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1. Introduction

Consider a linear time invariant system

ẋ(t) = Ax(t) + Bu(t) (id1)

to be identified with the pair of matrices (A, B) where A ∈ ��n×n, B ∈ ��n×m and ��= ℝ or ℂ the
fields of the real or complex numbers. If state-feedback u(t) = Fx(t) + v(t) is applied to sys‐
tem (▭), Rosenbrock's Theorem on pole assignment (see [1]) characterizes for the closed-
loop system

ẋ(t) = (A + BF )x(t) + Bv(t), (id2)

the invariant factors of its state-space matrix A + BF . This result can be seen as the solution
of an inverse problem; that of finding a non-singular polynomial matrix with prescribed in‐
variant factors and left Wiener–Hopf factorization indices at infinity. To see this we recall
that the invariant factors form a complete system of invariants for the finite equivalence of
polynomial matrices (this equivalence relation will be revisited in Section ▭) and it will be
seen in Section ▭ that any polynomial matrix is left Wiener–Hopf equivalent at infinity to a
diagonal matrix Diag(s k1, ..., s km), where the non-negative integers k1, ..., km (that can be as‐
sumed in non-increasing order) form a complete system of invariants for the left Wiener–
Hopf equivalence at infinity. Consider now the transfer function matrix
G(s) = (sI - (A + BF ))-1B of (▭). This is a rational matrix that can be written as an irreducible
matrix fraction description G(s) = N (s)P(s)-1, where N (s) and P(s) are right coprime polyno‐
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mial matrices. In the terminology of [2], P(s) is a polynomial matrix representation of (▭),
concept that is closely related to that of polynomial model introduced by Fuhrmann (see for
example [3] and the references therein). It turns out that all polynomial matrix representa‐
tions of a system are right equivalent (see [2], [3]), that is, if P1(s) and P2(s) are polynomial
matrix representations of the same system there exists a unimodular matrix U (s) such that
P2(s) = P1(s)U (s). Therefore all polynomial matrix representations of (▭) have the same in‐
variant factors, which are the invariant factors of sIn - (A + BF ) except for some trivial ones.
Furthermore, all polynomial matrix representations also have the same left Wiener– Hopf
factorization indices at infinity, which are equal to the controllability indices of (▭) and (▭),
because the controllability indices are invariant under feedback. With all this in mind it is
not hard to see that Rosenbrock's Theorem on pole assignment is equivalent to finding nec‐
essary and sufficient conditions for the existence of a non-singular polynomial matrix with
prescribed invariant factors and left Wiener–Hopf factorization indices at infinity. This re‐
sult will be precisely stated in Section ▭ once all the elements that appear are properly de‐
fined. In addition, there is a similar result to Rosenbrock's Theorem on pole assignment but
involving the infinite structure (see [4]).

Our goal is to generalize both results (the finite and infinite versions of Rosenbrock's Theo‐
rem) for rational matrices defined on arbitrary fields via local rings. This will be done in Sec‐
tion ▭ and an extension to arbitrary fields of the concept of Wiener–Hopf equivalence will
be needed. This concept is very well established for complex valued rational matrix func‐
tions (see for example [5], [6]). Originally it requires a closed contour, γ, that divides the ex‐
tended complex plane (ℂ ∪ {∞}) into two parts: the inner domain (Ω+) and the region outside
γ (Ω-), which contains the point at infinity. Then two non-singular m × m complex rational
matrices T1(s) and T2(s), with no poles and no zeros in γ, are said to be left Wiener–Hopf
equivalent with respect to γ if there are m × m matrices U -(s) and U+(s) with no poles and no
zeros in Ω- ∪ γ and Ω+ ∪ γ, respectively, such that

T2(s) = U -(s)T1(s)U+(s). (id3)

It can be seen, then, that any non-singular m × m complex rational matrix T (s) is left Wie‐
ner–Hopf equivalent with respect to γ to a diagonal matrix

Diag((s - z0)k1, ..., (s - z0)km) (id4)

where z0 is any complex number in Ω+ and k1 ≥ ⋯ ≥ km are integers uniquely determined by
T (s). They are called the left Wiener–Hopf factorization indices of T (s) with respect to γ (see
again [5], [6]). The generalization to arbitrary fields relies on the following idea: We can
identify Ω+ ∪ γ and (Ω- ∪ γ) ∖ {∞} with two sets M  and M ', respectively, of maximal ideals of
ℂ s . In fact, to each z0 ∈ ℂ we associate the ideal generated by s - z0, which is a maximal

ideal of ℂ s . Notice that s - z0 is also a prime polynomial of ℂ s  but M  and M ', as defined,
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cannot contain the zero ideal, which is prime. Thus we are led to consider the set
Specm(ℂ s ) of maximal ideals of ℂ s . By using this identification we define the left Wie‐
ner–Hopf equivalence of rational matrices over an arbitrary field  with respect to a subset M
of Specm(��s ), the set of all maximal ideals of ��s . In this study local rings play a fundamen‐
tal role. They will be introduced in Section ▭. Localization techniques have been used previ‐
ously in the algebraic theory of linear systems (see, for example, [7]). In Section ▭ the
algebraic structure of the rings of proper rational functions with prescribed finite poles is

studied (i.e., for a fixed M ⊆ Specm(��s ) the ring of proper rational functions p(s)
q(s)  with

gcd (g(s), π(s)) = 1 for all (π(s)) ∈ M ). It will be shown that if there is an ideal generated by
a linear polynomial outside M  then the set of proper rational functions with no poles in M
is an Euclidean domain and all rational matrices can be classified according to their Smith–
McMillan invariants. In this case, two types of invariants live together for any non-singular
rational matrix and any set M ⊆ Specm(��s ): its Smith–McMillan and left Wiener–Hopf in‐
variants. In Section ▭ we show that a Rosenbrock-like Theorem holds true that completely
characterizes the relationship between these two types of invariants.

2. Preliminaries

In the sequel ��s  will denote the ring of polynomials with coefficients in an arbitrary field 
and Specm(��s ) the set of all maximal ideals of ��s , that is,

Specm(��s ) = {(π(s)) : π(s) ∈ ��s , irreducible, monic, different from 1}. (id5)

Let π(s) ∈ ��s  be a monic irreducible non-constant polynomial. Let S = ��s ∖ (π(s)) be the
multiplicative subset of ��s  whose elements are coprime with π(s). We denote by ��π(s) the

quotient ring of ��s  by S ; i.e., S -1��s :

��π(s) = { p(s)
q(s) : p(s), q(s) ∈ ��s , gcd (q(s), π(s)) = 1}. (id6)

This is the localization of ��s  at (π(s)) (see [8]). The units of ��π(s) are the rational functions

u(s) = p(s)
q(s)  such that gcd (p(s), π(s)) = 1 and gcd (q(s), π(s)) = 1. Consequentially,

��π(s) = {u(s)π(s)d : u(s) is a unit and d ≥ 0} ∪ {0}. (id7)

For any M ⊆ Specm(��s ), let
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��M (s) = ⋂
(π(s))∈M

��π(s)

= { p(s)
q(s) : p(s), q(s) ∈ ��s , gcd (q(s), π(s)) = 1 ∀ (π(s)) ∈ M }. (id8)

This is a ring whose units are the rational functions u(s) = p(s)
q(s)  such that for all ideals

(π(s)) ∈ M , gcd (p(s), π(s)) = 1 and gcd (q(s), π(s)) = 1. Notice that, in particular, if
M = Specm(��s ) then ��M (s) = ��s  and if M = ∅ then ��M (s) = ��(s), the field of rational functions.

Moreover, if α(s) ∈ ��s  is a non-constant polynomial whose prime factorization,

α(s) = kα1(s)d1 ⋯ αm(s)dm, satisfies the condition that (αi(s)) ∈ M  for all i, we will say that α(s)

factorizes in M  or α(s) has all its zeros in M . We will consider that the only polynomials that
factorize in M = ∅ are the constants. We say that a non-zero rational function factorizes in
M  if both its numerator and denominator factorize in M . In this case we will say that the

rational function has all its zeros and poles in M . Similarly, we will say that p(s)
q(s)  has no

poles in M  if p(s) ≠ 0 and gcd (q(s), π(s)) = 1 for all ideals (π(s)) ∈ M . And it has no zeros in

M  if gcd (p(s), π(s)) = 1 for all ideals (π(s)) ∈ M . In other words, it is equivalent that p(s)
q(s)

has no poles and no zeros in M  and that p(s)
q(s)  is a unit of ��M (s). So, a non-zero rational func‐

tion factorizes in M  if and only if it is a unit in ��Specm(��s )∖M
(s).

Let ��M (s)m×m denote the set of m × m matrices with elements in ��M (s). A matrix is invertible in

��M (s)m×m if all its elements are in ��M (s) and its determinant is a unit in ��M (s). We denote by

Glm(��M (s)) the group of units of ��M (s)m×m.

Remark 1

Let M1, M2 ⊆ Specm(��s ). Notice that

1. If M1 ⊆ M2 then ��M 1
(s) ⊇ ��M 2

(s) and Glm(��M 1
(s)) ⊇ Glm(��M 2

(s)).

2. ��M 1∪M 2
(s) = ��M 1

(s) ∩ ��M 2
(s) and Glm(��M 1∪M 2

(s)) = Glm(��M 1
(s)) ∩ Glm(��M 2

(s)).

For any M ⊆ Specm(��s ) the ring ��M (s) is a principal ideal domain (see [9]) and its field of

fractions is ��(s). Two matrices T1(s), T2(s) ∈ ��(s)m×m are equivalent with respect to M  if there

exist matrices U (s), V (s) ∈ Glm(��M (s)) such that T2(s) = U (s)T1(s)V (s). Since ��M (s) is a princi‐

pal ideal domain, for all non-singular G(s) ∈ ��M (s)m×m (see [10]) there exist matrices
U (s), V (s) ∈ Glm(��M (s)) such that

G(s) = U (s)Diag(α1(s), ..., αm(s))V (s) (id10)

Linear Algebra4



with α1(s) ∣ ⋯ ∣ αm(s) (“∣ ” stands for divisibility) monic polynomials factorizing in M ,
unique up to multiplication by units of ��M (s). The diagonal matrix is the Smith normal form
of G(s) with respect to M  and α1(s), ..., αm(s) are called the invariant factors of G(s) with re‐
spect to M . Now we introduce the Smith–McMillan form with respect to M . Assume that

T (s) ∈ ��(s)m×m is a non-singular rational matrix. Then T (s) = G(s)
d (s)  with G(s) ∈ ��M (s)m×m and

d (s) ∈ ��s  monic, factorizing in M . Let G(s) = U (s)Diag(α1(s), ..., αm(s))V (s) be the Smith

normal form with respect to M  of G(s), i.e., U (s), V (s) invertible in ��M (s)m×m and
α1(s) ∣ ⋯ ∣ αm(s) monic polynomials factorizing in M . Then

T (s) = U (s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )V (s) (id11)

where 
�i(s)

ψi(s)  are irreducible rational functions, which are the result of dividing αi(s) by d (s)

and canceling the common factors. They satisfy that �1(s) ∣ ⋯ ∣ �m(s), ψm(s) ∣ ⋯ ∣ ψ1(s) are
monic polynomials factorizing in M . The diagonal matrix in (▭) is the Smith–McMillan

form with respect to M . The rational functions 
�i(s)

ψi(s) , i = 1, ..., m, are called the invariant ra‐
tional functions of T (s) with respect to M  and constitute a complete system of invariants of
the equivalence with respect to M  for rational matrices.

In particular, if M = Specm(��s ) then ��Specm(��s )(s) = ��s , the matrices U (s), V (s) ∈ Glm(��s ) are
unimodular matrices, (▭) is the global Smith–McMillan form of a rational matrix (see [11] or

[1] when ��= ℝ or ℂ) and 
�i(s)

ψi(s)  are the global invariant rational functions of T (s).

From now on rational matrices will be assumed to be non-singular unless the opposite is
specified. Given any M ⊆ Specm(��s ) we say that an m × m non-singular rational matrix has
no zeros and no poles in M  if its global invariant rational functions are units of ��M (s). If its
global invariant rational functions factorize in M , the matrix has its global finite structure
localized in M  and we say that the matrix has all zeros and poles in M . The former means
that T (s) ∈ Glm(��M (s)) and the latter that T (s) ∈ Glm(��Specm(��s )∖M

(s)) because

det T (s) = det U (s) det V (s) �1(s) ⋯ �m(s)
ψ1(s) ⋯ ψm(s)  and det U (s), det V (s) are non-zero constants. The

following result clarifies the relationship between the global finite structure of any rational
matrix and its local structure with respect to any M ⊆ Specm(��s ).

Proposition 2 Let M ⊆ Specm(��s ). Let T (s) ∈ ��(s)m×m be non-singular with 
α1(s)
β1(s) , ...,

αm(s)
βm(s)  its

global invariant rational functions and let 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  be irreducible rational functions

such that �1(s) ∣ ⋯ ∣ �m(s), ψm(s) ∣ ⋯ ∣ ψ1(s) are monic polynomials factorizing in M . The fol‐
lowing properties are equivalent:
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• There exist TL (s), TR(s) ∈ ��(s)m×m such that the global invariant rational functions of TL (s)

are 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s) , TR(s) ∈ Glm(��M (s)) and T (s) = TL (s)TR(s).

• There exist matrices U1(s), U2(s) invertible in ��M (s)m×m such that

T (s) = U1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )U2(s), (id15)

i.e., 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  are the invariant rational functions of T (s) with respect to M .

• αi(s) = �i(s)�i
'(s) and βi(s) = ψi(s)ψi

'(s) with �i
'(s), ψi

'(s) ∈ ��s  units of ��M (s), for i = 1, ..., m.

Proof.- 1 ⇒  2. Since the global invariant rational functions of TL (s) are 
�1(s)

ψ1(s) , ...,  
�m(s)

ψm(s) ,

there exist W1(s), W2(s) ∈ Glm(��s ) such that TL (s) =  W1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )W2(s). As

��Specm(��s )(s) = ��s , by Remark ▭.1, W1(s), W2(s) ∈ Glm(��M (s)). Therefore, putting U1(s) = W1(s)

and U2(s) = W2(s)TR(s) it follows that U1(s) and U2(s) are invertible in ��M (s)m×m and

T (s) = U1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )U2(s).

2 ⇒  3. There exist unimodular matrices V1(s), V2(s) ∈ ��s m×m such that

T (s) = V1(s)Diag( α1(s)
β1(s) , ...,

αm(s)
βm(s) )V2(s) (id17)

with 
αi(s)
βi(s)  irreducible rational functions such that α1(s) ∣ ⋯ ∣ αm(s) and βm(s) ∣ ⋯ ∣ β1(s) are

monic polynomials. Write 
αi(s)
βi(s) =

pi(s) pi
'(s)

qi(s)qi
'(s)  such that pi(s), qi(s) factorize in M  and pi

'(s), qi
'(s)

factorize in Specm(��s ) ∖M . Then

T (s) = V1(s)Diag( p1(s)
q1(s) , ...,

pm(s)
qm(s) )Diag( p1

'(s)

q1
'(s) , ...,

pm
' (s)

qm
' (s) )V2(s) (id18)

with V1(s) and Diag( p1
'(s)

q1
'(s) , ...,

pm
' (s)

qm
' (s) )V2(s) invertible in ��M (s)m×m. Since the Smith–McMillan

form with respect to M  is unique we get that 
pi(s)
qi(s) =

�i(s)
ψi(s) .

3 ⇒  1. Write (▭) as

Linear Algebra6



T (s) = V1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )Diag( �1

'(s)
ψ1

'(s) , ...,
�m
' (s)

ψm
' (s) )V2(s). (id19)

It follows that T (s) = TL (s)TR(s) with TL (s) = V1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) ) and TR(s) =

Diag( �1
'(s)

ψ1
'(s) , ...,

�m
' (s)

ψm
' (s) )V2(s) ∈ Glm(��M (s)).

Corollary 3 Let T (s) ∈ ��(s)m×m be non-singular and M1, M2 ⊆ Specm(��s ) such that

M1 ∩ M2 = ∅. If 
�1
i(s)

ψ1
i(s) , ...,

�m
i(s)

ψm
i(s)  are the invariant rational functions of T (s) with respect to

M i, i = 1, 2, then 
�1
1(s)�1

2(s)

ψ1
1(s)ψ1

2(s) , ...,
�m
1(s)�m

2(s)

ψm
1(s)ψm

2(s)  are the invariant rational functions of T (s) with re‐

spect to M1 ∪ M2.

1.08 Proof.- Let 
α1(s)
β1(s) , ...,

αm(s)
βm(s)  be the global invariant rational functions of T (s). By Proposi‐

tion ▭, αi(s) = �i
1(s)ni

1(s), βi(s) = ψi
1(s)di

1(s),  with ni
1(s), di

1(s) ∈ ��s  units of ��M 1
(s). On the other

hand αi(s) = �i
2(s)ni

2(s), βi(s) = ψi
2(s)di

2(s),  with ni
2(s), di

2(s) ∈ ��s  units of ��M 2
(s). So,

�i
1(s)ni

1(s) = �i
2(s)ni

2(s) or equivalently ni
1(s) =

�i
2(s)ni

2(s)

�i
1(s) , ni

2(s) =
�i
1(s)ni

1(s)

�i
2(s) . The polynomials

�i
1(s), �i

2(s) are coprime because �i
1(s) factorizes in M1, �i

2(s) factorizes in M2 and M1 ∩ M2 = ∅.

In consequence �i
1(s) ∣ ni

2(s) and �i
2(s) ∣ ni

1(s). Therefore, there exist polynomials a(s), unit of

��M 2
(s), and a '(s), unit of ��M 1

(s), such that ni
2(s) = �i

1(s)a(s), ni
1(s) = �i

2(s)a '(s). Since

αi(s) = �i
1(s)ni

1(s) = �i
1(s)�i

2(s)a '(s) and αi(s) = �i
2(s)ni

2(s) = �i
2(s)�i

1(s)a(s). This implies that a(s) = a '(s)

unit of ��M 1
(s) ∩ ��M 2

(s) = ��M 1∪M 2
(s). Following the same ideas we can prove that

βi(s) = ψi
1(s)ψi

2(s)b(s) with b(s) a unit of ��M 1∪M 2
(s). By Proposition ▭ 

�1
1(s)�1

2(s)

ψ1
1(s)ψ1

2(s) , ...,
�m
1(s)�m

2(s)

ψm
1(s)ψm

2(s)  are

the invariant rational functions of T (s) with respect to M1 ∪ M2.

Corollary 4 Let M1, M2 ⊆ Specm(��s ). Two non-singular matrices are equivalent with re‐
spect to M1 ∪ M2 if and only if they are equivalent with respect to M1 and with respect to
M2.

Proof.- Notice that by Remark ▭.2 two matrices T1(s), T2(s) ∈ ��(s)m×m are equivalent with re‐

spect to M1 ∪ M2 if and only if there exist U1(s), U2(s) invertible in ��M 1
(s)m×m ∩ ��M 2

(s)m×m such

that T2(s) = U1(s)T1(s)U2(s). Since U1(s) and U2(s) are invertible in both ��M 1
(s)m×m and

��M 2
(s)m×m then T1(s) and T2(s) are equivalent with respect to M1 and with respect to M2.

Conversely, if T1(s) and T2(s) are equivalent with respect to M1 and with respect to M2 then,
by the necessity of this result, they are equivalent with respect to M1 ∖ (M1 ∩ M2), with re‐
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spect to M2 ∖ (M1 ∩ M2) and with respect to M1 ∩ M2. Let 
�1
1(s)

ψ1
1(s) , ...,

�m
1(s)

ψm
1(s)  be the invariant ra‐

tional functions of T1(s) and T2(s) with respect to M1 ∖ (M1 ∩ M2), 
�1
2(s)

ψ1
2(s) , ...,

�m
2(s)

ψm
2(s)  be the

invariant rational functions of T1(s) and T2(s) with respect to M2 ∖ (M1 ∩ M2) and
�1
3(s)

ψ1
3(s) , ...,

�m
3(s)

ψm
3(s)  be the invariant rational functions of T1(s) and T2(s) with respect to M1 ∩ M2.

By Corollary ▭ 
�1
1(s)

ψ1
1(s)

�1
2(s)

ψ1
2(s)

�1
3(s)

ψ1
3(s) , ...,

�m
1(s)

ψm
1(s)

�m
2(s)

ψm
2(s)

�m
3(s)

ψm
3(s)  must be the invariant rational functions of

T1(s) and T2(s) with respect to M1 ∪ M2. Therefore, T1(s) and T2(s) are equivalent with re‐
spect to M1 ∪ M2.

Let ��pr(s) be the ring of proper rational functions, that is, rational functions with the degree of
the numerator at most the degree of the denominator. The units in this ring are the rational
functions whose numerators and denominators have the same degree. They are called bipr‐
oper rational functions. A matrix B(s) ∈ ��pr(s)m×m is said to be biproper if it is a unit in

��pr(s)m×m or, what is the same, if its determinant is a biproper rational function.

Recall that a rational function t(s) has a pole (zero) at ∞ if t( 1
s ) has a pole (zero) at 0. Follow‐

ing this idea, we can define the local ring at ∞ as the set of rational functions, t(s), such that

t( 1
s ) does not have 0 as a pole, that is, ��∞(s) = {t(s) ∈ ��(s) : t( 1

s ) ∈ ��s(s)}. If t(s) = p(s)
q(s)  with

p(s) = ats
t + at+1s

t+1 + ⋯ + aps p, ap ≠ 0, q(s) = brs
r + br+1s

r+1 + ⋯ + bqs q, bq ≠ 0,
p = d (p(s)), q = d (q(s)), where d ( · ) stands for “degree of”, then

t( 1
s ) =

at

s t +
at+1

s t+1 + ⋯ +
ap

s p

br

s r +
br+1

s r+1 + ⋯ +
bq

s q

=
ats

p-t + at+1s
p-t -1 + ⋯ + ap

brs
q-r + br+1s

q-r -1 + ⋯ + bq
s q- p =

f (s)
g(s) s q- p. (id22)

As ��s(s) = { f (s)
g (s) s d : f (0) ≠ 0, g(0) ≠ 0 and d ≥ 0} ∪ {0}, then

��∞(s) = { p(s)
q(s) ∈ ��(s) : d (q(s)) ≥ d (p(s))}. (id23)

Thus, this set is the ring of proper rational functions, ��pr(s).

Two rational matrices T1(s), T2(s) ∈ ��(s)m×m are equivalent at infinity if there exist biproper

matrices B1(s), B2(s) ∈ Glm(��pr(s)) such that T2(s) = B1(s)T1(s)B2(s). Given a non-singular ra‐

tional matrix T (s) ∈ ��(s)m×m (see [11]) there always exist B1(s), B2(s) ∈ Glm(��pr(s)) such that

Linear Algebra8



T (s) = B1(s)Diag(s q1, ..., s qm)B2(s) (id24)

where q1 ≥ ⋯ ≥ qm are integers. They are called the invariant orders of T (s) at infinity and

the rational functions s q1, ..., s qm are called the invariant rational functions of T (s) at infinity.

1.05

3. Structure of the ring of proper rational functions with prescribed finite
poles

Let M ' ⊆ Specm(��s ). Any non-zero rational function t(s) can be uniquely written as

t(s) = n(s)
d (s)

n '(s)
d '(s)  where n(s)

d (s)  is an irreducible rational function factorizing in M ' and n '(s)
d '(s)  is a

unit of ��M '(s). Define the following function over ��(s) ∖ {0} (see [11], [12]):

δ : ��(s) ∖ {0} → ℤ
t(s) ↦ d (d '(s)) - d (n '(s)).

(id25)

This mapping is not a discrete valuation of ��(s) if M ' ≠∅: Given two non-zero elements
t1(s), t2(s) ∈ ��(s) it is clear that δ(t1(s)t2(s)) = δ(t1(s)) + δ(t2(s)); but it may not satisfy that
δ(t1(s) + t2(s)) ≥ min (δ(t1(s)), δ(t2(s))). For example, let

M ' = {(s - a) ∈ Specm(ℝ s ) : a ∉ - 2, - 1 }. Put t1(s) = s + 0.5
s + 1.5  and t2(s) = s + 2.5

s + 1.5 . We have that
δ(t1(s)) = d (s + 1.5) - d (1) = 1, δ(t2(s)) = d (s + 1.5) - d (1) = 1 but δ(t1(s) + t2(s)) = δ(2) = 0.

However, if M ' = ∅ and t(s) = n(s)
d (s) ∈ ��(s) where n(s), d (s) ∈ ��s , d (s) ≠ 0, the map

δ∞ : ��(s) → ℤ ∪ { + ∞} (id26)

defined via δ∞(t(s)) = d (d (s)) - d (n(s)) if t(s) ≠ 0 and δ∞(t(s)) = + ∞ if t(s) = 0 is a discrete valu‐
ation of ��(s).

Consider the subset of ��(s), ��M '(s) ∩ ��pr(s), consisting of all proper rational functions with poles

in Specm(��s ) ∖M ', that is, the elements of ��M '(s) ∩ ��pr(s) are proper rational functions whose

denominators are coprime with all the polynomials π(s) such that (π(s)) ∈ M '. Notice that

g(s) ∈ ��M '(s) ∩ ��pr(s) if and only if g(s) = n(s) n '(s)
d '(s)  where:

(a)(b)(c)

• n(s) ∈ ��s  is a polynomial factorizing in M ',
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• n '(s)
d '(s)  is an irreducible rational function and a unit of ��M '(s),

• δ(g(s)) - d (n(s)) ≥ 0 or equivalently δ∞(g(s)) ≥ 0.

In particular (c) implies that n '(s)
d '(s) ∈ ��pr(s). The units in ��M '(s) ∩ ��pr(s) are biproper rational

functions n '(s)
d '(s) , that is d (n '(s)) = d (d '(s)), with n '(s), d '(s) factorizing in Specm(��s ) ∖M '. Fur‐

thermore, ��M '(s) ∩ ��pr(s) is an integral domain whose field of fractions is ��(s) provided that

M ' ≠ Specm(��s )(see, for example, Prop.5.22[11]). Notice that for M ' = Specm(��s ),
��M '(s) ∩ ��pr(s) = ��s ∩ ��pr(s) = ��.

Assume that there are ideals in Specm(��s ) ∖M ' generated by linear polynomials and let
(s - a) be any of them. The elements of ��M '(s) ∩ ��pr(s) can be written as g(s) = n(s)u(s) 1

(s - a)d

where n(s) ∈ ��s  factorizes in M ', u(s) is a unit in ��M '(s) ∩ ��pr(s) and d = δ(g(s)) ≥ d (n(s)). If  is

algebraically closed, for example ��= ℂ, and M ' ≠ Specm(��s ) the previous condition is always
fulfilled.

The divisibility in ��M '(s) ∩ ��pr(s) is characterized in the following lemma.

Lemma 5 Let M ' ⊆ Specm(��s ). Let g1(s), g2(s) ∈ ��M '(s) ∩ ��pr(s) be such that g1(s) = n1(s)
n1

'(s)

d1
'(s)

and g2(s) = n2(s)
n2

'(s)

d2
'(s)  with n1(s), n2(s) ∈ ��s  factorizing in M ' and 

n1
'(s)

d1
'(s) ,

n2
'(s)

d2
'(s)  irreducible ra‐

tional functions, units of ��M '(s). Then g1(s) divides g2(s) in ��M '(s) ∩ ��pr(s) if and only if

n1(s) ∣ n2(s) in ��s (id31)

δ(g1(s)) - d (n1(s)) ≤ δ(g2(s)) - d (n2(s)). (id32)

Proof.- If g1(s) ∣ g2(s) then there exists g(s) = n(s) n '(s)
d '(s) ∈ ��M '(s) ∩ ��pr(s), with n(s) ∈ ��s  factoriz‐

ing in M ' and n '(s), d '(s) ∈ ��s  coprime, factorizing in Specm(��s ) ∖M ', such that

g2(s) = g(s)g1(s). Equivalently, n2(s)
n2

'(s)

d2
'(s) = n(s) n '(s)

d '(s) n1(s)
n1

'(s)

d1
'(s) = n(s)n1(s)

n '(s)n1
'(s)

d '(s)d1
'(s) . So

n2(s) = n(s)n1(s) and δ(g2(s)) - d (n2(s)) = δ(g(s)) - d (n(s)) + δ(g1(s)) - d (n1(s)). Moreover, as g(s)
is a proper rational function, δ(g(s)) - d (n(s)) ≥ 0 and δ(g2(s)) - d (n2(s)) ≥ δ(g1(s)) - d (n1(s)).

Conversely, if n1(s) ∣ n2(s) then there is n(s) ∈ ��s , factorizing in M ', such that

n2(s) = n(s)n1(s). Write g(s) = n(s) n '(s)
d '(s)  where n '(s)

d '(s)  is an irreducible fraction representation of
n2

'(s)d1
'(s)

d2
'(s)n1

'(s) , i.e., n '(s)
d '(s) =

n2
'(s)d1

'(s)

d2
'(s)n1

'(s)  after canceling possible common factors. Thus 
n2

'(s)

d2
'(s) = n '(s)

d '(s)
n1

'(s)

d1
'(s)

and
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δ(g(s)) - d (n(s)) = d (d '(s)) - d (n '(s)) - d (n(s))

= d (d2
'(s)) + d (n1

'(s)) - d (n2
'(s)) - d (d1

'(s)) - d (n2(s)) + d (n1(s))
= δ(g2(s)) - d (n2(s)) - (δ(g1(s)) - d (n1(s))) ≥ 0.

(id33)

Then g(s) ∈ ��M '(s) ∩ ��pr(s) and g2(s) = g(s)g1(s).

Notice that condition (▭) means that g1(s) ∣ g2(s) in ��M '(s) and condition (▭) means that
g1(s) ∣ g2(s) in ��pr(s). So, g1(s) ∣ g2(s) in ��M '(s) ∩ ��pr(s) if and only if g1(s) ∣ g2(s) simultaneously
in ��M '(s) and ��pr(s).

Lemma 6 Let M ' ⊆ Specm(��s ). Let g1(s), g2(s) ∈ ��M '(s) ∩ ��pr(s) be such that g1(s) = n1(s)
n1

'(s)

d1
'(s)

and g2(s) = n2(s)
n2

'(s)

d2
'(s)  as in Lemma ▭. If n1(s) and n2(s) are coprime in ��s  and either

δ(g1(s)) = d (n1(s)) or δ(g2(s)) = d (n2(s)) then g1(s) and g2(s) are coprime in ��M '(s) ∩ ��pr(s).

Proof.- Suppose that g1(s) and g2(s) are not coprime. Then there exists a non-unit

g(s) = n(s) n '(s)
d '(s) ∈ ��M '(s) ∩ ��pr(s) such that g(s) ∣ g1(s) and g(s) ∣ g2(s). As g(s) is not a unit, n(s)

is not a constant or δ(g(s)) > 0. If n(s) is not a constant then n(s) ∣ n1(s) and n(s) ∣ n2(s) which
is impossible because n1(s) and n2(s) are coprime. Otherwise, if n(s) is a constant then
δ(g(s)) > 0 and we have that δ(g(s)) ≤ δ(g1(s)) - d (n1(s)) and δ(g(s)) ≤ δ(g2(s)) - d (n2(s)). But
this is again impossible.

It follows from this Lemma that if g1(s), g2(s) are coprime in both rings ��M '(s) and ��pr(s) then
g1(s), g2(s) are coprime in ��M '(s) ∩ ��pr(s). The following example shows that the converse is not
true in general.

Example 7 Suppose that ��= ℝ and M ' = Specm(ℝ s ) ∖ {(s 2 + 1)}. It is not difficult to prove

that g1(s) = s 2

s 2 + 1  and g2(s) = s
s 2 + 1  are coprime elements in ℝM '(s) ∩ ℝ pr(s). Assume that

there exists a non-unit g(s) = n(s) n '(s)
d '(s) ∈ ℝM '(s) ∩ ℝ pr(s) such that g(s) ∣ g1(s) and g(s) ∣ g2(s).

Then n(s) ∣ s 2, n(s) ∣ s and δ(g(s)) - d (n(s)) = 0. Since g(s) is not a unit, n(s) cannot be a con‐
stant. Hence, n(s) = cs, c ≠ 0, and δ(g(s)) = 1, but this is impossible because d '(s) and n '(s) are
powers of s 2 + 1. Therefore g1(s) and g2(s) must be coprime. However n1(s) = s 2 and n2(s) = s
are not coprime.

Now, we have the following property when there are ideals in Specm(��s ) ∖M ',
M ' ⊆ Specm(��s ), generated by linear polynomials.

Lemma 8 Let M ' ⊆ Specm(��s ). Assume that there are ideals in Specm(��s ) ∖M ' generated
by linear polynomials and let (s - a) be any of them. Let g1(s), g2(s) ∈ ��M '(s) ∩ ��pr(s) be such
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that g1(s) = n1(s)u1(s) 1
(s - a)d1

 and g2(s) = n2(s)u2(s) 1
(s - a)d2

 . If g1(s) and g2(s) are coprime in

��M '(s) ∩ ��pr(s) then n1(s) and n2(s) are coprime in ��s  and either d1 = d (n1(s)) or d2 = d (n2(s)).

Proof.- Suppose that n1(s) and n2(s) are not coprime in ��s . Then there exists a non-constant

n(s) ∈ ��s  such that n(s) ∣ n1(s) and n(s) ∣ n2(s). Let d = d (n(s)). Then g(s) = n(s) 1
(s - a)d  is not a

unit in ��M '(s) ∩ ��pr(s) and divides g1(s) and g2(s) because 0 = d - d (n(s)) ≤ d1 - d (n1(s)) and
0 = d - d (n(s)) ≤ d2 - d (n2(s)). This is impossible, so n1(s) and n2(s) must be coprime.

Now suppose that d1 > d (n1(s)) and d2 > d (n2(s)). Let d = min {d1 - d (n1(s)), d2 - d (n2(s))}. We

have that d > 0. Thus g(s) = 1
(s - a)d  is not a unit in ��M '(s) ∩ ��pr(s) and divides g1(s) and g2(s)

because d ≤ d1 - d (n1(s)) and d ≤ d2 - d (n2(s)). This is again impossible and either d1 = d (n1(s))
or d2 = d (n2(s)).

The above lemmas yield a characterization of coprimeness of elements in ��M '(s) ∩ ��pr(s) when

M ' excludes at least one ideal generated by a linear polynomial.

Following the same steps as in p. 11[12] and p. 271[11] we get the following result.

Lemma 9 Let M ' ⊆ Specm(��s ) and assume that there is at least an ideal in Specm(��s ) ∖M '

generated by a linear polynomial. Then ��M '(s) ∩ ��pr(s) is a Euclidean domain.

The following examples show that if all ideals generated by polynomials of degree one are
in M ', the ring ��M '(s) ∩ ��pr(s) may not be a Bezout domain. Thus, it may not be a Euclidean
domain. Even more, it may not be a greatest common divisor domain.

Example 10 Let ��= ℝ and M ' = Specm(ℝ s ) ∖ {(s 2 + 1)}. Let

g1(s) = s 2

s 2 + 1 , g2(s) = s
s 2 + 1 ∈ ℝM '(s) ∩ ℝ pr(s). We have seen, in the previous example, that

g1(s), g2(s) are coprime. We show now that the Bezout identity is not fulfilled, that is, there
are not a(s), b(s) ∈ ℝM '(s) ∩ ℝ pr(s) such that a(s)g1(s) + b(s)g2(s) = u(s), with u(s) a unit in

ℝM '(s) ∩ ℝ pr(s). Elements in ℝM '(s) ∩ ℝ pr(s) are of the form n(s)
(s 2 + 1)d  with n(s) relatively

prime with s 2 + 1 and 2d ≥ d (n(s)) and the units in ℝM '(s) ∩ ℝ pr(s) are non-zero constants.

We will see that there are not elements a(s) = n(s)
(s 2 + 1)d , b(s) = n '(s)

(s 2 + 1)d '  with n(s) and n '(s) co‐

prime with s 2 + 1, 2d ≥ d (n(s)) and 2d ' ≥ d (n '(s)) such that a(s)g1(s) + b(s)g2(s) = c, with c non-

zero constant. Assume that n(s)
(s 2 + 1)d

s 2

s 2 + 1 + n '(s)

(s 2 + 1)d '
s

s 2 + 1 = c. We conclude that c(s 2 + 1)d +1 or

c(s 2 + 1)d '+1 is a multiple of s, which is impossible.
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Example 11 Let ��= ℝ and M ' = Specm(ℝ s ) ∖ {(s 2 + 1)}. A fraction

g(s) = n(s)
(s 2 + 1)d ∈ ℝM '(s) ∩ ℝ pr(s) if and only if 2d - d (n(s)) ≥ 0. Let

g1(s) = s 2

(s 2 + 1)3 , g2(s) = s(s + 1)
(s 2 + 1)4 ∈ ℝM '(s) ∩ ℝ pr(s). By Lemma ▭:

• g(s) ∣ g1(s) ⇔ n(s) ∣ s 2 and 0 ≤ 2d - d (n(s)) ≤ 6 - 2 = 4

• g(s) ∣ g2(s) ⇔ n(s) ∣ s(s + 1) and 0 ≤ 2d - d (n(s)) ≤ 8 - 2 = 6.

If n(s) ∣ s 2 and n(s) ∣ s(s + 1) then n(s) = c or n(s) = cs with c a non-zero constant. Then
g(s) ∣ g1(s) and g(s) ∣ g2(s) if and only if n(s) = c and d ≤ 2 or n(s) = cs and 2d ≤ 5. So, the list
of common divisors of g1(s) and g2(s) is:

{c,
c

s 2 + 1
,

c
(s 2 + 1)2 ,

cs
s 2 + 1

,
cs

(s 2 + 1)2 : c ∈ ��, c ≠ 0}. (id42)

If there would be a greatest common divisor, say n(s)
(s 2 + 1)d , then n(s) = cs because n(s) must be

a multiple of c and cs. Thus such a greatest common divisor should be either cs
s 2 + 1  or

cs
(s 2 + 1)2 , but c

(s 2 + 1)2  does not divide neither of them because

4 = δ( c
(s 2 + 1)2 ) - d (c) > max{δ( cs

s 2 + 1 ) - d (cs), δ( cs
(s 2 + 1)2 ) - d (cs)} = 3. (id43)

Thus, g1(s) and g2(s) do not have greatest common divisor.

3.1. Smith–McMillan form

A matrix U (s) is invertible in ��M '(s)m×m ∩ ��pr(s)m×m if U (s) ∈ ��M '(s)m×m ∩ ��pr(s)m×m and its deter‐

minant is a unit in both rings, ��M '(s) and ��pr(s), i.e., U (s) ∈ Glm(��M '(s) ∩ ��pr(s)) if and only if

U (s) ∈ Glm(��M '(s)) ∩ Glm(��pr(s)).

Two matrices G1(s), G2(s) ∈ ��M '(s)m×m ∩ ��pr(s)m×m are equivalent in ��M '(s) ∩ ��pr(s) if there exist

U1(s), U2(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m such that

G2(s) = U1(s)G1(s)U2(s). (id45)

If there are ideals in Specm(��s ) ∖M ' generated by linear polynomials then ��M '(s) ∩ ��pr(s) is an

Euclidean ring and any matrix with elements in ��M '(s) ∩ ��pr(s) admits a Smith normal form
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(see [10], [11] or [12]). Bearing in mind the characterization of divisibility in ��M '(s) ∩ ��pr(s) giv‐
en in Lemma ▭ we have

Theorem 12 (Smith normal form in ��M '(s) ∩ ��pr(s)) Let M ' ⊆ Specm(��s ). Assume that there are

ideals in Specm(��s ) ∖M ' generated by linear polynomials and let (s - a) be one of them. Let
G(s) ∈ ��M '(s)m×m ∩ ��pr(s)m×m be non-singular. Then there exist U1(s), U2(s) invertible in

��M '(s)m×m ∩ ��pr(s)m×m such that

G(s) = U1(s)Diag(n1(s) 1
(s - a)d1

, ..., nm(s) 1
(s - a)dm )U2(s) (id47)

with n1(s) | ⋯ | nm(s) monic polynomials factorizing in M ' and d1, ..., dm integers such that
0 ≤ d1 - d (n1(s)) ≤ ⋯ ≤ dm - d (nm(s)).

Under the hypothesis of the last theorem n1(s) 1
(s - a)d1

, ..., nm(s) 1
(s - a)dm

 form a complete sys‐

tem of invariants for the equivalence in ��M '(s) ∩ ��pr(s) and are called the invariant rational

functions of G(s) in ��M '(s) ∩ ��pr(s). Notice that 0 ≤ d1 ≤ ⋯ ≤ dm because ni(s) divides ni+1(s).

Recall that the field of fractions of ��M '(s) ∩ ��pr(s) is ��(s) when M ' ≠ Specm(��s ). Thus we can talk

about equivalence of matrix rational functions. Two rational matrices T1(s), T2(s) ∈ ��(s)m×m

are equivalent in ��M '(s) ∩ ��pr(s) if there are U1(s), U2(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m such
that

T2(s) = U1(s)T1(s)U2(s). (id48)

When all ideals generated by linear polynomials are not in M ', each rational matrix admits a
reduction to Smith–McMillan form with respect to ��M '(s) ∩ ��pr(s).

Theorem 13 (Smith–McMillan form in ��M '(s) ∩ ��pr(s)) Let M ' ⊆ Specm(��s ). Assume that there

are ideals in Specm(��s ) ∖M ' generated by linear polynomials and let (s - a) be any of them.
Let T (s) ∈ ��(s)m×m be a non-singular matrix. Then there exist U1(s), U2(s) invertible in

��M '(s)m×m ∩ ��pr(s)m×m such that

T (s) = U1(s)Diag( �1(s)
(s - a)n1

ψ1(s)

(s - a)d1

, ...,

�m(s)
(s - a)nm

ψm(s)

(s - a)dm

)U2(s) (id50)
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with 
�i(s)

(s - a)ni
,

ψi(s)

(s - a)di
∈ ��M '(s) ∩ ��pr(s) coprime for all i such that �i(s), ψi(s) are monic polyno‐

mials factorizing in M ', 
�i(s)

(s - a)ni
 divides 

�i+1(s)

(s - a)ni +1
 for i = 1, ..., m - 1 while 

ψi(s)

(s - a)di
 divides 

ψi -1(s)

(s - a)di -1

for i = 2, ..., m.

The elements 

�i (s )

(s - a)
ni

ψi
(s )

(s - a)
di

 of the diagonal matrix, satisfying the conditions of the previous theo‐

rem, constitute a complete system of invariant for the equivalence in ��M '(s) ∩ ��pr(s) of rational
matrices. However, this system of invariants is not minimal. A smaller one can be obtained
by substituting each pair of positive integers (ni, di) by its difference li = ni - di.

Theorem 14 Under the conditions of Theorem ▭, 
�i(s)

ψi(s)
1

(s - a)li
 with �i(s), ψi(s) monic and co‐

prime polynomials factorizing in M ', �i(s) ∣ �i+1(s) while ψi(s) ∣ ψi-1(s) and l1, ..., lm integers
such that l1 + d (ψ1(s)) - d (�1(s)) ≤ ⋯ ≤ lm + d (ψm(s)) - d (�m(s)) also constitute a complete system
of invariants for the equivalence in ��M '(s) ∩ ��pr(s).

Proof.- We only have to show that from the system 
�i(s)

ψi(s)
1

(s - a)li
, i = 1, ..., m, satisfying the

conditions of Theorem ▭, the system 

�i (s )

(s - a)
ni

ψi
(s )

(s - a)
di

, i = 1, ..., n, can be constructed satisfying the

conditions of Theorem ▭.

Suppose that �i(s), ψi(s) are monic and coprime polynomials factorizing in M ' such that
�i(s) ∣ �i+1(s) and ψi(s) ∣ ψi-1(s). And suppose also that l1, ..., lm are integers such that
l1 + d (ψ1(s)) - d (�1(s)) ≤ ⋯ ≤ lm + d (ψm(s)) - d (�m(s)). If li + d (ψi(s)) - d (�i(s)) ≤ 0 for all i, we define
non-negative integers ni = d (�i(s)) and di = d (�i(s)) - li for i = 1, ..., m. If li + d (ψi(s)) - d (�i(s)) > 0
for all i, we define ni = li + d (ψi(s)) and di = d (ψi(s)). Otherwise there is an index
k ∈ {2, ..., m} such that

lk -1 + d (ψk -1(s)) - d (�k -1(s)) ≤ 0 < lk + d (ψk (s)) - d (�k (s)). (id52)

Define now the non-negative integers ni, di as follows:

ni = {d (�i(s)) if i < k
li + d (ψi(s)) if i ≥ k

di = {d (�i(s)) - li if i < k
d (ψi(s)) if i ≥ k

(id53)

Notice that li = ni - di. Moreover,
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ni - d (�i(s)) = {0 if i < k
li + d (ψi(s)) - d (�i(s)) if i ≥ k

(id54)

di - d (ψi(s)) = {-li - d (ψi(s)) + d (�i(s)) if i < k
0 if i ≥ k

(id55)

and using (▭), (▭)

n1 - d (�1(s)) = ⋯ = nk -1 - d (�k -1(s)) = 0 < nk - d (�k (s)) ≤ ⋯ ≤ nm - d (�m(s)) (id56)

d1 - d (ψ1(s)) ≥ ⋯ ≥ dk -1 - d (ψk -1(s)) ≥ 0 = dk - d (ψk (s)) = ⋯ = dm - d (ψm(s)). (id57)

In any case 
�i(s)

(s - a)ni
 and 

ψi(s)

(s - a)di
 are elements of ��M '(s) ∩ ��pr(s). Now, on the one hand �i(s), ψi(s)

are coprime and ni - d (�i(s)) = 0 or di - d (ψi(s)) = 0. This means (Lemma ▭) that 
�i(s)

(s - a)ni
,

ψi(s)

(s - a)di

are coprime for all i. On the other hand �i(s) ∣ �i+1(s) and 0 ≤ ni - d (�i(s)) ≤ ni+1 - d (�i+1(s)). Then

(Lemma ▭) 
�i(s)

(s - a)ni
 divides 

�i+1(s)

(s - a)ni +1
. Similarly, since ψi(s) ∣ ψi-1(s) and

0 ≤ di - d (ψi(s)) ≤ di-1 - d (ψi-1(s)), it follows that 
ψi(s)

(s - a)di
 divides 

ψi -1(s)

(s - a)di -1
.

We call 
�i(s)

ψi(s)
1

(s - a)li
, i = 1, ..., m, the invariant rational functions of T (s) in ��M '(s) ∩ ��pr(s).

There is a particular case worth considering: If M ' = ∅ then ��∅(s) ∩ ��pr(s) = ��pr(s) and
(s) ∈ Specm(��s ) ∖M ' = Specm(��s ). In this case, we obtain the invariant rational functions of
T (s) at infinity (recall (▭)).

4. Wiener–Hopf equivalence

The left Wiener–Hopf equivalence of rational matrices with respect to a closed contour in
the complex plane has been extensively studied ([5] or [6]). Now we present the generaliza‐
tion to arbitrary fields ([13]).

Definition 15 Let M  and M ' be subsets of Specm(��s ) such that M ∪ M ' = Specm(��s ). Let
T1(s), T2(s) ∈ ��(s)m×m be two non-singular rational matrices with no zeros and no poles in

M ∩ M '. The matrices T1(s), T2(s) are said to be left Wiener–Hopf equivalent with respect to
(M , M ') if there exist both U1(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m and U2(s) invertible in

��M (s)m×m such that
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T2(s) = U1(s)T1(s)U2(s). (id59)

This is, in fact, an equivalence relation as it is easily seen. It would be an equivalence rela‐
tion even if no condition about the union and intersection of M  and M ' were imposed. It
will be seen later on that these conditions are natural assumptions for the existence of
unique diagonal representatives in each class.

The right Wiener–Hopf equivalence with respect to (M , M ') is defined in a similar manner:
There are invertible matrices U1(s) in ��M '(s)m×m ∩ ��pr(s)m×m and U2(s) in ��M (s)m×m such that

T2(s) = U2(s)T1(s)U1(s). (id60)

In the following only the left Wiener–Hopf equivalence will be considered, but, by transpo‐
sition, all results hold for the right Wiener–Hopf equivalence as well.

The aim of this section is to obtain a complete system of invariants for the Wiener–Hopf
equivalence with respect to (M , M ') of rational matrices, and to obtain, if possible, a canoni‐
cal form.

There is a particular case that is worth-considering: If M = Specm(��s ) and M ' = ∅, the in‐
vertible matrices in ��∅(s)m×m ∩ ��pr(s)m×m are the biproper matrices and the invertible matrices
in ��Specm(��s )(s)m×m are the unimodular matrices. In this case, the left Wiener–Hopf equiva‐

lence with respect to (M , M ') = (Specm(��s ), ∅) is the so-called left Wiener–Hopf equiva‐
lence at infinity (see [14]). It is known that any non-singular rational matrix is left Wiener–
Hopf equivalent at infinity to a diagonal matrix Diag(s g1, ..., s gm) where g1, ..., gm are inte‐

gers, that is, for any non-singular T (s) ∈ ��(s)m×m there exist both a biproper matrix
B(s) ∈ Glm(��pr(s)) and a unimodular matrix U (s) ∈ Glm(��s ) such that

T (s) = B(s)Diag(s g1, ..., s gm)U (s) (id61)

where g1 ≥ ⋯ ≥ gm are integers uniquely determined by T (s). They are called the left Wie‐
ner–Hopf factorization indices at infinity and form a complete system of invariants for the
left Wiener–Hopf equivalence at infinity. These are the basic objects that will produce the
complete system of invariants for the left Wiener–Hopf equivalence with respect to (M , M ').

For polynomial matrices, their left Wiener–Hopf factorization indices at infinity are the col‐
umn degrees of any right equivalent (by a unimodular matrix) column proper matrix.
Namely, a polynomial matrix is column proper if it can be written as
PcDiag(s g1, ..., s gm) + L (s) with Pc ∈ ��m×m non-singular, g1, ..., gm non-negative integers and
L (s) a polynomial matrix such that the degree of the ith column of L (s) smaller than gi,

1 ≤ i ≤ m. Let P(s) ∈ ��s m×m be non-singular polynomial. There exists a unimodular matrix
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V (s) ∈ ��s m×m such that P(s)V (s) is column proper. The column degrees of P(s)V (s) are
uniquely determined by P(s), although V (s) is not (see [14], p. 388[15], [16]). Since P(s)V (s)
is column proper, it can be written as P(s)V (s) = PcD(s) + L (s) with Pc non-singular,

D(s) = Diag(s g1, ..., s gm) and the degree of the ith column of L (s) smaller than gi, 1 ≤ i ≤ m.

Then P(s)V (s) = (Pc + L (s)D(s)-1)D(s). Put B(s) = Pc + L (s)D(s)-1. Since Pc is non-singular

and L (s)D(s)-1 is a strictly proper matrix, B(s) is biproper, and P(s) = B(s)D(s)U (s) where
U (s) = V (s)-1.

The left Wiener–Hopf factorization indices at infinity can be used to associate a sequence of
integers with every non-singular rational matrix and every M ⊆ Specm(��s ). This is done as
follows: If T (s) ∈ ��(s)m×m then it can always be written as T (s) = TL (s)TR(s) such that the
global invariant rational functions of TL (s) factorize in M  and TR(s) ∈ Glm(��M (s)) or, equiva‐
lently, the global invariant rational functions of TR(s) factorize in Specm(��s ) ∖M  (see Propo‐
sition ▭). There may be many factorizations of this type, but it turns out (see Proposition
3.2[4] for the polynomial case) that the left factors in all of them are right equivalent. This
means that if T (s) = T L 1(s)T R1(s) = T L 2(s)T R2(s) with the global invariant rational functions
of T L 1(s) and T L 2(s) factorizing in M  and the global invariant rational functions of T R1(s)

and T R2(s) factorizing in Specm(��s ) ∖M  then there is a unimodular matrix U (s) such that
T L 1(s) = T L 2(s)U (s). In particular, T L 1(s) and T L 2(s) have the same left Wiener–Hopf fac‐
torization indices at infinity. Thus the following definition makes sense:

Definition 16 Let T (s) ∈ ��(s)m×m be a non-singular rational matrix and M ⊆ Specm(��s ). Let
TL (s), TR(s) ∈ ��(s)m×m such that

i)ii)iii)

• T (s) = TL (s)TR(s),

• the global invariant rational functions of TL (s) factorize in M , and

• the global invariant rational functions of TR(s) factorize in Specm(��s ) ∖M .

Then the left Wiener–Hopf factorization indices of T (s) with respect to M  are defined to be
the left Wiener–Hopf factorization indices of TL (s) at infinity.

In the particular case that M = Specm(��s ), we can put TL (s) = T (s) and TR(s) = Im. There‐
fore, the left Wiener–Hopf factorization indices of T (s) with respect to Specm(��s ) are the left
Wiener–Hopf factorization indices of T (s) at infinity.

We prove now that the left Wiener–Hopf equivalence with respect to (M , M ') can be charac‐
terized through the left Wiener–Hopf factorization indices with respect to M .

Theorem 17 Let M , M ' ⊆ Specm(��s ) be such that M ∪ M ' = Specm(��s ). Let T1(s),

T2(s) ∈ ��(s)m×m be two non-singular rational matrices with no zeros and no poles in M ∩ M '.
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The matrices T1(s) and T2(s) are left Wiener–Hopf equivalent with respect to (M , M ') if and
only if T1(s) and T2(s) have the same left Wiener–Hopf factorization indices with respect to
M .

Proof.- By Proposition ▭ we can write T1(s) = T L 1(s)T R1(s), T2(s) = T L 2(s)T R2(s) with the

global invariant rational functions of T L 1(s) and of T L 2(s) factorizing in M ∖M ' (recall that

T1(s) and T2(s) have no zeros and no poles in M ∩ M ') and the global invariant rational

functions of T R1(s) and of T R2(s) factorizing in M ' ∖M .

Assume that T1(s),  T2(s) have the same left Wiener–Hopf factorization indices with respect
to M . By definition, T1(s) and T2(s) have the same left Wiener–Hopf factorization indices
with respect to M  if T L 1(s) and T L 2(s) have the same left Wiener–Hopf factorization indi‐
ces at infinity. This means that there exist matrices B(s) ∈ Glm(��pr(s)) and U (s) ∈ Glm(��s )
such that T L 2(s) = B(s)T L 1(s)U (s). We have that

T2(s) = T L 2(s)T R2(s) = B(s)T L 1(s)U (s)T R2(s) = B(s)T1(s)(T R1(s)-1U (s)T R2(s)). We aim to

prove that B(s) = T L 2(s)U (s)-1T L 1(s)-1 is invertible in ��M '(s)m×m and

T R1(s)-1U (s)T R2(s) ∈ Glm(��M (s)). Since the global invariant rational functions of T L 2(s) and

T L 1(s) factorize in M ∖M ', T L 2(s), T L 1(s) ∈ ��M '(s)m×m and B(s) ∈ ��M '(s)m×m. Moreover,

det B(s) is a unit in ��M '(s)m×m as desired. Now, T R1(s)-1U (s)T R2(s) ∈ Glm(��M (s)) because

T R1(s), T R2(s) ∈ ��M (s)m×m and det T R1(s) and det T R2(s) factorize in M ' ∖M . Therefore T1(s)

and T2(s) are left Wiener–Hopf equivalent with respect to (M , M ').

Conversely, let U1(s) ∈ Glm(��M '(s)) ∩ Glm(��pr(s)) and U2(s) ∈ Glm(��M (s)) such that
T1(s) = U1(s)T2(s)U2(s). Hence, T1(s) = T L 1(s)T R1(s) = U1(s)T L 2(s)T R2(s)U2(s). Put
T̄ L 2(s) = U1(s)T L 2(s) and T̄ R2(s) = T R2(s)U2(s). Therefore,

(i)(ii)(iii)

• T1(s) = T L 1(s)T R1(s) = T̄ L 2(s)T̄ R2(s),

• the global invariant rational functions of T L 1(s) and of T̄ L 2(s) factorize in M , and

• the global invariant rational functions of T R1(s) and of T̄ R2(s) factorize in Specm(��s ) ∖M .

Then T L 1(s) and T̄ L 2(s) are right equivalent (see the remark previous to Definition ▭). So,
there exists U (s) ∈ Glm(��s ) such that T L 1(s) = T̄ L 2(s)U (s). Thus, T L 1(s) = U1(s)T L 2(s)U (s).
Since U1(s) is biproper and U (s) is unimodular T L 1(s), T L 2(s) have the same left Wiener–
Hopf factorization indices at infinity. Consequentially, T1(s) and T2(s) have the same left
Wiener–Hopf factorization indices with respect to M .

In conclusion, for non-singular rational matrices with no zeros and no poles in M ∩ M ' the
left Wiener–Hopf factorization indices with respect to M  form a complete system of invari‐
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ants for the left Wiener–Hopf equivalence with respect to (M , M ') with
M ∪ M ' = Specm(��s ).
A straightforward consequence of the above theorem is the following Corollary

Corollary 18 Let M , M ' ⊆ Specm(��s ) be such that M ∪ M ' = Specm(��s ). Let T1(s),

T2(s) ∈ ��(s)m×m be non-singular with no zeros and no poles in M ∩ M '. Then T1(s) and T2(s)

are left Wiener–Hopf equivalent with respect to (M , M ') if and only if for any factorizations
T1(s) = T L 1(s)T R1(s) and T2(s) = T L 2(s)T R2(s) satisfying the conditions (i)–(iii) of Definition
▭, T L 1(s) and T L 2(s) are left Wiener–Hopf equivalent at infinity.

Next we deal with the problem of factorizing or reducing a rational matrix to diagonal form
by Wiener–Hopf equivalence. It will be shown that if there exists in M  an ideal generated by
a monic irreducible polynomial of degree equal to 1 which is not in M ', then any non-singu‐
lar rational matrix, with no zeros and no poles in M ∩ M ' admits a factorization with respect
to (M , M '). Afterwards, some examples will be given in which these conditions on M  and
M ' are removed and factorization fails to exist.

Theorem 19 Let M , M ' ⊆ Specm(��s ) be such that M ∪ M ' = Specm(��s ). Assume that there
are ideals in M ∖M ' generated by linear polynomials. Let (s - a) be any of them and
T (s) ∈ ��(s)m×m a non-singular matrix with no zeros and no poles in M ∩ M '. There exist both
U1(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m and U2(s) invertible in ��M (s)m×m such that

T (s) = U1(s)Diag((s - a)k1, ..., (s - a)km)U2(s), (id72)

where k1 ≥ ⋯ ≥ km are integers uniquely determined by T (s). Moreover, they are the left
Wiener–Hopf factorization indices of T (s) with respect to M .

Proof.- The matrix T (s) can be written (see Proposition ▭) as T (s) = TL (s)TR(s) with the

global invariant rational functions of TL (s) factorizing in M ∖M ' and the global invariant

rational functions of TR(s) factorizing in Specm(��s ) ∖M = M ' ∖M . As k1, ..., km are the left
Wiener–Hopf factorization indices of TL (s) at infinity, there exist matrices U (s) ∈ Glm(��s )

and B(s) ∈ Glm(��pr(s)) such that TL (s) = B(s)D1(s)U (s) with D1(s) = Diag(s k1, ..., s km). Put

D(s) = Diag((s - a)k1, ..., (s - a)km) and U1(s) = B(s)Diag( s
k1

(s - a)k1
, ..., s

km

(s - a)km
). Then

TL (s) = U1(s)D(s)U (s). If U2(s) = U (s)TR(s) then this matrix is invertible in ��M (s)m×m and

T (s) = U1(s)Diag((s - a)k1, ..., (s - a)km)U2(s). We only have to prove that U1(s) is invertible in

��M '(s)m×m ∩ ��pr(s)m×m. It is clear that U1(s) is in ��pr(s)m×m and biproper. Moreover, the global in‐

variant rational functions of TL (s) U1(s) = TL (s)(D(s)U (s))-1 factorize in M ∖M '. Therefore,

U1(s) is invertible in ��M '(s)m×m.
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We prove now the uniqueness of the factorization. Assume that T (s) also factorizes as

T (s) = Ũ 1(s)Diag((s - a)k̃ 1, ..., (s - a)k̃ m)Ũ 2(s), (id73)

with k̃ 1 ≥ ⋯ ≥ k̃ m integers. Then,

Diag((s - a)k̃ 1, ..., (s - a)k̃ m) = Ũ 1(s)-1U1(s)Diag((s - a)k1, ..., (s - a)km)U2(s)Ũ 2(s)-1. (id74)

The diagonal matrices have no zeros and no poles in M ∩ M ' (because (s - a) ∈ M ∖M ') and
they are left Wiener–Hopf equivalent with respect to (M , M '). By Theorem ▭, they have the
same left Wiener–Hopf factorization indices with respect to M . Thus, k̃ i = ki for all
i = 1, ..., m.

Following [5] we could call left Wiener–Hopf factorization indices with respect to (M , M ')
the exponents k1 ≥ ⋯ ≥ km appearing in the diagonal matrix of Theorem ▭. They are, actual‐
ly, the left Wiener–Hopf factorization indices with respect to M .

Several examples follow that exhibit some remarkable features about the results that have
been proved so far. The first two examples show that if no assumption is made on the inter‐
section and/or union of M  and M ' then existence and/or uniqueness of diagonal factoriza‐
tion may fail to exist.

Example 20

If P(s) is a polynomial matrix with zeros in M ∩ M ' then the existence of invertible matrices
U1(s) ∈ Glm(��M '(s)) ∩ Glm(��pr(s)) and U2(s) ∈ Glm(��M (s)) such that

P(s) = U1(s)Diag((s - a)k1, ..., (s - a)km)U2(s) with (s - a) ∈ M ∖M ' may fail. In fact, suppose

that M = {(s), (s + 1)}, M ' = Specm��s ∖ {(s)}. Therefore, M ∩ M ' = {(s + 1)} and (s) ∈ M ∖M '.
Consider p1(s) = s + 1. Assume that s + 1 = u1(s)s ku2(s) with u1(s) a unit in ��M '(s) ∩ ��pr(s) and

u2(s) a unit in ��M (s). Thus, u1(s) = c a nonzero constant and u2(s) = 1
c

s + 1
s k  which is not a unit in

��M (s).

Example 21

If M ∪ M ' ≠ Specm��s  then the factorization indices with respect to (M , M ') may be not
unique. Suppose that (β(s)) ∉ M ∪ M ', (π(s)) ∈ M ∖M ' with d (π(s)) = 1 and
p(s) = u1(s)π(s)ku2(s), with u1(s) a unit in ��M '(s) ∩ ��pr(s) and u2(s) a unit in ��M (s). Then p(s) can

also be factorized as p(s) = ũ1(s)π(s)k -d (β(s))ũ2(s) with ũ1(s) = u1(s) π(s)d (β(s ))

β(s)  a unit in
��M '(s) ∩ ��pr(s) and ũ2(s) = β(s)u2(s) a unit in ��M (s).

The following example shows that if all ideals generated by polynomials of degree equal to
one are in M ' ∖M  then a factorization as in Theorem ▭ may not exist.
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Example 22 Suppose that ��= ℝ. Consider M = {(s 2 + 1)} ⊆ Specm(ℝ s ) and
M ' = Specm(ℝ s ) ∖ {(s 2 + 1)}. Let

P(s) =
s 0

-s 2 (s 2 + 1)2 . (id78)

Notice that P(s) has no zeros and no poles in M ∩ M ' = ∅. We will see that it is not possible
to find invertible matrices U1(s) ∈ ℝM '(s)2×2 ∩ ℝ pr(s)2×2 and U2(s) ∈ ℝM (s)2×2 such that

U1(s)P(s)U2(s) = Diag((p(s) / q(s))c1, (p(s) / q(s))c2). (id79)

We can write p(s)
q(s) = u(s)(s 2 + 1)a with u(s) a unit in ℝM (s) and a ∈ ℤ. Therefore,

Diag((p(s) / q(s))c1, (p(s) / q(s))c2) = Diag((s 2 + 1)ac1, (s 2 + 1)ac2)Diag(u(s)c1, u(s)c2). (id80)

Diag(u(s)c1, u(s)c2) is invertible in ℝM (s)2×2 and P(s) is also left Wiener–Hopf equivalent with

respect to (M , M ') to the diagonal matrix Diag((s 2 + 1)ac1, (s 2 + 1)ac2).
Assume that there exist invertible matrices U1(s) ∈ ℝM '(s)2×2 ∩ ℝ pr(s)2×2 and

U2(s) ∈ ℝM (s)2×2 such that U1(s)P(s)U2(s) = Diag((s 2 + 1)d1, (s 2 + 1)d2), with d1 ≥ d2 integers.

Notice first that det U1(s) is a nonzero constant and since det P(s) = s(s 2 + 1)2 and det U2(s)

is a rational function with numerator and denominator relatively prime with s 2 + 1, it fol‐

lows that cs(s 2 + 1)2 det U2(s) = (s 2 + 1)d1+d2. Thus, d1 + d2 = 2. Let

U1(s)-1 =
b11(s) b12(s)

b21(s) b22(s) , U2(s) =
u11(s) u12(s)

u21(s) u22(s) . (id81)

From P(s)U2(s) = U1(s)-1Diag((s 2 + 1)d1, (s 2 + 1)d2) we get

su11(s) = b11(s)(s 2 + 1)d1, (id82)

-s 2u11(s) + (s 2 + 1)2u21(s) = b21(s)(s 2 + 1)d1, (id83)

su12(s) = b12(s)(s 2 + 1)d2, (id84)
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-s 2u12(s) + (s 2 + 1)2u22(s) = b22(s)(s 2 + 1)d2. (id85)

As u11(s) ∈ ℝM (s) and b11(s) ∈ ℝM '(s) ∩ ℝ pr(s), we can write u11(s) =
f 1(s)
g1(s)  and b11(s) =

h 1(s)

(s 2 + 1)q1

with f 1(s), g1(s), h 1(s) ∈ ℝ s , gcd (g1(s), s 2 + 1) = 1 and d (h 1(s)) ≤ 2q1. Therefore, by (▭),

s
f 1(s)
g1(s) =

h 1(s)

(s 2 + 1)q1
(s 2 + 1)d1. Hence, u11(s) = f 1(s) or u11(s) =

f 1(s)
s . In the same way and using (▭),

u12(s) = f 2(s) or u12(s) =
f 2(s)

s  with f 2(s) a polynomial. Moreover, by (▭), d2 must be non-neg‐
ative. Hence, d1 ≥ d2 ≥ 0. Using now (▭) and (▭) and bearing in mind again that
u21(s), u22(s) ∈ ℝM (s) and b21(s), b22(s) ∈ ℝM '(s) ∩ ℝ pr(s), we conclude that u21(s) and u22(s)

are polynomials.

We can distinguish two cases: d1 = 2, d2 = 0 and d1 = d2 = 1. If d1 = 2 and d2 = 0, by (▭), b12(s) is

a polynomial and since b12(s) is proper, it is constant: b12(s) = c1. Thus u12(s) =
c1

s . By (▭),

b22(s) = - c1s + (s 2 + 1)2u22(s). Since u22(s) is polynomial and b22(s) is proper, b22(s) is also con‐
stant and then u22(s) = 0 and c1 = 0. Consequentially, b22(s) = 0, and b12(s) = 0. This is impossi‐
ble because U1(s) is invertible.

If d1 = d2 = 1 then , using (▭),

b21(s) = -s 2u11(s) + (s 2 + 1)2u21(s)

s 2 + 1
=

-s 2
b11(s)

s (s 2 + 1) + (s 2 + 1)2u21(s)

s 2 + 1

= -sb11(s) + (s 2 + 1)u21(s) = - s
h 1(s)

(s 2 + 1)q1
+ (s 2 + 1)u21(s)

=
-sh 1(s) + (s 2 + 1)q1+1u21(s)

(s 2 + 1)q1
.

(id86)

Notice that d ( - sh 1(s)) ≤ 1 + 2q1 and d ((s 2 + 1)q1+1u21(s)) = 2(q1 + 1) + d (u21(s)) ≥ 2q1 + 2 unless

u21(s) = 0. Hence, if u21(s) ≠ 0, d ( - sh 1(s) + (s 2 + 1)q1+1u21(s)) ≥ 2q1 + 2 which is greater than

d ((s 2 + 1)q1) = 2q1. This cannot happen because b21(s) is proper. Thus, u21(s) = 0. In the same
way and reasoning with (▭) we get that u22(s) is also zero. This is again impossible because
U2(s) is invertible. Therefore no left Wiener–Hopf factorization of P(s) with respect to
(M , M ') exits.

We end this section with an example where the left Wiener–Hopf factorization indices of the
matrix polynomial in the previous example are computed. Then an ideal generated by a pol‐
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ynomial of degree 1 is added to M  and the Wiener–Hopf factorization indices of the same
matrix are obtained in two different cases.

Example 23 Let ��= ℝ and M = {(s 2 + 1)}. Consider the matrix

P(s) =
s 0

-s 2 (s 2 + 1)2 , (id88)

which has a zero at 0. It can be written as P(s) = P1(s)P2(s) with

P1(s) =
1 0
-s (s 2 + 1)2 , P2(s) =

s 0
0 1 , (id89)

where the global invariant factors of P1(s) are powers of s 2 + 1 and the global invariant fac‐

tors of P2(s) are relatively prime with s 2 + 1. Moreover, the left Wiener–Hopf factorization

indices of P1(s) at infinity are 3, 1 (add the first column multiplied by s 3 + 2s to the second
column; the result is a column proper matrix with column degrees 1 and 3). Therefore, the
left Wiener–Hopf factorization indices of P(s) with respect to M  are 3, 1.

Consider now M̃ = {(s 2 + 1), (s)} and M̃ ' = Specm(ℝ s ) ∖ M̃ . There is a unimodular matrix

U (s) =
1 s 2 + 2
0 1

, invertible in ℝM̃ (s)2×2, such that P(s)U (s) =
s s 3 + 2s

-s 2 1
 is column proper

with column degrees 3 and 2. We can write

P(s)U (s) =
0 1
-1 0

s 2 0
0 s 3 +

s 2s
0 1 = B(s)

s 2 0
0 s 3 , (id90)

where B(s) is the following biproper matrix

B(s) =
0 1
-1 0 +

s 2s
0 1

s -2 0
0 s -3 =

1
s

s 2 + 2
s 2

-1
1
s 3

. (id91)

Moreover, the denominators of its entries are powers of s and det B(s) =
(s 2 + 1)2

s 4 . Therefore,

B(s) is invertible in ℝM̃ '(s)2×2 ∩ ℝ pr(s)2×2. Since B(s)-1P(s)U (s) = Diag(s 2, s 3), the left Wiener–
Hopf factorization indices of P(s) with respect to M̃  are 3, 2.

If M̃ = {(s 2 + 1), (s - 1)}, for example, a similar procedure shows that P(s) has 3, 1 as left Wie‐
ner–Hopf factorization indices with respect to M̃ ; the same indices as with respect to M . The
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reason is that s - 1 is not a divisor of det P(s) and so P(s) = P1(s)P2(s) with P1(s) and P2(s) as
in (▭) and P1(s) factorizing in M̃ .

Remark 24 It must be noticed that a procedure has been given to compute, at least theoreti‐
cally, the left Wiener–Hopf factorization indices of any rational matrix with respect to any
subset M  of Specm(��s ). In fact, given a rational matrix T (s) and M , write T (s) = TL (s)TR(s)
with the global invariant rational functions of TL (s) factorizing in M , and the global invari‐
ant rational functions of TR(s) factorizing in Specm(��s ) ∖M  (for example, using the global
Smith–McMillan form of T (s)). We need to compute the left Wiener–Hopf factorization indi‐
ces at infinity of the rational matrix TL (s). The idea is as follows: Let d (s) be the monic least
common denominator of all the elements of TL (s). The matrix TL (s) can be written as

TL (s) = P (s)
d (s) , with P(s) polynomial. The left Wiener–Hopf factorization indices of P(s) at in‐

finity are the column degrees of any column proper matrix right equivalent to P(s). If
k1, ..., km are the left Wiener–Hopf factorization indices at infinity of P(s) then
k1 + d , ..., km + d  are the left Wiener–Hopf factorization indices of TL (s), where d = d (d (s))
(see [4]). Free and commercial software exists that compute such column degrees.

5. Rosenbrock's Theorem via local rings

As said in the Introduction, Rosenbrock's Theorem ([1]) on pole assignment by state feed‐
back provides, in its polynomial formulation, a complete characterization of the relationship
between the invariant factors and the left Wiener–Hopf factorization indices at infinity of
any non-singular matrix polynomial. The precise statement of this result is the following
theorem:

Theorem 25 Let g1 ≥ ⋯ ≥ gm and α1(s) ∣ ⋯ ∣ αm(s) be non-negative integers and monic pol‐

ynomials, respectively. Then there exists a non-singular matrix P(s) ∈ ��s m×m with
α1(s), ..., αm(s) as invariant factors and g1, ..., gm as left Wiener–Hopf factorization indices at
infinity if and only if the following relation holds:

(g1, ..., gm) ≺ (d (αm(s)), ..., d (α1(s))). (id94)

Symbol ≺  appearing in (▭) is the majorization symbol (see [17]) and it is defined as fol‐
lows: If (a1, ..., am) and (b1, ..., bm) are two finite sequences of real numbers and
a

1
≥ ⋯ ≥ a

m
 and b

1
≥ ⋯ ≥ b

m
 are the given sequences arranged in non-increasing or‐

der then (a1, ..., am) ≺ (b1, ..., bm) if

∑
i=1

j
a

i
≤ ∑

i=1

j
b

i
, 1 ≤ j ≤ m - 1 (id95)
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with equality for j = m.

The above Theorem ▭ can be extended to cover rational matrix functions. Any rational ma‐

trix T (s) can be written as N (s)
d (s)  where d (s) is the monic least common denominator of all the

elements of T (s) and N (s) is polynomial. It turns out that the invariant rational functions of
T (s) are the invariant factors of N (s) divided by d (s) after canceling common factors. We al‐
so have the following characterization of the left Wiener– Hopf factorization indices at infin‐
ity of T (s): these are those of N (s) plus the degree of d (s) (see [4]). Bearing all this in mind
one can easily prove (see [4])

Theorem 26 Let g1 ≥ ⋯ ≥ gm be integers and 
α1(s)
β1(s) , ...,

αm(s)
βm(s)  irreducible rational functions,

where αi(s), βi(s) ∈ ��s  are monic such that α1(s) ∣ ⋯ ∣ αm(s) while βm(s) ∣ ⋯ ∣ β1(s). Then

there exists a non-singular rational matrix T (s) ∈ ��(s)m×m with g1, ..., gm as left Wiener–Hopf

factorization indices at infinity and 
α1(s)
β1(s) , ...,

αm(s)
βm(s)  as global invariant rational functions if

and only if

(g1, ..., gm) ≺ (d (αm(s)) - d (βm(s)), ..., d (α1(s)) - d (β1(s))). (id97)

Recall that for M ⊆ Specm(��s ) any rational matrix T (s) can be factorized into two matrices
(see Proposition ▭) such that the global invariant rational functions and the left Wiener–
Hopf factorization indices at infinity of the left factor of T (s) give the invariant rational func‐
tions and the left Wiener–Hopf factorization indices of T (s) with respect to M . Using Theo‐
rem ▭ on the left factor of T (s) we get:

Theorem 27 Let M ⊆ Specm(��s ). Let k1 ≥ ⋯ ≥ km be integers and 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  be irreduci‐

ble rational functions such that �1(s) ∣ ⋯ ∣ �m(s), ψm(s) ∣ ⋯ ∣ ψ1(s) are monic polynomials fac‐

torizing in M . Then there exists a non-singular matrix T (s) ∈ ��(s)m×m with 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  as
invariant rational functions with respect to M  and k1, ..., km as left Wiener–Hopf factoriza‐
tion indices with respect to M  if and only if

(k1, ..., km) ≺ (d (�m(s)) - d (ψm(s)), ..., d (�1(s)) - d (ψ1(s))). (id99)

Theorem ▭ relates the left Wiener–Hopf factorization indices with respect to M  and the fi‐
nite structure inside M . Our last result will relate the left Wiener–Hopf factorization indices
with respect to M  and the structure outside M , including that at infinity. The next Theorem
is an extension of Rosenbrock's Theorem to the point at infinity, which was proved in [4]:

Theorem 28 Let g1 ≥ ⋯ ≥ gm and q1 ≥ ⋯ ≥ qm be integers. Then there exists a non-singular

matrix T (s) ∈ ��(s)m×m with g1, ..., gm as left Wiener–Hopf factorization indices at infinity and

s q1, ..., s qm as invariant rational functions at infinity if and only if
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(g1, ..., gm) ≺ (q1, ..., qm). (id101)

Notice that Theorem ▭ can be obtained from Theorem ▭ when M = Specm(��s ). In the same
way, taking into account that the equivalence at infinity is a particular case of the equiva‐
lence in ��M '(s) ∩ ��pr(s) when M ' = ∅, we can give a more general result than that of Theorem
▭. Specifically, necessary and sufficient conditions can be provided for the existence of a
non-singular rational matrix with prescribed left Wiener–Hopf factorization indices with re‐
spect to M  and invariant rational functions in ��M '(s) ∩ ��pr(s).

Theorem 29 Let M , M ' ⊆ Specm(��s ) be such that M ∪ M ' = Specm(��s ). Assume that there
are ideals in M ∖M ' generated by linear polynomials and let (s - a) be any of them. Let

k1 ≥ ⋯ ≥ km be integers, 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  irreducible rational functions such that

�1(s) | ⋯ | �m(s), ψm(s) | ⋯ | ψ1(s) are monic polynomials factorizing in M ' ∖M  and
l1, ..., lm integers such that l1 + d (ψ1(s)) - d (�1(s)) ≤ ⋯ ≤ lm + d (ψm(s)) - d (�m(s)). Then there ex‐

ists a non-singular matrix T (s) ∈ ��(s)m×m with no zeros and no poles in M ∩ M ' with
k1, ..., km as left Wiener–Hopf factorization indices with respect to M  and

�1(s)
ψ1(s)

1
(s - a)l1

, ...,
�m(s)

ψm(s)
1

(s - a)lm
 as invariant rational functions in ��M '(s) ∩ ��pr(s) if and only if the fol‐

lowing condition holds:

(k1, ..., km) ≺ ( - l1, ..., - lm). (id103)

The proof of this theorem will be given along the following two subsections. We will use
several auxiliary results that will be stated and proved when needed.

5.1. Necessity

We can give the following result for rational matrices using a similar result given in Lemma
4.2 in [18] for matrix polynomials.

Lemma 30 Let M , M ' ⊆ Specm(��s ) be such that M ∪ M ' = Specm(��s ). Let T (s) ∈ ��(s)m×m be
a non-singular matrix with no zeros and no poles in M ∩ M ' with g1 ≥ ⋯ ≥ gm as left Wie‐
ner–Hopf factorization indices at infinity and k1 ≥ ⋯ ≥ km as left Wiener–Hopf factorization

indices with respect to M . If 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  are the invariant rational functions of T (s) with

respect to M ' then

(g1 - k1, ..., gm - km) ≺ (d (�m(s)) - d (ψm(s)), ..., d (�1(s)) - d (ψ1(s))). (id106)

It must be pointed out that (g1 - k1, ..., gm - km) may be an unordered m-tuple.
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Proof.- By Proposition ▭ there exist unimodular matrices U (s), V (s) ∈ ��s m×m such that

T (s) = U (s)Diag( α1(s)
β1(s) , ...,

αm(s)
βm(s) )Diag( �1(s)

ψ1(s) , ...,
�m(s)

ψm(s) )V (s) (id107)

with αi(s) ∣ αi+1(s), βi(s) ∣ βi-1(s), �i(s) ∣ �i+1(s), ψi(s) ∣ ψi-1(s), αi(s), βi(s) units in ��M '∖M (s) and

�i(s), ψi(s) factorizing in M ' ∖M  because T (s) has no poles and no zeros in M ∩ M '. Therefore

T (s) = TL (s)TR(s), where TL (s) = U (s)Diag( α1(s)
β1(s) , ...,

αm(s)
βm(s) ) has k1, ..., km as left Wiener–

Hopf factorization indices at infinity and TR(s) = Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )V (s) has 

�1(s)
ψ1(s) , ...,

�m(s)
ψm(s)

as global invariant rational functions. Let d (s) = β1(s)ψ1(s). Hence,

d (s)T (s) = U (s)Diag(ᾱ1(s), ..., ᾱm(s))Diag(�̄1(s), ..., �̄m(s))V (s) (id108)

with ᾱ i(s) =
αi(s)
βi(s) β1(s) units in ��M '∖M (s) and �̄i(s) =

�i(s)
ψi(s) ψ1(s) factorizing in M ' ∖M . Put

P(s) = d (s)T (s). Its left Wiener–Hopf factorization indices at infinity are
g1 + d (d (s)), ..., gm + d (d (s)) Lemma 2.3[4]. The matrix

P1(s) = U (s)Diag(ᾱ1(s), ..., ᾱm(s)) = β1(s)TL (s) has k1 + d (β1(s)), ..., km + d (β1(s)) as left Wie‐

ner–Hopf factorization indices at infinity. Now if P2(s) = Diag(�̄1(s), ..., �̄m(s))V (s) = ψ1(s)TR(s)

then its invariant factors are �̄1(s), ..., �̄m(s), P(s) = P1(s)P2(s) and, by Lemma 4.2[18],

(g1 + d (d (s)) - k1 - d (β1(s)), ..., gm + d (d (s)) - km - d (β1(s))) ≺ (d (�̄m(s)), ..., d (�̄1(s))). (id109)

Therefore, (▭) follows.

5.1.1. Proof of Theorem : Necessity

If 
�1(s)

ψ1(s)
1

(s - a)l1
, ...,

�m(s)
ψm(s)

1
(s - a)lm

 are the invariant rational functions of T (s) in ��M '(s) ∩ ��pr(s) then

there exist matrices U1(s), U2(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m such that

T (s) = U1(s)Diag( �1(s)
ψ1(s)

1
(s - a)l1

, ...,
�m(s)

ψm(s)
1

(s - a)lm )U2(s). (id111)

We analyze first the finite structure of T (s) with respect to M '. If D1(s) = Diag((s - a)-l1,

..., (s - a)-lm) ∈ ��M '(s)m×m, we can write T (s) as follows:
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T (s) = U1(s)Diag( �1(s)
ψ1(s) , ...,

�m(s)
ψm(s) )D1(s)U2(s), (id112)

with U1(s) and D1(s)U2(s) invertible matrices in ��M '(s)m×m. Thus 
�1(s)

ψ1(s) , ...,  
�m(s)

ψm(s)  are the invari‐

ant rational functions of T (s) with respect to M '. Let g1 ≥ ⋯ ≥ gm be the left Wiener–Hopf

factorization indices of T (s) at infinity. By Lemma ▭ we have

(g1 - k1, ..., gm - km) ≺ (d (�m(s)) - d (ψm(s)), ..., d (�1(s)) - d (ψ1(s))). (id113)

As far as the structure of T (s) at infinity is concerned, let

D2(s) = Diag( �1(s)
ψ1(s)

s l1+d (ψ1(s))-d (�1(s))

(s - a)l1
, ...,

�m(s)
ψm(s)

s lm+d (ψm(s))-d (�m(s))

(s - a)lm
). (id114)

Then D2(s) ∈ Gl(��pr(s)) and

T (s) = U1(s)Diag(s -l1-d (ψ1(s))+d (�1(s)), ..., s -lm-d (ψm(s))+d (�m(s)))D2(s)U2(s) (id115)

where U1(s) ∈ ��pr(s)m×m and D2(s)U2(s) ∈ ��pr(s)m×m are biproper matrices. Therefore

s -l1-d (ψ1(s))+d (�1(s)),  ...,  s -lm-d (ψm(s))+d (�m(s)) are the invariant rational functions of T (s) at infinity. By
Theorem ▭

(g1, ..., gm) ≺ ( - l1 - d (ψ1(s)) + d (�1(s)), ..., - lm - d (ψm(s)) + d (�m(s))). (id116)

Let σ ∈ Σm (the symmetric group of order m) be a permutation such that

gσ(1) - kσ(1) ≥ ⋯ ≥ gσ(m) - kσ(m) and define ci = gσ(i) - kσ(i), i = 1, ..., m. Using (▭) and (▭) we ob‐

tain

∑
j=1

r
kj + ∑

j=1

r (d (�j(s)) - d (ψj(s))) ≤ ∑
j=1

r
kj + ∑

j=m-r+1

m
cj

≤ ∑
j=1

r
kj + ∑

j=1

r
(gj - kj) = ∑

j=1

r
gj

≤ ∑
j=1

r
- lj + ∑

j=1

r (d (�j(s)) - d (ψj(s)))

(id117)

for r = 1, ..., m - 1. When r = m the previous inequalities are all equalities and condition (▭)
is satisfied.
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Remark 31 It has been seen in the above proof that if a matrix has 
�1(s)

ψ1(s)
1

(s - a)l1
, ...,

�m(s)
ψm(s)

1
(s - a)lm

as invariant rational functions in ��M '(s) ∩ ��pr(s) then 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  are its invariant rational

functions with respect to M ' and s -l1-d (ψ1(s))+d (�1(s)),  ...,  s -lm-d (ψm(s))+d (�m(s)) are its invariant ration‐
al functions at infinity.

5.2. Sufficiency

Let a, b ∈ �� be arbitrary elements such that ab ≠ 1. Consider the changes of indeterminate

f (s) = a +
1

s - b , f̃ (s) = b +
1

s - a (id120)

and notice that f ( f̃ (s)) = f̃ ( f (s)) = s. For α(s) ∈ ��s , let ��s ∖ (α(s)) denote the multiplicative
subset of ��s  whose elements are coprime with α(s). For a, b ∈ �� as above define

ta,b : ��s → ��s ∖ (s - b)

π(s) ↦ (s - b)d (π(s))π(a +
1

s - b ) = (s - b)d (π(s))π( f (s)) .
(id121)

In words, if π(s) = pd (s - a)d + pd -1(s - a)d -1 + ⋯ + p1(s - a) + p0 (pd ≠ 0) then

ta,b(π(s)) = p0(s - b)d + p1(s - b)d -1 + ⋯ + pd -1(s - b) + pd . (id122)

In general d (ta,b(π(s))) ≤ d (π(s)) with equality if and only if π(s) ∈ ��s ∖ (s - a). This shows
that the restriction h a,b : ��s ∖ (s - a) → ��s ∖ (s - b) of ta,b to ��s ∖ (s - a) is a bijection. In addition

h a,b
-1 is the restriction of tb,a to ��s ∖ (s - b); i.e.,

h a,b
-1 : ��s ∖ (s - b) → ��s ∖ (s - a)

α(s) ↦ (s - a)d (α(s))α(b +
1

s - a ) = (s - a)d (α(s))α( f̃ (s))
(id123)

or h a,b
-1 = h b,a.

In what follows we will think of a, b as given elements of  and the subindices of ta,b, h a,b and

h a,b
-1 will be removed. The following are properties of h  (and h -1) that can be easily proved.

Lemma 32 Let π1(s), π2(s) ∈ ��s ∖ (s - a). The following properties hold:

• h (π1(s)π2(s)) = h (π1(s))h (π2(s)).
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• If π1(s) ∣ π2(s) then h (π1(s)) ∣ h (π2(s)).

• If π1(s) is an irreducible polynomial then h (π1(s)) is an irreducible polynomial.

• If π1(s), π2(s) are coprime polynomials then h (π1(s)), h (π2(s)) are coprime polynomials.

As a consequence the map

H : Specm(��s ) ∖ {(s - a)} → Specm(��s ) ∖ {(s - b)}

(π(s)) ↦ ( 1
p0

h (π(s))) (id129)

with p0 = π(a), is a bijection whose inverse is

H -1 : Specm(��s ) ∖ {(s - b)} → Specm(��s ) ∖ {(s - a)}

(α(s)) ↦ ( 1
a0

h -1(α(s))) (id130)

where a0 = α(b). In particular, if M ' ⊆ Specm(��s ) ∖ {(s - a)} and

M̃ = Specm(��s ) ∖ (M ' ∪ {(s - a)}) (i.e. the complementary subset of M ' in Specm(��s ) ∖ {(s - a)})
then

H (M̃ ) = Specm(��s ) ∖ (H (M ') ∪ {(s - b)}). (id131)

In what follows and for notational simplicity we will assume b = 0.

Lemma 33 Let M ' ⊆ Specm(��s ) ∖ {(s - a)} where a ∈ �� is an arbitrary element of .

• If π(s) ∈ ��s  factorizes in M ' then h (π(s)) factorizes in H (M ').

• If π(s) ∈ ��s  is a unit of ��M '(s) then t(π(s)) is a unit of ��H (M ')(s).

Proof.- 1. Let π(s) = cπ1(s)g1 ⋯ πm(s)gm with c ≠ 0 constant, (πi(s)) ∈ M ' and gi ≥ 1. Then

h (π(s)) = c(h (π1(s)))g1 ⋯ (h (πm(s)))gm. By Lemma ▭ h (πi(s)) is an irreducible polynomial (that

may not be monic). If ci is the leading coefficient of h (πi(s)) then 1
ci

h (πi(s)) is monic, irredu‐

cible and ( 1
ci

h (πi(s))) ∈ H (M '). Hence h (π(s)) factorizes in H (M ').

2. If π(s) ∈ ��s  is a unit of ��M '(s) then it can be written as π(s) = (s - a)gπ1(s) where g ≥ 0 and

π1(s) is a unit of ��M '∪{(s-a)}(s). Therefore π1(s) factorizes in Specm(��s ) ∖ (M ' ∪ {(s - a)}). Since
t(π(s)) = h (π1(s)), it factorizes in (recall that we are assuming b = 0)

H (Specm(��s ) ∖ (M ' ∪ {(s - a)}) = Specm(��s ) ∖ (H (M ') ∪ {(s)}). So, t(π(s)) is a unit of ��H (M ')(s).
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Lemma 34 Let a ∈ �� be an arbitrary element. Then

• If M ' ⊆ Specm(��s ) ∖ {(s - a)} and U (s) ∈ Glm(��M '(s)) then U ( f (s)) ∈ Glm(��H (M ')(s)).
• If U (s) ∈ Glm(��s-a(s)) then U ( f (s)) ∈ Glm(��pr(s)).

• If U (s) ∈ Glm(��pr(s)) then U ( f (s)) ∈ Glm(��s(s)).

• If (s - a) ∈ M ' ⊆ Specm(��s ) and U (s) ∈ Glm(��M '(s)) then the matrix U ( f (s)) ∈
Glm(��H (M '∖{(s-a)})(s)) ∩ Glm(��pr(s))

Proof.- Let p(s)
q(s)  with p(s), q(s) ∈ ��s .

p( f (s))
q( f (s)) =

s d ( p(s))p( f (s))
s d (q(s))q( f (s)) s d (q(s))-d ( p(s)) =

t(p(s))
t(q(s)) s d (q(s))-d ( p(s)). (id140)

1. Assume that U (s) ∈ Glm(��M '(s)) and let p(s)
q(s)  be any element of U (s). Therefore q(s) is a unit

of ��M '(s) and, by Lemma ▭.2, t(q(s)) is a unit of ��H (M ')(s). Moreover, s is also a unit of ��H (M ')(s).

Hence, p( f (s))
q( f (s)) ∈ ��H (M ')(s). Furthermore, if det U (s) = p̃(s)

q̃(s) , it is a unit of ��M '(s) and

det U ( f (s)) = p̃( f (s))
q̃( f (s))  is a unit of ��H (M ')(s).

2. If p(s)
q(s)  is any element of U (s) ∈ Glm(��s-a(s)) then q(s) ∈ ��s ∖ (s - a) and so

d (h (q(s))) = d (q(s)). Since s - a may divide p(s) we have that d (t(p(s))) ≤ d (p(s)). Hence,

d (h (q(s))) - d (q(s)) ≥ d (t(p(s)) - d (p(s)) and p( f (s))
q( f (s)) = t ( p(s))

h (q(s)) s d (q(s))-d ( p(s)) ∈ ��pr(s). Moreover if

det U (s) = p̃(s)
q̃(s)  then p̃(s), q̃(s) ∈ ��s ∖ (s - a), d (h ( p̃(s))) = d ( p̃(s)) and d (h (q̃(s))) = d (q̃(s)).

Thus, det U ( f (s)) = h ( p̃(s))
h (q̃(s)) s d (q̃(s))-d ( p̃(s)) is a biproper rational function, i.e., a unit of ��pr(s).

3. If U (s) ∈ Glm(��pr(s)) and p(s)
q(s)  is any element of U (s) then d (q(s)) ≥ d (p(s)). Since

p( f (s))
q( f (s)) = t ( p(s))

t (q(s)) s d (q(s))-d ( p(s)) and t(p(s)), t(q(s)) ∈ ��s ∖ (s) we obtain that U ( f (s)) ∈ ��s(s)m×m. In

addition, if det U (s) = p̃(s)
q̃(s) , which is a unit of ��pr(s), then d (q̃(s)) = d ( p̃(s)) and since

t( p̃(s)), t(q̃(s)) ∈ ��s ∖ (s) we conclude that det U ( f (s)) = t ( p̃(s))
t (q̃(s))  is a unit of ��s(s).

4. It is a consequence of 1., 2. and Remark ▭.2.

Proposition 35 Let M ⊆ Specm(��s ) and (s - a) ∈ M . If T (s) ∈ ��(s)m×m is non-singular with
ni(s)
di(s) = (s - a)gi �i(s)

ψi(s)  (�i(s), ψi(s) ∈ ��s ∖ (s - a)) as invariant rational functions with respect to M

then T ( f (s))T ∈ ��(s)m×m is a non-singular matrix with 1
ci

h (�i(s))
h (ψi(s)) s -gi+d (ψi(s))-d (�i(s)) as invariant ra‐

tional functions in ��H (M ∖{(s-a)})(s)m×m ∩ ��pr(s)m×m where ci =
�i(a)

ψi(a) .
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Proof.- Since (s - a)gi �i(s)
ψ(s)  are the invariant rational functions of T (s) with respect to M , there

are U1(s), U2(s) ∈ Glm(��M (s)) such that

T (s) = U1(s)Diag((s - a)g1
�1(s)

ψ1(s) , ..., (s - a)gm
�m(s)

ψm(s) )U2(s). (id142)

Notice that ( f (s) - a)gi �i( f (s))
ψi( f (s)) =

h (�i(s))
h (ψi(s)) s -gi+d (ψi(s))-d (�i(s)). Let ci =

�i(a)
ψi(a) , which is a non-zero con‐

stant, and put D = Diag(c1, ..., cm). Hence,

T ( f (s))T = U2( f (s))T DL (s)U1( f (s))T (id143)

with

L (s) = Diag( 1
c1

h (�1(s))
h (ψ1(s)) s -g1+d (ψ1(s))-d (�1(s)), ...,

1
cm

h (�m(s))
h (ψm(s)) s -gm+d (ψm(s))-d (�m(s))). (id144)

By 4 of Lemma ▭ matrices U1( f (s))T , U2( f (s))T ∈ Glm(��H (M ∖{(s-a)})(s)) ∩ Glm(��pr(s)) and the

Proposition follows.

Proposition 36 Let M , M ' ⊆ Specm(��s ) such that M ∪ M ' = Specm(��s ). Assume that there

are ideals in M ∖M ' generated by linear polynomials and let (s - a) be any of them. If

T (s) ∈ ��(s)m×m is a non-singular rational matrix with no poles and no zeros in M ∩ M ' and

k1, ..., km as left Wiener–Hopf factorization indices with respect to M  then T ( f (s))T ∈ ��(s)m×m

is a non-singular rational matrix with no poles and no zeros in H (M ∩ M ') and -km, ..., - k1

as left Wiener–Hopf factorization indices with respect to H (M ') ∪ {(s)}.

Proof.- By Theorem ▭ there are matrices U1(s) invertible in ��M '(s)m×m ∩ ��pr(s)m×m and U2(s)

invertible in ��M (s)m×m such that T (s) = U1(s)Diag((s - a)k1, ..., (s - a)km)U2(s). By Lemma ▭

U2( f (s))T  is invertible in ��H (M ∖{(s-a)})(s)m×m ∩ ��pr(s)m×m and U1( f (s))T  is invertible in

��H (M ')(s)m×m ∩ ��s(s)m×m = ��H (M ')∪{(s)}(s)m×m. Moreover,

H (M ∖ {(s - a)}) ∪ H (M ') ∪ {(s)} = Specm(��s ) and

H (M ∖ {(s - a)}) ∩ (H (M ') ∪ {(s)}) = H (M ∩ M '). Thus,

T ( f (s))T = U2( f (s))T Diag(s -k1, ..., s -km)U1( f (s))T  has no poles and no zeros in H (M ∩ M ')

and -km, ..., - k1 are its left Wiener–Hopf factorization indices with respect to H (M ') ∪ {(s)}.
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5.2.1. Proof of Theorem : Sufficiency

Let k1 ≥ ⋯ ≥ km be integers, 
�1(s)

ψ1(s) , ...,
�m(s)

ψm(s)  irreducible rational functions such that

�1(s) ∣ ⋯ ∣ �m(s), ψm(s) ∣ ⋯ ∣ ψ1(s) are monic polynomials factorizing in M ' ∖M  and l1, ..., lm
integers such that l1 + d (ψ1(s)) - d (�1(s)) ≤ ⋯ ≤ lm + d (ψm(s)) - d (�m(s)) and satisfying (▭).

Since �i(s) and ψi(s) are coprime polynomials that factorize in M ' ∖M  and (s - a) ∈ M ∖M ',

by Lemmas ▭ and ▭, 
h (�1(s))

h (ψ1(s)) s l1+d (ψ1(s))-d (�1(s)),  ...,
h (�m(s))

h (ψm(s)) s lm+d (ψm(s))-d (�m(s)) are irreducible ration‐

al functions with numerators and denominators polynomials factorizing in H (M ') ∪ {(s)}

(actually, in H (M ' ∖M ) ∪ {(s)}) and such that each numerator divides the next one and each
denominator divides the previous one.

By (▭) and Theorem ▭ there is a matrix G(s) ∈ ��(s)m×m with -km, ..., - k1 as left Wiener–Hopf

factorization indices with respect to H (M ') ∪ {(s)} and 1
c1

h (�1(s))
h (ψ1(s)) s l1+d (ψ1(s))-d (�1(s)),  ...,

1
cm

h (�m(s))
h (ψm(s)) s lm+d (ψm(s))-d (�m(s)) as invariant rational functions with respect to H (M ') ∪ {(s)} where

ci =
�i(a)

ψi(a) , i = 1, ..., m. Notice that G(s) has no zeros and poles in H (M ∩ M ') because the nu‐

merator and denominator of each rational function 
h (�i(s))

h (ψi(s)) s li+d (ψi(s))-d (�i(s)) factorizes in

H (M ' ∖M ) ∪ {(s)} and so it is a unit of ��H (M ∩M ')(s).

Put M̂ = H (M ') ∪ {(s)} and M̂ ' = H (M ∖ {(s - a)}). As remarked in the proof of Proposition ▭,

M̂ ∪ M̂ ' = Specm(��s ) and M̂ ∩ M̂ ' = H (M ∩ M '). Now (s) ∈ M̂  so that we can apply Propo‐

sition ▭ to G(s) with the change of indeterminate f̃ (s) = 1
s - a . Thus the invariant rational

functions of G( f̃ (s))T  in ��M '(s) ∩ ��pr(s) are 
�1(s)

ψ1(s)
1

(s - a)l1
, ...,

�m(s)
ψm(s)

1
(s - a)lm

.

On the other hand M̂ ' = H (M ∖ {(s - a)}) ⊆ Specm(��s ) ∖ {(s)} and so (s) ∈ M̂ ∖ M̂ '. Then we

can apply Proposition ▭ to G(s) with f̃ (s) = 1
s - a  so that G( f̃ (s))T  is a non-singular matrix

with no poles and no zeros in H -1(M̂ ∩ M̂ ') = H -1(H (M ∩ M ')) = M ∩ M ' and k1, ..., km as

left Wiener–Hopf factorization indices with respect to

H -1(M̂ ') ∪ {(s - a)} = (M ∖ {(s - a)}) ∪ {(s - a)} = M . The theorem follows by letting

T (s) = G( f̃ (s))T .

Remark 37 Notice that when M ' = ∅ and M = Specm(��s ) in Theorem ▭ we obtain Theorem
▭ (qi = - li).
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