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1. Introduction

The upcoming of digital video has caused a technological revolution that has changed

audiovisual communication in several ways. The digital format, in its essence, is appropriate

to computational processing. As a consequence, it has a huge impact in the cinema and

television industries. Nowadays, with advances experimented in Internet and wireless

networking, digital video has been consolidated as a new and important media. For example,

the Skype application relies in this kind of media in order to allow partners that are distant far

away communicate to each other.

Current generation of digital video brings revolutionary aspects as the incorporation of new

data types in the media. Depth information is certainly one data type that is typically

natural, inserted in digital videos in order to provide more realism. That is, the insertion

of depth agrees with human perceptual system and also makes easier the scene analysis

using computers, mainly if the goal is to extract high-level information. In this way,

three-dimensional video (or simply 3D video) comes up, used to reproduce images in

movement with the third dimension sensation or to recreate a dynamic scene visualization

with other viewpoints besides the one that the movie has been filmed. 3D videos that allow

the scene visualization from new viewpoints can be constructed using an image or model

based approach. These type of 3D videos are known as free-viewpoint video, or so-called

FVV, and 3D videos providing depth perception are so-called 3DV or stereoscopic videos.

So, in the scope of this text, the main characteristic of a 3D video is that it captures the

dynamics and movement of the scene during the filming, offering to the user the possibility

to change the point of view during the exhibition, beyond supplying the three-dimensional

model of visualized objects. Automatic construction of three-dimensional photo-realistic

models of a scene is important in applications such as interactive visualization of environment

©2012 Rocha and Gonçalves,licensee InTech. This is an open access chapter distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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2 Stereo Vision

or objects that are remotely located, for example. One could provide a modification of

a real scene for virtual reality tasks. Other applications of 3D video are in Archeology,

Oceanography, Historic and Cultural Sites, Arts, Education and Entertainment.

In general, an end-to-end 3D video system pipeline consists of the following stages:

capture system setup, 3D reconstruction, 3D representation, coding, transmission, decoding,

rendenring and 3D display. They can be classified in four main blocks: 3D Content Creation

(capture and 3D recontruction stages), 3D Representation, Delivery (coding, transmission and

decoding stages) and Visualization (rendering and 3D display stages).

In this text, we provide an extensive literature review on 3D Content Creation, 3D

Representation and Visualization blocks of the 3D video pipeline. The Delivery block

regarding coding, transmission and decoding techniques is not in the scope of this text.

It is mainly intended for applications involving some network channels, such as, internet

applications and 3D TV.

3D videos are one of the most active research topics and other reviews have already been

proposed [63, 66, 74].

The chapter is organized as follows. Section 2 explains the pipeline of 3D videos from

capture to display. As part of the 3D Content Creation block, we discuss acquisition

systems and 3D reconstructions techniques in Section 3. Section 4 presents the most popular

3D representations formats in the context of 3DV and FVV. The Visualization block, with

rendering and 3D display stages, is discussed in Section 5. Finally, Section 6 concludes the

chapter.

2. Pipeline of 3D video systems

3D videos are now a huge success due to the release of Avatar film in 2010. Besides its use in

cinemas, applications that require some sort of 3D video transmission, such as internet and

3D TV is also receiving attention. 3D TV, for example, is a reality and the first 3D commercial

channels are available.

For such sort of applications, an end-to-end 3D video system is subdivided into four main

blocks: 3D Content Creation, 3D Representation, Delivery and Visualization (see Fig. 1).

Figure 1. Pipeline of an end-to-end 3D video system.

The 3D Content Creation block (Fig. 2) is responsible for providing the data used to create the

3D video. The process starts at the Capture stage (Subsec. 3.1) with the choice of equipments

that will be used to capture the scene and process data. Examples of devices for scene capture

are 3D scanners, time-of-flight (TOF) sensors and digital cameras. The latter is the most widely

used for capturing dynamic scenes, sometimes combined with other sensors. Other necessary

equipments are computers, disks, grabber cards, etc. Projectors are also used in some systems
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to improve the quality of captured data. The number of cameras in a setting varies and it

depends on the application, as well as, its costs. For example, in literature we can find systems

with more than 50 cameras [28] and also systems composed by only one camera and one

projector [81].

After capture stage the data is sent to post-processing where low-level algorithms are applied

to correct and improve data accuracy. For example, algorithms for color correction, correction

of lens distortion and keystone distortion, camera calibration, features extraction and tracking,

image rectification and alignment are within this stage. For explanations on these algorithms,

we refer the reader to any Computer Vision book, such as the one in [75].

The processed data is sent to the 3D Reconstruction stage. The 3D reconstruction problem

refers to the recovering of scene geometry, i.e., the 3D coordinates of objects that compose

the scene. This stage is responsible for creating the data that will be used within

the 3D video representation. Common techniques performed for geometry recovery are

structure-from-stereo, shape-from-silhouette, structure-from-motion, shape-from-focus and

defocus, as well as, shape-from-shading. In Subsection 3.2 we will discuss structure from

stereo, structure from motion and shape from silhoettes techniques in the context of 3DV

and FVV. Structure-from-stereo methods are the most popular in 3D videos literature and

have been investigated by the MPEG group for standardization. Another research line on 3D

reconstruction fuses data obtained from digital cameras and ToF sensors [29, 89].

A review of dynamic scenes capture can be found in [72].

Figure 2. 3D Content Creation block. Sensors capture the scene and the acquired data is processed by
low-level algorithms in Post-Processing stage. 3D reconstruction method is applied in order to create
data that will be used by the 3D representation.

At the 3D Representation stage (Section 4) a format is chosen to store data from the 3D

Content Creation block. There are a variety of 3D representation schemes in literature [64].

Its choice depends on the target application and capture devices. They can be classified

in image-based (Subsec. 4.1), geometry-based (Subsec. 4.2) and a representation based on

depth maps (Subsec. 4.3), which combines image and geometry aspects [63]. Geometry-based

formats represent data as we know from Computer Graphics. They offer a full navigation of

the scene or object, but it has realistic rendering issues due to errors in reconstruction step.
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On the other hand, image-based formats avoid the explicit 3D reconstruction of the scene and

provides a more realistic visualization. Depth-maps formats are more suitable for 3DV and

FVV coding and has been investigated for standardization by the MPEG group.

Figure 3. Categorization of 3D Representation formats.

The Delivey block is responsible for 3D video coding, transmission and decoding. Usually, it

is necessary in applications with some type of network, such as Internet and 3D TV. Moreover,

coding and decoding of 3D videos are important for development of storage media, e.g.,

Blu-ray discs. These are not in the scope of this text. We refer the reader interested in coding

of 3D videos to the works in [64, 65, 80]. Readers interested in transmission and also storage

of 3D videos are refered to references [22, 57]. A discussion about technologies to deliver 3D

content to mobile devices can be found in [20].

The last building block of a 3D video system is the most important to the end user, because

it deals with Visualization of the 3D content. It comprises Rendering stage and 3D Displays

(Fig. 4). The Rendering stage 5.1 is responsible for employing algorithms to render the data

stored at the representation format. The main focus is the view synthesis methods. They are

necessary for free view point functionality and autoestereoscopic displays. More than others

stages, this one is in charge of providing a realistic view of 3D dynamic scenes. Of course, its

performance depends on several factors, such as the accuracy of the reconstructed data and

data loss during transmission. In a 3D TV scenario it also depends on the receiver processing

capability.

Figure 4. Visualization

3D Displays (Subsec. 5.2) are responsible for depth perception of stereoscopic videos. Also,

for free-viewpoint videos they have to be able to provide means of interaction with the

visualized content. 3D displays technologies are in constant development since 3D media

became more accessible to home user. Specialists in consumer electronics predict that in 2015
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more than 30% of all high-definition panels at home will be equipped with 3D capabilities.

Stereoscopic videos technologies are mature and a huge success in cinemas, but there is room

for improvement, specially regarding 3D displays. Stereoscopic displays are the most popular

3D display in the market, but in order to provide depth perception they require the use of

uncomfortable glasses. To overcome this limitation, researches on autostereoscopic displays

are under development. Autostereoscopic displays allow depth perception and FVV with no

requirement of eyewear. Other types of 3D displays are holography and integral imaging.

We refer readers interested in advances in holography and integral imaging to references [51]

and [7], respectively.

3. 3D content creation

3.1. Capture

There are a variety of technologies for digitally acquiring the geometry of a 3D object. The

choice of the acquisition setup strongly depends on the application, and of course, its costs.

Digital cameras, 3D laser scanners and time-of-flight (TOF) sensors are the most popular

devices for geometry and color acquisition.

An important laser scanner system has been presented in [55]. It utilizes a laser triangulation

scanner and a high-resolution color camera to scan the 5m tall Davi, a sculpture of

Michelangelo. Structured light scanners settings are composed by a projector and one or

more cameras [3, 73]. In these systems a pattern is projected onto the object surface in order

to improve the quality of the captured 3D object coordinates. In reference [9] the authors

propose the scanning of 3D objects using a ToF camera. All systems cited above capture 3D

information of static scenes. Figure 5 shows the simple acquisition setup utilized to capture

the geometry of Parthenon sculptures [73].

Figure 5. Simple structured light scanner consisting of a digital camera, a projector and a tripod used
in [73] and, on the right, a sculpture model obtained after 14 scans.

For dynamic scenes the most used devices are digital cameras. Systems with one or two

cameras can be found in literature. For example, in reference [52] scene structure and motion
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are retrieved using a hand-held camera and a real-time 3D system with a high-definition

camera and a projector is presented in [81]. However, most settings utilize several digital

cameras as in [26], for example. The concept of 3D video bricks was introduced in [82]. One 3D

video brick is composed by a projector, two black-and-white cameras and a high-definition

color camera. The complete setting comprises multiple 3D video bricks.

Cameras can be arranged in a parallel or convergent setup (see Figure 6). One of the

pioneering projects in this area is presented in reference [26]. The 3D Dome Studio uses 51

cameras mounted on a 5m diameter dome and applies stereo techniques to reconstruct the

shape of a moving object. The same techniques have been used in a circular setup with more

than 30 cameras to shoot a football game. All cameras are sinchronized and pointing to the

same target from different angles. The set of captured multi-view images are processed and

a 3D model is reconstructed. In reference [6], 7 cameras where placed in a convergent fixed

setup pointing to the center of the scene. Cameras are synchronized and calibrated. The main

goal is the reconstruction and rendering of human bodys from any viewpoint and estimate

its motion parameters. Another curved setting can be found in [40] where 12 cameras where

placed at the ceiling, around the scene.

An example of parallel setup can be seen in [58]. It uses six consumer quality Fire-Wire video

cameras aligned in two rows. Cameras where partitioned in stereo pairs, and every stereo pair

is connected to one PC for stereo processing. The 3D system in [76] captures dynamic events

with several cameras displaced in sequence and generates novel views with interpolation

methods. Another example of parallel camera arrangement can be seen in [43].

Figure 6. Example of convergent setup with 51 cameras proposed in [26] (left) and a parallel one with 16
cameras in [43] (right).

All studio settings shown above use controled illumination to facilitate reconstruction

processes. As a consequence, studio setups rigorously restricts the type of observed scene.

In [8] authors use auto-exposure and gain changes compensation in order to capture outdoor

scenes which has a large variation in illumination. The setup is portable and can be hold in

a backpack or vehicle mount. It consists of a GPS, an inertial sensor and an omnidirectional

camera, with six cameras within (see Fig. 7).
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Figure 7. On the left the backpack mount. On the right the sensors head with GPS, inertial sensor and
the omniderctional camera. Figures taken form [8]

Recently a new system configuration has been investigated. These 3D systems employs sensor

fusion combining depth sensors and digital cameras [29, 90]. Their main goal is obtain more

accurate depth maps by combining stereo methods and data acquired by depth sensors.

Commercial solutions for ease 3D acquisition are available. They are called stereo- or 3D

cameras. Figure 8 shows the stereo camera Bumblebee XB3 from Point Grey Research and

the full-HD professional 3D Panasonic AG-3DA1. Both cameras are available at Natalnet

Laboratory. Bumblebee XB3 has a 3-sensor multi-baseline with variable resolutions and come

with softwares for stereo processing. The Panasonic AG-3DA1 has integrated twin-lens and

records and process synchronized left and right streams. The recorded channels are stored on

memory cards in AVCHD format.

Figure 8. Bumblebee XB3 from Point Grey Research (left) and full-HD professional 3D Panasonic
AG-3DA1 (right).

3.2. 3D reconstruction

After images are captured and pre-processed they are sent to the reconstruction stage. The 3D

reconstruction problem refers to the recovering of scene geometry, i.e., the 3D coordinates of

objects that compose the scene. This stage is responsible for creating the data that will be used

within the 3D video representation.
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3D video systems in literature differ on the employed reconstruction methods. Examples of

such methods are shape from focus, shape from shading, structure from motion, shape from

silhouette and structure from stereo. We refer the reader to any Computer Vision book [75] for

a broad discussion about existing reconstruction methods. However, structure-from-stereo

techniques have shown be more suitable for 3DV and FVV [68].

Here we will review some works of structure-from-stereo, structure-from-motion and

shape-from-silhouette techniques within the context of 3D videos.

3.2.1. Structure from stereo

The most popular method of 3D reconstruction is stereo [78]. It is based in the principle of

stereo vision (or stereopsis) which copes with the human visual system [38]. Because of the

position of our eyes, our brain receives two views of a same scene from two slightly different

viewpoints at the same horizontal level. Our brains fuse these two images and measure the

disparity in order to estimate depth [38]. Computationally, stereo process has three main

steps: selection of a particular location of the surface in one image (feature extraction); the

selected location must be identified in the other image ( matching or correspondence problem); the

disparity in two correspondent locations must be computed (reconstruction) [38]. The process

used to obtain 3D point coordinates from a set of known corresponding image locations is

called triangulation [75, 78]. Overviews about the problem of recovering 3D structures from

stereo can be found in literature [5, 13].

Over the years many efforts have been made by academics to compute stereo efficiently for

static and dynamic events. The literature stereo is very extensive. In [56] an important work

surveying and evaluating binocular stereo algorithms has been presented. The authors have

categorized dense binocular stereo according to: matching cost computation, cost aggregation,

disparity computation and disparity refinement.

Multiview stereo

For free-viewpoint video development it is mandatory the acquisition of images from many

different viewpoints (see Fig. 9). Thus, the problem of reconstructing 3D scenes from more

than 2 frames arises, the so-called multi-view stereo reconstruction problem [23].

Many algorithms to compute multi-view stereo has been developed [72]. A taxonomy for

multi-view stereo methods has been proposed [59], similar to the one presented in [56] for

binocular stereo methods evaluation. The multi-view algorithms are classified and evaluated

according to six categories: scene representation, photoconsistency measure, visibility model,

shape prior, reconstruction algorithm, initialization requirements. According to this taxonomy

the reconstruction algorithms can be classified in four mais classes [59]:

• Cost computation on a 3D volume - for example, voxel coloring methods [60];

• Minimization of a cost function - for example, space carving methods [31];

• Computation of depth-maps;

• Extraction and matching of feature points.
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Figure 9. Example of multi-camera setup (left) and images of a same scene captured from many
different viewpoints (right). Figures taken from [63]

In [18] the authors propose a new algorithm to implement multi-view stereo reconstruction

by employing a pipeline other than Feature Extraction, Matching and Reconstruction as

traditional stereo methods. It starts with a sparse set of matched points that are expanded to

a more dense set and filtered using visibility constraints. This process results in a patch-based

representation of the surface which is transformed into a mesh-based representation.

Multiview stereo algorithms have been applied to obtain 3D objects geometry from

photos [36]. Also, many 3D video systems based on multiview stereo algorithms have been

proposed [44, 82, 84, 92]. In the context of FVV one of the pioneering works can be seen

in [26]. The authors use the multi-baseline stereo algorithm of [50] to obtain depth maps that

are edited to remove innacuracys. It reconstructs fore- and back-ground objects. The system

in [27] is also based on the same algorithm.

An recent overview of coding algorithms to stereo and multiview video can be found in [80].

Active stereo

The most difficult part in stereo computation is the matching or correspondence problem [38].

Active stereo methos try to overcome this limitation by emitting and projecting some sort of

waves onto the surface. In structured light approaches a controlled illumination pattern is

projected. This methodology has been applied to obtain 3D models of cultural artifacts, such

as statutes [3, 34, 73].

Many 3DV and FVV systems benefits from this idea [26, 81–84, 92]. In [81], for example, a

real-time 3D system is presented. It utilizes only one camera and one projector. They must be

synchronized to guarantee that the projected pattern it will be projected at the same time the

camera captures it. Camera and projector have to be calibrated, as well. The projector projects

slides with a sequence of colored stripes and consecutive stripes may not have the same

color(see Fig. 10). Experiments where made with static and also reasonably fast movements

scenes. The system needs improvements on the quality of reconstructed scenes but it is a

promising approach towards real-time 3D video system. Unlike the previous setting, the

multi-view stereo system in [82] projects a binary vertical stripes pattern with randomly

varying stripes width (see Fig. 10).
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Figure 10. Upper row: scene illuminated with colored stripes (left) and the reconstructed scene
(right) [81]. Lower row: color image (left) and same image with structured light illumination (right) [82].

Spacetime stereo

Methods to compute depth via triangulation have been widely investigated by the computer

vision community. Stereo, laser scanning and time- or color- structured light are the most

popular. Usually they are classified as active or passive methods. In [11] a new classification

of the 3D reconstruction methods based on triangulation is proposed. Instead of passive

or active approaches, the methods would be classified according to the domain where

corresponding features are located. Techniques such as laser scanning and passive stereo

identify features only in spacial domain. Methods such as time structured light use features

only in temporal domain. The spacetime stereo approach looks for features in both spatial and

temporal domains (see Fig 11). This new methodology has been applied for dynamic scenes

reconstruction [10, 48].

In parallel, other research groups where also interested in spatio-temporal benefits. In

reference [88] the authors have employed spacetime approach in three different cases. For

static scenes they have used structured light to obtain high-quality depth maps and where

observed improvements over traditional stereo methods. They have tested the spacetime

theory in quasi-static objects such as waterfalls and it proved to be more efficient. For dynamic

scenes under natural lighting conditions it behaved like traditional stereo. The approach

presented in [88] have been used to develop a scalable 3D video system [83].

128 Current Advancements in Stereo Vision



An Overview of Three-Dimensional Videos:

3D Content Creation, 3D Representation and Visualization 11

Figure 11. Spacetime principle. The search for correspondences in traditional stereo is done in spatial
domain only (left). In spacetime stereo search for correspondences is done in spatial and temporal
neighborhoods (right). Figure taken from [48].

In reference [62] the spacetime approach was used to improve the video resolution of dynamic

scenes. The super-resolution is obtained simultaneasly in space and time and makes the

system capable of recovering dynamic events that happens faster than video frame-rate.

3.2.2. Structure from motion

In Computer Vision, the problem of recovering the Structure From Motion (SFM) [75] refers to

the process of finding the three dimensional structure of an object by analyzing its motion over

time. We perceive a lot of information from the three dimensional structure of the environment

by moving around. The same happens when the objects perform some movement in the scene.

The SFM problem is similar to stereo vision. In both approaches, the image correspondences

and the 3D coordinates of the object must be computed. But in SFM, in order to find

correspondences between images, features such as corners must be tracked from an image to

another. The trajectories of these features are used to reconstruct the 3D object and the camera

motion. Because of features tracking, SFM is especially effective with video sequences.

Most SFM techniques reconstructs scenes with rigid objects, but in [4, 77] the authors deal

with scenes with non-rigid objects, such as animals and humans. A limitation of SFM is that

the pixels correspondences can only be calculated accurately for salient features.

In [91] the authors use structure from motion to reconstruct statics scenes from a sequence of

uncalibrated images. For such, a hand-held camera is used. They required restrict camera

motion, specially camera rotations. No prior information is required besides the images

themselves. One limitation is that it strongly depends on image texture because it is a feature

based approach.

The reconstruction of 3D scenes captured by a hand-held camera was the main goal of other

works[52, 54], as well. Structure from motion techniques were used to reconstruct citys

architecture [53]. The authors try to fuse the data obtained by SFM approach and GPS

measurements.

3.2.3. Shape from silhouette

Many algorithms of 3D reconstruction are based on object’s silhouettes. This class of

techniques are known as Shape-from-Silhouette [75]. The important concept of Visual
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Hull of an object S was introduced in [32] to identify which parts of S are important to

silhouette-based approaches. A formal definition is:

" The visual hull VH(S, R) of an object S relative to a viewing region R is a region of E3

such that, for each point P ∈ VH(S, R) and each viewpoint V ∈ R, the half-line starting

at V and passing trough P contains at least a point of S." [32]

For each viewpoint V, the lines starting at V and passing trough P form a silhouette cone.

The volume generated by intersecting all silhouette cones from all viewpoints V is the visual

hull 12. Volume carving [31] is the approach commonly used for such. Since volumetric

techniques are traditionally slow, an image-based visual hull (IBVH) [42] have been developed

to overcome this limitation. It is real-time and like all image-based rendering technique

it provides a realistic rendering of the scene. It is pertinent to observe that silhouettes

approaches suffer from one important limitation: they are not able to distinguish concave

surface regions. Thus, the reconstruction of concave objects is not guaranteed with silhouette

approaches only. Efforts to overcome this problem have been made [17], as well.

Figure 12. Intersection of silhouette cones. The result is the visual hull volume. Figure taken from [42]

In the context of 3DV and FVV silhouettes approaches have been widely used to recover the

3D object surface. The systems in [39, 40, 45, 67] employ the same volumetric strategy:

the visual hull volume is computed, then it is divided in voxels. For each frame and

viewing position all voxels are marked as occupied (object portion) or empty (background

portion). After this process the remaining voxels contain the object and form a voxel-based

representation of it. Finally, the marching cubes algorithm transforms the voxels model into a

triangle mesh, which represents the object surface.

3D video systems using variants of IBVH have been already proposed [21, 85, 86].

Reference [37] presents a complete 3DV and FVV system combining visual hull, surface

texture, image features and inertia constraints to perform a high quality reconstruction of

dynamic scenes.
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4. 3D video representation

Various representation schemes for 3D videos can be found in literature [64]. Usually its choice

depends on the target application. But for some authors [63] it determines completely the 3D

video system design.

3D scene representation formats can be classified in image- and geometry-based formats and

also a hybrid representation based on depth maps (Subsec. 4.3), which combines image and

geometry aspects [63].

Geometry-based modeling (Subsec. 4.2) represents data as we know from Computer Graphics.

In order to use this format the 3D scene has to be reconstructed and the geometry stored in

a well know format such as, polygonal meshes or point clouds. They offer a full navigation

of the scene or object, but it has realistic rendering issues due to errors in reconstruction step.

On the other hand, image-based formats (Subsec. 4.1) avoid the explicit 3D reconstruction of

the scene and provides a more realistic visualization. But there is a critical trade-off between

realistic rendering and size of stored data.

4.1. Image-based representation

The popular format of a three-dimensional video is a stereoscopic video composed by two

video signals, one for each eye. It is the image-based format used by movie theaters and

current 3D TV for home entertainment. Due to its simple format it can be encoded using

existing video codecs, by performing spatial or temporal interleaving. For spatial interleaving

the images for the right and left eye are resized and packed into a single frame. They can be

arranged in side-by-side or top-bottom. In a temporal interleaving the right and left images

are shown in alternate times.

For FVV systems exist Light fields [19, 33] and Ray-space [76] representations. Both

representations do not perform any geometric reconstruction, avoiding the artifacts generated

by this process. Thus, they lead to a more realistic rendering of the scenes. However, the

realistic rendering is paid by the cost of the huge amount of necessary data. They need to

store and transmit a set of views that are, at the receiver side, interpolated in order to generate

novel views. If only a few views are transmitted the rendering quality is poor.

4.2. Geometry-based representations

4.2.1. Polygonal meshes

Polygonal meshes [16] are the most popular 3D scene representation in many industries

such as architecture and entertainment. Due to realism requirements in computer graphics

and the development of 3D scanning technologies, polygonal meshes representing 3D

surfaces contain millions of polygons. On one hand they can represent satisfactorily almost

any geometric detail of the surface. On the other hand these meshes are complex and

computationally expensive to be stored, transmitted and rendered. To overcome these

limitations, many techniques to compress and simplify complex meshes have been developed

leading to progressive approaches [24], even for time-varying meshes [30].
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Important projects that build 3D polygonal mesh models from scanner systems or photos

have been proposed [3, 53]. Many developed 3DV and FVV systems are based on polygonal

mesh representation [6, 37, 71]. In [39–41, 45, 67] a triangular mesh is obtained from a

voxel representation via marching cubes algorithm, after silhouette-based reconstruction. In

reference [37] instead of marching cubes algorithm the authors perform multi-level partition

of unity implicits (MPLU) [49]. Reference [6] uses a prior body model consisting of 16 closed

triangle meshes. Researchers in [39, 41] present a deformable three-dimensional mesh model

which allows the recovery of the 3D shape and 3D motion. The shape is represented by the

triangular mesh, while the movement by vertices translations. Deformations occur inter- and

intra-frames, with photometric and smoothness constraints, for example. Figure 13 shows a

result obtained after intra-frame deformation.

Figure 13. (Left) Mesh obtained from a voxel representation via marching cubes algorithm, after
silhouette-based reconstruction. (Right) Mesh smoothed after intra-frame deformation. [39]

4.2.2. Point-based representation

In point-based schemes the geometry is represented by a set of points sampled from the

surfaces in the scene [35]. Neither topological nor connectivity informations are explicitly

stored. Points offer advantages over other representations because they are the simplest

geometric primitive.

Progressive approaches have also been applied to point-based representations [34, 87]. The

need arises in applications which deal with a huge amount of data and/or make some sort of

data transmission, such as internet or broadcast. In [87] the 3D objects geometry and texture

are encoded in terms of surface particles associated to an octree [16]. The encoding is done in

an appropriate order which allows the surface be reconstructed progressively. The same idea

has been employed to reconstruct and render the Davi statue [34]. In the last one a hierarchy
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of spheres have been used instead of an octree and the resulting representation have been

rendered using splatting techniques [55].

3D video systems claiming high-quality rendering of point-based representations are available

in literature [81–83]. In [82] each point of the representation is associated with its color,

avoiding the use of textures. Also, each point is modeled by a Gaussian ellipsoid generated by

three vectors, with origin in its center. This is a probabilistic model representing the positional

uncertainty of each point.

The authors in [86] propose a framework for recording 3D videos. The prototype have been

tested to capture and reproduce dynamic scenes with one human in movement. They utilize a

time-varying three-dimensional hierarchical point-based data structure to store the 3D video.

One such data structure is constructed per frame. Then, two different splatting techniques are

employed for rendering a continuous surface of the 3D object.

In [21] a point-based variant of image-based visual hull [42] is used in the design of an

immersive environment for virtual design and collaboration. Authors of [85] propose a

real-time free-viewpoint system based on the concept of 3D video fragments. 3D video

fragments are point samples of a 3D object surface with some attributes, e.g., position, surface

normal and color. It uses an inter-frame prediction scheme to dynamically update those

attributes in order to avoid recompute the full 3D representation for each frame.

Comercials 3D video systems based on point representations are already available in the

market. For example, Libero Vision Company [25] offers products for creating realistic virtual

views for arbitrary viewpoints of sports .

4.3. Depth maps-based representation

Depth map [78] is a special case of digital image. In a depth map each pixel represents the

distance from the sensor to a visible point at the scene. Thus, it reproduces the 3D scene

structure and can be interpreted as a surface sampling .

Nowadays, representations based on depth maps are the most popular and promising

representation for 3DV and FVV. This is due to the fact that some representations based on

depth maps are able to perform at the same time 3DV coding - where the left and right images

are encoded - and FVV coding - where view synthesis can be performed. Explanation on

depth-image based representations and a recent review of 3D video representations using

depth-maps are available in literature [1, 46].

In order to build a reliable 3D model a dense depth map must be established, that is, a depth

estimate corresponding to each pixel in the intensity images. The pionnering works in [26, 27]

computes dense depth maps from all available views. A scene description is created using the

depth map aligned with the intensity image for each recorded angle. However, they convert

each depth map into a triangle mesh and employs texture mapping for rendering the scene.

This representation reproduces only free-viewpoint video and it is not capable of rendering

stereoscopic videos. The work developed in [92] utilizes a layered representation - intensity

image and associated depth map - for view interpolation. They also convert the depth maps

into a triangle mesh to benefit from programmable GPUs.

133An Overview of Three-Dimensional Videos: 3D Content Creation, 3D Representation and Visualization



16 Stereo Vision

A 3D representation that combines conventional 2D video stream with synchronized depth

informations have been proposed in [12] during the ATTEST project [15]. It is called video

plus depth (V+D) and it allows the rendering of two virtual views corresponding to a stereo

pair. This format have been standartized by the MPEG group and it is known as MPEG-C Part

3 [68].

The video plus depth format has been extended to the multiview video plus depth (MVD) [69].

With this format only a subset of M images and its associated depth maps are transmitted to

a display of N views. The remaining views are interpolated via image-based warping.

Another available format is layered depth video (LDV) [47]. It is based on the concept

of layered-depth image (LDI) [61]. An LDV is composed by a 2D video (color image),

the associated depth maps and other layers, for example, an occlusion layer or residual

layers of depth and color. This representation is more compact than MVD. However, due

to redundancy MVD format provides a more realistic rendering. Both formats are under

investigation at MPEG group [68].

5. 3D video visualization

5.1. Rendering

Most developed 3D video systems aim to provide realistic visualization. The rendering

technique employed strongly depends on the 3D representation used to model the 3D scene.

Popular approaches are texture mapping and colorimetry for surface-based representations,

light fields [33] and depth-image based rendering (DIBR) [14]. Examples of FVV systems

employing these rendering techniques can be found in [26, 43, 81]. Systems based on

point-cloud representations usually apply splatting techniques [82, 86]. For 3DV rendering,

video plus depth (V+D) representations achieve depth perception by performing DIBR

techniques of the second video.

One important task of the rendering stage is to generate virtual views. This is important not

only for FVV systems, but also for autostereoscopic displays. The general idea behind virtual

view synthesis is to project the image into the 3D space and then project it again at a chosen

virtual camera at the desired position. Inherent problems with this processing are occlusions

and object boundaries areas. An occluded region in a natural view could be visible from a

virtual view position, leading to holes at the novel view. Object boundaries areas are difficult

to handle because they have back- and foreground colors. Also depth estimation of such areas

are unreliable. Both situations lead to artifacts after projection into novel views.

The view interpolation schemes of MVD and LDV representations presented in [69] and [47],

respectively, are good strategies to overcome these limitations. MVD identify unreliable

regions by extracting a main and two boundaries layers - one for background boundaries and

another for foreground boundaries (Fig. 14). Following layers extraction, they are projected

into the 3D space and the virtual view position is interpolated from the original view positions

trough spherical linear interpolation. After that, all layers in 3D space are projected separately

in proper order and the results are merged. Finally, the artifacts naturally introduced by

image-based 3D warping are detected and corrected.
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LDV approach also identify unreliable regions and extract a main layer but, unlike MVD,

it extracts only one boundary layer combining either back- and foreground boundaries (see

Fig.14 for comparison). In LDV representations only a central view and associated residual

layers are transmitted, leading to some color difference in novel views. Thus, MDV performs

better than LDV regarding rendering aspects, but the latter is a more compact representation.

Figure 14. (Left) Layers of MVD: main layer in gray, foreground boundary layer in blue and background
boundary layer in gree. (Right) Layers of LDV: main layer in gray and one boundary layer combining
either back- and foreground boundaries

5.2. 3D displays

Mechanisms offering the perception of depth is a reality. 3D cinemas is experimenting huge

success and 3D TV for home entertainment is now a reality. The popularization of 3D TV is

due to advances in the whole 3D video pipeline, specially in 3D displays.

Examples of 3D displays are stereoscopic and autostereoscopic displays [79], holograms [51]

and integral imaging [7]. Here we will briefly present the most intended for home

entertainment: stereoscopic and autostereoscopic displays.

Stereoscopic displays are the most popular type of 3D display. It projects two multiplexed

images at the screen. Both images show the same scene captured from two slightly different

angles. A viewer needs to wear special glasses that separates the multiplexed image into two

images - one for the left eye and one for the right eye. In particular, the glasses make each

viewer’s eye view only one of the two images. Schemes of images multiplexing rely on color,

polarization or time multiplexing. Thus, the separation is possible because each image uses a

different color (e.g., red and cyan), polarization or are projected in alternate frame sequencing.

In each case, anaglyph, polarized or shutter glasses are required to send each image to the

correspondent eye, respectively. The major drawback of this approach is that the viewer must

to wear glasses for depth perception.

Autostereoscopic displays offer depth perception without the requirement of using any device

such as special glasses or user-mounted devices. The main limitations of this technology

are the cost and number of users able to perceive depth at the same time. Autostereoscopic

displays are based on viewing areas the user should remain making one image to be visible
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to the right eye and another to the left. It could be a two-view or multi-view display. In the

first case only one stereo pair is displayed allowing 3DV capabilities. In the second, multiple

stereo pairs are displayed and allows 3DV and FVV functionalities. Here, FVV is in the

sense that when the observer moves in front of the display, he/she can perceive a natural

motion parallax impression. Technologies employed in two-view autostereoscopic displays

are parallax barrier and lenticular sheets. In the multi-view case, the performed methods are

multiview parallax barrier, time multiplexing combined with parallax barrier and lenticular

arrays combined with pixelated emissive displays.

An excellent discussion of underlying mechanisms of 3D displays is presented in [70]. We

refer reader to references [2, 79] for reviews on 3D displays.

6. Conclusion

This chapter provides an overview of 3D videos production pipeline. We have concentrated in

systems with no interest in 3D data coding and transmission. 3D video is a broad research area

and here we outlined its main issues and advances briefly. An extensive list of publications is

provided below for readers interested in more details.

3D media is already in our everyday lives and for this reason many leading researches are

under development. Regarding capture devices, 3D cameras are already in the market, even

for professional use. Still they are expensive. Although there are not many options for home

users, they are becoming cheaper with development of new technologies.

Along with the quality of produced 3D content and advances in 3D displays, standardization

plays an important role in 3D videos success. For such, MPEG group works on

standardization of depth-maps based representations, which have shown be more suitable

in this context. In parallel, the development of multiview autostereoscopic displays intend to

make them the next generation of TV sets.
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