v̄ = < , v > (id10)

The super Lie bracket satisfies

V , V = 0, V̄ , V̄ = 0 (id11)

From the metric Hermitian 3-algebra, we obtain the class of the metric complex super Lie
algebra in the following way. The elements in S0, V , and V̄  are defined by (▭), (▭), and (▭),

respectively. The algebra is defined by (▭) and

D(x, y), z : = D(x, y)z = z, x; y
D(x, y), z̄ : = - D(y, x)z̄ = - z, y; x̄
x, ȳ : = D(x, y)
x, y : = 0
x̄, ȳ : = 0

(id12)

3-Algebras in String Theory
http://dx.doi.org/10.5772/46480

3



One can show that this algebra satisfies the super Jacobi identity and (▭)-(▭) as in [19].

Inversely, from the class of the metric complex super Lie algebra, we obtain the metric Her‐
mitian 3-algebra by

x, y; z : = α y, z̄ , x (id13)

where α is an arbitrary constant. One can also show that this algebra satisfies (▭)-(▭) for (▭)
as in [19].

2.2. Classification of metric Hermitian 3-algebra

The classical Lie super algebras satisfying (▭)-(▭) are A(m - 1, n - 1) and C(n + 1). The even
parts of A(m - 1, n - 1) and C(n + 1) are u(m)⊕u(n) and sp(2n)⊕ u(1), respectively. Because
the metric Hermitian 3-algebra one-to-one corresponds to this class of the super Lie algebra,
the metric Hermitian 3-algebras are classified into u(m)⊕u(n) and sp(2n)⊕ u(1) Hermitian
3-algebras.

First, we will construct the u(m)⊕u(n) Hermitian 3-algebra from A(m - 1, n - 1), according to
the relation in the previous subsection. A(m - 1, n - 1) is simple and is obtained by dividing
sl(m, n) by its ideal. That is, A(m - 1, n - 1) = sl(m, n) when m ≠ n and
A(n - 1, n - 1) = sl(n, n) /λ12n.

Real sl(m, n) is defined by

(h 1 c

ic † h 2
) (id15)

where h 1 and h 2 are m × m and n × n anti-Hermite matrices and c is an n × m arbitrary com‐

plex matrix. Complex sl(m, n) is a complexification of real sl(m, n), given by

(α β
γ δ) (id16)

where α, β, γ, and δ are m × m, n × m, m × n, and n × n complex matrices that satisfy

trα = trδ (id17)

Complex A(m - 1, n - 1) is decomposed as A(m - 1, n - 1) = S0⊕V ⊕ V̄ , where
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(α 0
0 δ) ∈ S0

(0 β
0 0) ∈ V

(0 0
γ 0) ∈ V̄

(id18)

(▭) is rewritten as V → V̄  defined by

B = (0 β
0 0) ↦ B † = ( 0 0

β † 0) (id19)

where B ∈ V  and B † ∈ V̄ . (▭) is rewritten as

X , Y ; Z = α Y , Z † , X = α(0 yz †x - xz †y
0 0

) (id20)

for

X = (0 x
0 0) ∈ V

Y = (0 y
0 0) ∈ V

Z = (0 z
0 0) ∈ V

(id21)

As a result, we obtain the u(m)⊕u(n) Hermitian 3-algebra,

x, y; z = α(yz †x - xz †y) (id22)

where x, y, and z are arbitrary n × m complex matrices. This algebra was originally con‐

structed in [8].

Inversely, from (), we can construct complex A(m - 1, n - 1). (▭) is rewritten as

D(x, y) = (xy †, y †x) ∈ S0 (id23)

(▭) and (▭) are rewritten as
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(xy †, y †x), (x 'y '†, y '†x ') = ( xy †, x 'y '† , y †x, y '†x ' )
(xy †, y †x), z = xy †z - zy †x
(xy †, y †x), w † = y †xw † - w †xy †

x, y † = (xy †, y †x)
x, y = 0
x †, y † = 0

(id24)

This algebra is summarized as

(xy † z

w † y †x
), (x 'y '† z '

w '† y '†x ') (id25)

which forms complex A(m - 1, n - 1).

Next, we will construct the sp(2n)⊕ u(1) Hermitian 3-algebra from C(n + 1). Complex

C(n + 1) is decomposed as C(n + 1) = S0⊕V ⊕ V̄ . The elements are given by

(α 0 0 0
0 -α 0 0
0 0 a b
0 0 c -a T

) ∈ S0

(0 0 x1 x2

0 0 0 0
0 x2

T 0 0

0 -x1
T 0 0

) ∈ V
( 0 0 0 0

0 0 y1 y2

y2
T 0 0 0

-y1
T 0 0 0

) ∈ V̄
(id26)

where α is a complex number, a is an arbitrary n × n complex matrix, b and c are n × n com‐

plex symmetric matrices, and x1, x2, y1 and y2 are n × 1 complex matrices. (▭) is rewritten as

V → V̄  defined by B ↦ B̄ = U B *U -1, where B ∈ V , B̄ ∈ V̄  and
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U = (0 1 0 0
1 0 0 0
0 0 0 1
0 0 -1 0

) (id27)

Explicitly,

B = (0 0 x1 x2

0 0 0 0
0 x2

T 0 0

0 -x1
T 0 0

) ↦ B̄ = ( 0 0 0 0
0 0 x2

* -x1
*

-x1
† 0 0 0

-x2
† 0 0 0

) (id28)

(▭) is rewritten as

X , Y ; Z : = α Y , Z̄ , X

= α (0 0 y1 y2

0 0 0 0
0 y2

T 0 0

0 -y1
T 0 0

), ( 0 0 0 0
0 0 z2

* -z1
*

-z1
† 0 0 0

-z2
† 0 0 0

) , (0 0 x1 x2

0 0 0 0
0 x2

T 0 0

0 -x1
T 0 0

)
= α(0 0 w1 w2

0 0 0 0
0 w2

T 0 0

0 -w1
T 0 0

)
(id29)

for
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X = (0 0 x1 x2

0 0 0 0
0 x2

T 0 0

0 -x1
T 0 0

) ∈ V
Y = (0 0 y1 y2

0 0 0 0
0 y2

T 0 0

0 -y1
T 0 0

) ∈ V
Z = (0 0 z1 z2

0 0 0 0
0 z2

T 0 0

0 -z1
T 0 0

) ∈ V
(id30)

where w1 and w2 are given by

(w1, w2) = - (y1z1
† + y2z2

†)(x1, x2) + (x1z1
† + x2z2

†)(y1, y2) + (x2y1
T - x1y2

T )(z2
*, - z1

*) (id31)

As a result, we obtain the sp(2n)⊕ u(1) Hermitian 3-algebra,

x, y; z = α((y⊙ z̃)x + (z̃⊙ x)y - (x⊙ y)z̃) (id32)

for x = (x1, x2), y = (y1, y2), z = (z1, z2), where x1, x2, y1, y2, z1, and z2 are n-vectors and

z̃ = (z2
*, - z1

*)
a⊙b = a1 · b2 - a2 · b1

(id33)

3. 3-algebra model of M-theory

In this section, we review the fact that the supermembrane action in a semi-light-cone gauge
can be described by Nambu bracket, where structures of 3-algebra are manifest. The 3-alge‐
bra Models of M-theory are defined based on the semi-light-cone supermembrane action.
We also review that the models reduce to the BFSS matrix theory in the DLCQ limit.

3.1. Supermembrane and 3-algebra model of M-theory

The fundamental degrees of freedom in M-theory are supermembranes. The action of the co‐
variant supermembrane action in M-theory [36] is given by
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SM 2 = ∫d 3σ( -G +
i
4 �αβγΨ̄ΓMN ∂αΨ(Πβ

MΠγ
N +

i
2Πβ

M Ψ̄Γ N ∂γΨ

-
1

12 Ψ̄Γ
M ∂βΨΨ̄Γ

N ∂γΨ))
(id35)

where M , N = 0, ⋯ , 10, α, β, γ = 0, 1, 2, Gαβ = Πα
MΠβM  and Πα

M = ∂αX
M - i

2 Ψ̄Γ
M ∂αΨ. Ψ

is a SO(1, 10) Majorana fermion.

This action is invariant under dynamical supertransformations,

δΨ = �

δX M = -iΨ̄ΓM �
(id36)

These transformations form the ��= 1 supersymmetry algebra in eleven dimensions,

δ1, δ2 X
M = -2i�1ΓM �2 (id37)

δ1, δ2 Ψ = 0 (id38)

The action is also invariant under the κ-symmetry transformations,

δΨ = (1 + Γ)κ(σ)

δX M = iΨ̄ΓM (1 + Γ)κ(σ)
(id39)

where

Γ =
1

3 ! -G
�αβγΠα

L Πβ
MΠγ

NΓLMN (id40)

If we fix the κ-symmetry (▭) of the action by taking a semi-light-cone gauge [26]Advantages
of a semi-light-cone gauges against a light-cone gauge are shown in [37], [38], [39]

Γ 012Ψ = -Ψ (id42)

we obtain a semi-light-cone supermembrane action,

SM 2 = ∫d 3σ( -G +
i
4 �αβγ(Ψ̄Γμν∂αΨ(Πβ μΠγ ν +

i
2Πβ

μΨ̄Γ ν∂γΨ -
1
12 Ψ̄Γ

μ∂βΨΨ̄Γ
ν∂γΨ)

+ Ψ̄ΓIJ ∂αΨ∂βX
I∂γX

J ))
(id43)
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where Gαβ = hαβ +Πα
μΠβμ, Πα

μ = ∂αX
μ - i

2 Ψ̄Γ
μ∂αΨ, and hαβ = ∂αX

I∂βX I .

In [26], it is shown under an approximation up to the quadratic order in ∂αX
μ and ∂αΨ but

exactly in X I , that this action is equivalent to the continuum action of the 3-algebra model
of M-theory,

Scl = ∫d 3σ -g( -
1

12 {X I , X J , X K }2 -
1
2 (Aμab{ϕ a, ϕ b, X I })2

-
1
3 E

μνλAμabAνcdAλef {ϕ a, ϕ c, ϕ d }{ϕ b, ϕ e, ϕ f } +
1
2Λ

-
i
2 Ψ̄Γ

μAμab{ϕ a, ϕ b, Ψ} +
i
4 Ψ̄ΓIJ {X

I , X J , Ψ})
(id44)

where I , J , K = 3, ⋯ , 10 and {ϕ a, ϕ b, ϕ c} = �αβγ∂αϕ
a∂βϕ

b∂γϕ
c is the Nambu-Poisson brack‐

et. An invariant symmetric bilinear form is defined by ∫d 3σ -gϕ aϕ b for complete basis ϕ a in
three dimensions. Thus, this action is manifestly VPD covariant even when the world-vol‐

ume metric is flat. X I  is a scalar and Ψ is a SO(1, 2) × SO(8) Majorana-Weyl fermion satisfy‐

ing (▭). E μνλ is a Levi-Civita symbol in three dimensions and Λ is a cosmological constant.

The continuum action of 3-algebra model of M-theory (▭) is invariant under 16 dynamical
supersymmetry transformations,

δX I = i �̄Γ IΨ

δAμ(σ, σ ') =
i
2 �̄ΓμΓI (X I (σ)Ψ(σ ') - X I (σ ')Ψ(σ)),

δΨ = - Aμab{ϕ a, ϕ b, X I }Γ μΓI �-
1
6 {X I , X J , X K }ΓIJK �

(id45)

where Γ012�= - �. These supersymmetries close into gauge transformations on-shell,

δ1, δ2 X
I = Λcd {ϕ c, ϕ d , X I }

δ1, δ2 Aμab{ϕ a, ϕ b, } = Λab{ϕ a, ϕ b, Aμcd {ϕ c, ϕ d , }}
- Aμab{ϕ a, ϕ b, Λcd {ϕ c, ϕ d , }} + 2i �̄2Γ ν�1Oμν

A

δ1, δ2 Ψ = Λcd {ϕ c, ϕ d , Ψ} + (i �̄2Γ μ�1Γμ -
i
4 �̄2Γ KL �1ΓKL )O Ψ

(id46)

where gauge parameters are given by Λab = 2i �̄2Γ μ�1Aμab - i �̄2ΓJK �1X a
J X b

K . Oμν
A = 0 and O Ψ = 0 are

equations of motions of Aμν and Ψ, respectively, where
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Oμν
A = Aμab{ϕ a, ϕ b, Aνcd {ϕ c, ϕ d , }} - Aνab{ϕ a, ϕ b, Aμcd {ϕ c, ϕ d , }}

+Eμνλ( - {X I , Aab
λ{ϕ a, ϕ b, X I }, } +

i
2 {Ψ̄, Γ λΨ, })

O Ψ = -Γ μAμab{ϕ a, ϕ b, Ψ} +
1
2 ΓIJ {X

I , X J , Ψ}

(id47)

(▭) implies that a commutation relation between the dynamical supersymmetry transforma‐
tions is

δ2δ1 - δ1δ2 = 0 (id48)

up to the equations of motions and the gauge transformations.

This action is invariant under a translation,

δX I (σ) = η I , δAμ(σ, σ ') = η μ(σ) - η μ(σ ') (id49)

where η I  are constants.

The action is also invariant under 16 kinematical supersymmetry transformations

δ̃Ψ = �̃ (id50)

and the other fields are not transformed. �̃ is a constant and satisfy Γ012�̃= �̃. �̃ and � should come
from sixteen components of thirty-two ��= 1 supersymmetry parameters in eleven dimen‐
sions, corresponding to eigen values ± 1 of Γ012, respectively. This ��= 1 supersymmetry con‐
sists of remaining 16 target-space supersymmetries and transmuted 16 κ-symmetries in the
semi-light-cone gauge [26], [25], [40].

A commutation relation between the kinematical supersymmetry transformations is given
by

δ̃2δ̃1 - δ̃1δ̃2 = 0 (id51)

A commutator of dynamical supersymmetry transformations and kinematical ones acts as

(δ̃2δ1 - δ1δ̃2)X I (σ) = i �̄1Γ I �̃2 ≡ η0
I

(δ̃2δ1 - δ1δ̃2)Aμ(σ, σ ') =
i
2 �̄1Γ μΓI (X I (σ) - X I (σ '))�̃2 ≡ η0

μ(σ) - η0
μ(σ ')

(id52)

where the commutator that acts on the other fields vanishes. Thus, the commutation relation
is given by

3-Algebras in String Theory
http://dx.doi.org/10.5772/46480

11



δ̃2δ1 - δ1δ̃2 = δη (id53)

where δη is a translation.

If we change a basis of the supersymmetry transformations as

δ ' = δ + δ̃
δ̃ ' = i(δ - δ̃)

(id54)

we obtain

δ2
'δ1

' - δ1
'δ2

' = δη
δ̃2

' δ̃1
' - δ̃1

' δ̃2
' = δη

δ̃2
' δ1

' - δ1
'δ̃2

' = 0

(id55)

These thirty-two supersymmetry transformations are summarised as Δ = (δ ', δ̃ ') and (▭) im‐

plies the ��= 1 supersymmetry algebra in eleven dimensions,

Δ2Δ1 - Δ1Δ2 = δη (id56)

3.2. Lie 3-algebra models of M-theory

In this and next subsection, we perform the second quantization on the continuum action of

the 3-algebra model of M-theory: By replacing the Nambu-Poisson bracket in the action (▭)

with brackets of finite-dimensional 3-algebras, Lie and Hermitian 3-algebras, we obtain the

Lie and Hermitian 3-algebra models of M-theory [26], [28], respectively. In this section, we

review the Lie 3-algebra model.

If we replace the Nambu-Poisson bracket in the action (▭) with a completely antisymmetric

real 3-algebra's bracket [21], [22],

∫d 3σ -g →
{ϕ a, ϕ b, ϕ c} → T a, T b, T c

(id58)

we obtain the Lie 3-algebra model of M-theory [26], [28],
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S0 = < -
1
12 X I , X J , X K 2 -

1
2 (Aμab T a, T b, X I )2

-
1
3 E

μνλAμabAνcdAλef T
a, T c, T d T b, T e, T f

-
i
2 Ψ̄Γ

μAμab T
a, T b, Ψ +

i
4 Ψ̄ΓIJ X

I , X J , Ψ >

(id59)

We have deleted the cosmological constant Λ, which corresponds to an operator ordering
ambiguity, as usual as in the case of other matrix models [27], [41].

This model can be obtained formally by a dimensional reduction of the ��= 8 BLG model [4],
[5], [6],

S��=8BLG = ∫d 3x < -
1
12 X I , X J , X K 2 -

1
2 (DμX I )2 - E μνλ( 1

2 Aμab∂νAλcdT
a T b, T c, T d

+
1
3 AμabAνcdAλef T

a, T c, T d T b, T e, T f )
+
i
2 Ψ̄Γ

μDμΨ +
i
4 Ψ̄ΓIJ X

I , X J , Ψ >

(id60)

The formal relations between the Lie (Hermitian) 3-algebra models of M-theory and the ��= 8
(��= 6) BLG models are analogous to the relation among the ��= 4 super Yang-Mills in four di‐
mensions, the BFSS matrix theory [27], and the IIB matrix model [41]. They are completely
different theories although they are related to each others by dimensional reductions. In the
same way, the 3-algebra models of M-theory and the BLG models are completely different
theories.

The fields in the action (▭) are spanned by the Lie 3-algebra T a as X I = X a
IT a, Ψ = ΨaT

a

and Aμ = Aab
μT a⊗T b, where I = 3, ⋯ , 10 and μ = 0, 1, 2. < >  represents a metric for the 3-

algebra. Ψ is a Majorana spinor of SO(1,10) that satisfies Γ012Ψ = Ψ. E μνλ is a Levi-Civita
symbol in three-dimensions.

Finite dimensional Lie 3-algebras with an invariant metric is classified into four-dimensional
Euclidean ��4 algebra and the Lie 3-algebras with indefinite metrics in [9], [10], [11], [21], [22].
We do not choose ��4 algebra because its degrees of freedom are just four. We need an algebra
with arbitrary dimensions N, which is taken to infinity to define M-theory. Here we choose
the most simple indefinite metric Lie 3-algebra, so called the Lorentzian Lie 3-algebra associ‐
ated with u(N ) Lie algebra,

T -1, T a, T b = 0
T 0, T i, T j = T i, T j = f k

ij T k

T i, T j, T k = f ijkT -1

(id61)
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where a = - 1, 0, i (i = 1, ⋯ , N 2). T i are generators of u(N ). A metric is defined by a sym‐
metric bilinear form,

< T -1, T 0 > = -1

< T i, T j > = h ij
(id62)

and the other components are 0. The action is decomposed as

S = Tr( -
1
4 (x0

K )2 x I , x J 2 +
1
2 (x0

I xI , x
J )2 -

1
2 (x0

I bμ + aμ, x I )2 -
1
2 E

μνλbμ aν, aλ

+iψ̄0Γ
μbμψ -

i
2 ψ̄Γ

μ aμ, ψ +
i
2 x0

I ψ̄ΓIJ x
J , ψ -

i
2 ψ̄0ΓIJ x

I , x J ψ)
(id63)

where we have renamed X0
I → x0

I , X i
IT i → x I , Ψ0 → ψ0, ΨiT

i → ψ, 2Aμ0iT
i → aμ, and

Aμij T
i, T j → bμ. aμ correspond to the target coordinate matrices X μ, whereas bμ are auxili‐

ary fields.

In this action, T -1 mode; X -1
I , Ψ-1 or A-1a

μ  does not appear, that is they are unphysical modes.
Therefore, the indefinite part of the metric (▭) does not exist in the action and the Lie 3-alge‐
bra model of M-theory is ghost-free like a model in [42]. This action can be obtained by a
dimensional reduction of the three-dimensional ��= 8 BLG model [4], [5], [6] with the same 3-
algebra. The BLG model possesses a ghost mode because of its kinetic terms with indefinite
signature. On the other hand, the Lie 3-algebra model of M-theory does not possess a kinetic
term because it is defined as a zero-dimensional field theory like the IIB matrix model [41].

This action is invariant under the translation

δx I = η I , δa μ = η μ (id64)

where η I  and η μ belong to u(1). This implies that eigen values of x I  and a μ represent an
eleven-dimensional space-time.

The action is also invariant under 16 kinematical supersymmetry transformations

δ̃ψ = �̃ (id65)

and the other fields are not transformed. �̃ belong to u(1) and satisfy Γ012�̃= �̃. �̃ and � should
come from sixteen components of thirty-two ��= 1 supersymmetry parameters in eleven di‐
mensions, corresponding to eigen values ± 1 of Γ012, respectively, as in the previous subsec‐
tion.

A commutation relation between the kinematical supersymmetry transformations is given
by
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δ̃2δ̃1 - δ̃1δ̃2 = 0 (id66)

The action is invariant under 16 dynamical supersymmetry transformations,

δX I = i �̄Γ IΨ
δAμab T

a, T b, = i �̄ΓμΓI X
I , Ψ,

δΨ = - Aμab T
a, T b, X I Γ μΓI �-

1
6 X I , X J , X K ΓIJK �

(id67)

where Γ012�= - �. These supersymmetries close into gauge transformations on-shell,

δ1, δ2 X
I = Λcd T

c, T d , X I

δ1, δ2 Aμab T
a, T b, = Λab T

a, T b, Aμcd T
c, T d ,

- Aμab T
a, T b, Λcd T

c, T d , + 2i �̄2Γ ν�1Oμν
A

δ1, δ2 Ψ = Λcd T
c, T d , Ψ + (i �̄2Γ μ�1Γμ -

i
4 �̄2Γ KL �1ΓKL )O Ψ

(id68)

where gauge parameters are given by Λab = 2i �̄2Γ μ�1Aμab - i �̄2ΓJK �1X a
J X b

K . Oμν
A = 0 and O Ψ = 0 are

equations of motions of Aμν and Ψ, respectively, where

Oμν
A = Aμab T

a, T b, Aνcd T
c, T d , - Aνab T

a, T b, Aμcd T
c, T d ,

+Eμνλ( - X I , Aab
λ T a, T b, X I , +

i
2 Ψ̄, Γ λΨ, )

O Ψ = -Γ μAμab T
a, T b, Ψ +

1
2 ΓIJ X

I , X J , Ψ

(id69)

(▭) implies that a commutation relation between the dynamical supersymmetry transforma‐

tions is

δ2δ1 - δ1δ2 = 0 (id70)

up to the equations of motions and the gauge transformations.

The 16 dynamical supersymmetry transformations (▭) are decomposed as
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δx I = i �̄Γ Iψ
δx0

I = i �̄Γ Iψ0

δx-1
I = i �̄Γ Iψ-1

δψ = - (bμx0
I + aμ, x I )Γ μΓI �-

1
2 x0

I x J , x K ΓIJK �

δψ0 = 0

δψ-1 = - Tr(bμx I )Γ μΓI �-
1
6 Tr( x I , x J x K )ΓIJK �

δaμ = i �̄ΓμΓI (x0
Iψ - ψ0x

I )
δbμ = i �̄ΓμΓI x

I , ψ

δAμ-1i = i �̄ΓμΓI
1
2 (x-1

Iψi - ψ-1xi
I )

δAμ-10 = i �̄ΓμΓI
1
2 (x-1

Iψ0 - ψ-1x0
I )

(id71)

and thus a commutator of dynamical supersymmetry transformations and kinematical ones
acts as

(δ̃2δ1 - δ1δ̃2)x I = i �̄1Γ I �̃2 ≡ η I

(δ̃2δ1 - δ1δ̃2)a μ = i �̄1Γ μΓI x0
I �̃2 ≡ η μ

(δ̃2δ1 - δ1δ̃2)A-1i
μ T i =

1
2 i �̄1Γ

μΓI x-1
I �̃2

(id72)

where the commutator that acts on the other fields vanishes. Thus, the commutation relation
for physical modes is given by

δ̃2δ1 - δ1δ̃2 = δη (id73)

where δη is a translation.

(▭), (▭), and (▭) imply the ��= 1 supersymmetry algebra in eleven dimensions as in the previ‐
ous subsection.

3.3. Hermitian 3-algebra model of M-theory

In this subsection, we study the Hermitian 3-algebra models of M-theory [26]. Especially, we
study mostly the model with the u(N )⊕u(N ) Hermitian 3-algebra (▭).

The continuum action (▭) can be rewritten by using the triality of SO(8) and the
SU (4) × U (1) decomposition [8], [43], [44] as
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Scl = ∫d 3σ -g( - V - Aμba{Z A, T a, T b}Adcμ{ZA, T c, T d }

+
1
3 E

μνλAμbaAνdcAλfe{T a, T c, T d }{T b, T f , T e}

+ iψ̄AΓ μAμba{ψA, T a, T b} +
i
2 EABCDψ̄

A{Z C , Z D, ψ B} -
i
2 E

ABCDZD{ψ̄A, ψB, ZC}

- iψ̄A{ψA, Z B, ZB} + 2iψ̄A{ψB, Z B, ZA})

(id75)

where fields with a raised A index transform in the 4 of SU(4), whereas those with lowered

one transform in the 4̄. Aμba (μ = 0, 1, 2) is an anti-Hermitian gauge field, Z A and ZA are a

complex scalar field and its complex conjugate, respectively. ψA is a fermion field that satis‐

fies

Γ 012ψA = - ψA (id76)

and ψ A is its complex conjugate. E μνλ and E ABCD are Levi-Civita symbols in three dimen‐

sions and four dimensions, respectively. The potential terms are given by

V = 2
3ΥB

CDΥCD
B

ΥB
CD = {Z C , Z D, ZB} -

1
2 δB

C{Z E , Z D, ZE } +
1
2 δB

D{Z E , Z C , ZE }
(id77)

If we replace the Nambu-Poisson bracket with a Hermitian 3-algebra's bracket [19], [20],

∫d 3σ -g →
{ϕ a, ϕ b, ϕ c} → T a, T b; T̄ c̄

(id78)

we obtain the Hermitian 3-algebra model of M-theory [26],

S = < - V - Aμb̄a Z
A, T a; T̄ b̄ Ad̄ c

μ ZA, T c; T̄ d̄̄ +
1
3 E

μνλAμb̄aAνd̄ cAλ f̄ e T
a, T c; T̄ d̄ T b, T f ; T̄ ē̄

+iψ̄AΓ μAμb̄a ψA, T a; T̄ b̄ +
i
2 EABCDψ̄

A Z C , Z D; ψ̄B -
i
2 E

ABCDZ̄ D ψ̄A, ψB; Z̄C

-iψ̄A ψA, Z B; Z̄ B + 2iψ̄A ψB, Z B; Z̄ A >

(id79)

where the cosmological constant has been deleted for the same reason as before. The poten‐

tial terms are given by
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V = 2
3ΥB

CDῩCD
B

ΥB
CD = Z C , Z D; Z̄ B -

1
2 δB

C Z E , Z D; Z̄ E +
1
2 δB

D Z E , Z C ; Z̄ E

(id80)

This matrix model can be obtained formally by a dimensional reduction of the ��= 6 BLG ac‐
tion [8], which is equivalent to ABJ(M) action [7], [45]The authors of [46], [47], [48], [49] stud‐
ied matrix models that can be obtained by a dimensional reduction of the ABJM and ABJ
gauge theories on S 3. They showed that the models reproduce the original gauge theories
on S 3 in planar limits.,

S��=6BLG = ∫d 3x < - V - DμZ
AD μZA
¯+ E μνλ( 1

2 Aμc̄b∂νAλd̄ aT̄
d̄ T a, T b; T̄ c̄

+
1
3 Aμb̄aAνd̄ cAλ f̄ e T

a, T c; T̄ d̄ T b, T f ; T̄ ē̄ )
- iψ̄AΓ μDμψA +

i
2 EABCDψ̄

A Z C , Z D; ψ B -
i
2 E

ABCDZ̄ D ψ̄A, ψB; Z̄C

- iψ̄A ψA, Z B; Z̄ B + 2iψ̄A ψB, Z B; Z̄ A >

(id82)

The Hermitian 3-algebra models of M-theory are classified into the models with u(m)⊕u(n)
Hermitian 3-algebra (▭) and sp(2n)⊕ u(1) Hermitian 3-algebra (▭). In the following, we
study the u(N )⊕u(N ) Hermitian 3-algebra model. By substituting the u(N )⊕u(N ) Hermi‐
tian 3-algebra (▭) to the action (▭), we obtain

S = Tr(-
(2π)2

k 2 V -(Z AAμ
R -Aμ

L Z A)(Z AA Rμ -A LμZ A)†-
k

2π
i
3 E

μνλ(AμRAνRAλR - Aμ
L Aν

L Aλ
L )

-ψ̄AΓ μ(ψAAμR - Aμ
L ψA) +

2π
k (iEABCDψ̄

AZ Cψ †BZ D - iE ABCDZD
†ψ †̄

AZC
†ψB

-iψ̄AψAZB
†Z B + iψ̄AZ BZB

†ψA + 2iψ̄AψBZA
†Z B - 2iψ̄AZ BZA

†ψB))

(id83)

where Aμ
R ≡ - k

2π iAμb̄aT
†b̄T a and Aμ

L ≡ - k
2π iAμb̄aT

aT †b̄ are N × N  Hermitian matrices. In

the algebra, we have set α = 2π
k , where k  is an integer representing the Chern-Simons level.

We choose k = 1 in order to obtain 16 dynamical supersymmetries. V  is given by

V = +
1
3ZA

†Z AZB
†Z BZC

†Z C +
1
3Z

AZA
†Z BZB

†Z CZC
† +

4
3ZA

†Z BZC
†Z AZB

†Z C

-ZA
†Z AZB

†Z CZC
†Z B - Z AZA

†Z BZC
†Z CZB

†
(id84)

By redefining fields as
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Z A → ( k2π ) 1
3Z A

Aμ → ( 2π
k ) 1

3 Aμ

ψ A → ( k2π ) 1
6ψ A

(id85)

we obtain an action that is independent of Chern-Simons level:

S = Tr( - V - (Z AAμ
R - Aμ

L Z A)(Z AA Rμ - A LμZ A)† -
i
3 E

μνλ(AμRAνRAλR - Aμ
L Aν

L Aλ
L )

-ψ̄AΓ μ(ψAAμR - Aμ
L ψA) + iEABCDψ̄

AZ Cψ †BZ D - iE ABCDZD
†ψ †̄

AZC
†ψB

-iψ̄AψAZB
†Z B + iψ̄AZ BZB

†ψA + 2iψ̄AψBZA
†Z B - 2iψ̄AZ BZA

†ψB)
(id86)

as opposed to three-dimensional Chern-Simons actions.

If we rewrite the gauge fields in the action as Aμ
L = Aμ + bμ and Aμ

R = Aμ - bμ, we obtain

S = Tr( - V + ( Aμ, Z A + {bμ, Z A})( Aμ, ZA - {b μ, ZA}) + iE μνλ( 2
3 bμbνbλ + 2AμAνbλ)

+ψ̄AΓ μ( Aμ, ψA + {bμ, ψA}) + iEABCDψ̄
AZ Cψ †BZ D - iE ABCDZD

†ψ †̄
AZC

†ψB
-iψ̄AψAZB

†Z B + iψ̄AZ BZB
†ψA + 2iψ̄AψBZA

†Z B - 2iψ̄AZ BZA
†ψB)

(id87)

where ,  and { , } are the ordinary commutator and anticommutator, respectively. The

u(1) parts of Aμ decouple because Aμ appear only in commutators in the action. b μ can be

regarded as auxiliary fields, and thus Aμ correspond to matrices X μ that represents three

space-time coordinates in M-theory. Among N × N  arbitrary complex matrices Z A, we need

to identify matrices X I  (I = 3, ⋯ 10) representing the other space coordinates in M-theory,
because the model possesses not SO(8) but SU (4) × U (1) symmetry. Our identification is

Z A = iX A+2 - X A+6,
X I = X̂ I - ix I1

(id88)

where X̂ I  and x I  are su(N ) Hermitian matrices and real scalars, respectively. This is analo‐
gous to the identification when we compactify ABJM action, which describes N M2 branes,
and obtain the action of N D2 branes [50], [7], [51]. We will see that this identification works
also in our case. We should note that while the su(N ) part is Hermitian, the u(1) part is anti-

Hermitian. That is, an eigen-value distribution of X μ, Z A, and not X I  determine the space‐
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time in the Hermitian model. In order to define light-cone coordinates, we need to perform
Wick rotation: a 0 → - ia 0. After the Wick rotation, we obtain

A 0 = A 0
^

- ia 01 (id89)

where A 0
^

 is a su(N ) Hermitian matrix.

3.4. DLCQ Limit of 3-algebra model of M-theory

It was shown that M-theory in a DLCQ limit reduces to the BFSS matrix theory with matri‐
ces of finite size [30], [31], [32], [33], [34], [35]. This fact is a strong criterion for a model of M-
theory. In [26], [28], it was shown that the Lie and Hermitian 3-algebra models of M-theory
reduce to the BFSS matrix theory with matrices of finite size in the DLCQ limit. In this sub‐
section, we show an outline of the mechanism.

DLCQ limit of M-theory consists of a light-cone compactification, x - ≈ x - + 2πR, where

x ± = 1

2
(x 10 ± x 0), and Lorentz boost in x 10 direction with an infinite momentum. After ap‐

propriate scalings of fields [26], [28], we define light-cone coordinate matrices as

X 0 =
1
2

(X + - X -)

X 10 =
1
2

(X + + X -)
(id91)

We integrate out b μ by using their equations of motion.

A matrix compactification [52] on a circle with a radius R imposes the following conditions
on X - and the other matrices Y :

X - - (2πR)1 = U †X -U
Y = U †YU

(id92)

where U  is a unitary matrix. In order to obtain a solution to (▭), we need to take N → ∞ and
consider matrices of infinite size [52]. A solution to (▭) is given by X - = X̄ - + X̃ -, Y = Ỹ  and

U = (⋱ ⋱
0 1 0

0 1
0 1

0 0 ⋱
⋱

)⊗ 1n×n ∈ U (N ) (id93)
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Backgrounds X̄ - are

X̄ - = - T 3x̄0
-T 0 - (2πR)diag( ⋯ , s - 1, s, s + 1, ⋯ )⊗ 1n×n (id94)

in the Lie 3-algebra case, whereas

X̄ - = - i(T 3x̄ -)1 - i(2πR)diag( ⋯ , s - 1, s, s + 1, ⋯ )⊗ 1n×n (id95)

in the Hermitian 3-algebra case. A fluctuation x̃ that represents u(N ) parts of X̃ - and Ỹ  is

(⋱ ⋱ ⋱
⋱ x̃(0) x̃(1) x̃(2) ⋱
⋱ x̃( - 1) x̃(0) x̃(1) x̃(2)

x̃( - 2) x̃( - 1) x̃(0) x̃(1) x̃(2)
x̃( - 2) x̃( - 1) x̃(0) x̃(1) x̃(2)

x̃( - 2) x̃( - 1) x̃(0) x̃(1) ⋱
⋱ x̃( - 2) x̃( - 1) x̃(0) ⋱

⋱ ⋱ ⋱

) (id96)

Each x̃(s) is a n × n matrix, where s is an integer. That is, the (s, t)-th block is given by
x̃s ,t = x̃(s - t).

We make a Fourier transformation,

x̃(s) =
1

2πR̃ ∫0
2πR̃dτx(τ)e is

τ
R̃ (id97)

where x(τ) is a n × n matrix in one-dimension and RR̃ = 2π. From (▭)-(▭), the following
identities hold:

∑
t
x̃s ,tx

'̃
t ,u =

1
2πR̃ ∫0

2πR̃dτ x(τ)x '(τ)e i(s-u) τR̃

tr(∑
s,t
x̃s ,tx

'̃
t ,s) = V

1
2πR̃ ∫0

2πR̃dτ tr(x(τ)x '(τ))

x̄ -, x̃ s ,t =
1

2πR̃ ∫0
2πR̃dτ ∂τx(τ)e i(s-t )

τ
R̃

(id98)

where tr is a trace over n × n matrices and V = ∑s 1.

Next, we boost the system in x 10 direction:
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X̃ '+ =
1
T X̃

+

X̃ '- = T X̃ -
(id99)

The DLCQ limit is achieved when T → ∞, where the "novel Higgs mechanism" [50] is realiz‐

ed. In T → ∞, the actions of the 3-algebra models of M-theory reduce to that of the BFSS ma‐

trix theory [27] with matrices of finite size,

S =
1
g 2 ∫-∞∞dτtr( 1

2 (D0x
P)2 -

1
4 x P , x Q 2 +

1
2 ψ̄Γ

0D0ψ -
i
2 ψ̄Γ

P xP , ψ ) (id100)

where P , Q = 1, 2, ⋯ , 9.

3.5. Supersymmetric deformation of Lie 3-algebra model of M-theory

A supersymmetric deformation of the Lie 3-algebra Model of M-theory was studied in [53]

(see also [54], [55], [56]). If we add mass terms and a flux term,

Sm = -
1
2 μ

2(X I )2 -
i
2 μΨ̄Γ3456Ψ + H IJKL X I , X J , X K X L (id102)

such that

H IJKL = {- μ6 �IJKL (I , J , K , L = 3, 4, 5, 6 or 7, 8, 9, 10)

0 (otherwise)
(id103)

to the action (▭), the total action S0 + Sm is invariant under dynamical 16 supersymmetries,

δX I = i �̄Γ IΨ
δAμab T

a, T b, = i �̄ΓμΓI X
I , Ψ,

δΨ = -
1
6 X I , X J , X K ΓIJK �- Aμab T

a, T b, X I Γ μΓI �+ μΓ3456X
IΓI �

(id104)

From this action, we obtain various interesting solutions, including fuzzy sphere solutions

[53].
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4. Conclusion

The metric Hermitian 3-algebra corresponds to a class of the super Lie algebra. By using this
relation, the metric Hermitian 3-algebras are classified into u(m)⊕u(n) and sp(2n)⊕ u(1)
Hermitian 3-algebras.

The Lie and Hermitian 3-algebra models of M-theory are obtained by second quantizations
of the supermembrane action in a semi-light-cone gauge. The Lie 3-algebra model possesses
manifest ��= 1 supersymmetry in eleven dimensions. In the DLCQ limit, both the models re‐
duce to the BFSS matrix theory with matrices of finite size as they should.
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