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1. Introduction

Some geometrical relationships between projected primitives in binocular stereo systems

will be analysed in the next sections with the aim of providing a characterization from a

probabilistic point of view. To this end, we will consider the parallel stereo system model

and the well known pinhole camera model [7].

The characterizations that will be derived will be readily usable as valuable sources of

information to solve the correspondence problem in stereo systems [24] and their nature will

be that of a priori information sources in Bayesian models.

To begin with, we will introduce the stereo system model that will be used for the analysis

together with the notation that will be employed and the parameters that will be necessary

for the calculations. Afterwards, we will use this model to derive the joint probability density

function (pdf) of the orientation of the projections on the image planes of arbitrary small edges.

In this case, we will find a cumbersome expression so, then, we will focus on the derivation of

a tractable pdf of a convenient function of the orientation of the projections.

Later, we will turn our attention to the so called disparity gradient, which defines important

relationships between projections in stereo systems. We will find three different usable pdfs of

the disparity gradient that can be used to solve the correspondence problem in parallel stereo

systems. Finally, a brief summary will be drawn.

2. Geometric relationships in the parallel stereo system model

In order to perform our analysis, we consider a common model for stereo image acquisition

systems. The two cameras of the stereo system are considered to be identical. These cameras

are modelled using the well known pinhole camera model with focal length f , parallel optical

axes and image planes defined on the same geometric plane [3], [7]. This description defines

©2012 Tardón et al.,licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2 Stereo Vision

the so called parallel stereo system model. An illustration of the geometry and the projection

process with this model is represented in Fig. 1.

For simplicity, the centre of the real world coordinate system is considered to be equidistant

to the optical centres of the two cameras of the system (Cl and Cr). The optical centers of the

cameras are separated a distance b: the baseline. As shown in Fig. 1, the X axis is parallel to

the linebase b and the Z axis is perpendicular to the image planes.
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Figure 1. Parallel stereo system model.

In Fig. 1, A and B represent the edges of a straight segment AB of length δ. A is located at

(X, Y, Z) in the world coordinate system. The segment has an arbitrary orientation described

by the angles α and β defined with respect to the XY and XZ planes, respectively.

The edge points and the segment are projected onto the left and right image planes of our

parallel stereo system. Thus, we find the projected points Al and Bl on the left image and the

projected segment δl on the same image. Also, the angle between δl and the horizontal on the

left image is denoted θl . Similarly, on the right image plane we find Ar, Br, δr and the angle θr .

Recall that the optical axes of the two cameras are parallel in our stereo model. Also, we

consider that equally numbered horizontal lines on the two image planes comply with the

epipolar constraint [26].

The segments on the image planes that correspond to the projection of the same segment in

the real world are partially characterized and related by their respective orientations on the

left and right images. This orientation can be analysed to be used to solve the correspondence

problem in stereo systems.
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Probabilistic Analysis of Projected Features in Binocular Stereo 3

Using the model selected, we will focus in the next sections on the orientation of the projection

of small straight edges (δl and δr). Then, we will also consider a well known feature: the

disparity gradient [17], and we will show how to develop probability characterizations of this

feature under different conditions [21].

3. Joint probability density function of the orientation of projected edges

Making use of the geometrical relationships established in the previous section and in Fig. 1,

we will derive a relationship between the location and orientation of the edgel δ [13] in the

real world, and the orientations of its projections described by the angles θl and θr (Fig. 1)

in the corresponding image planes. Then, under appropriate hypotheses, we will find the

description of the joint probabilistic behaviour of the projected angles.

Consider the definitions and the geometry shown in Fig. 1 where the length of the segment

δ is arbitrarily small. We can write the location of the projected points in the left and right

images using their coordinates on the corresponding image planes [7]. Let Bl = (Blx, Bly),
then, using the geometry involved and using B and its projections as starting reference, we

can write Al = (Alx, Aly) = (Blx + δl cos θl , Bly + δl sin θl).

Now, let’s look at the right (r) image. Under the hypotheses described previously, and using

the length of the projected edgel on the right image, δr, making use of the fact that the y

coordinates must be the same in the two images, it is simple to observe that δl sin θl = δr sin θr

and, so, δr =
δl sin θl
sin θr

.

After these observations, the coordinates of the projections of A and B can be written as

follows:

Ar = (Arx, Ary) = (Brx +
δl sin θl

sin θr
cos θr, Bry + δl sin θl) (1)

Br = (Brx, Bry) (2)

But our objective must be to find the relation between the projections and the orientation of the

edgel in the real world, such orientation is described by the angles α and β in Fig. 1. Working

in this direction, the following relations can be observed:

⎧

⎨

⎩

α = arctan Bz−Az
Bx−Ax

β = arctan
By−Ay√

(Bx−Ax)2+(Bz−Az)2
= arcsin

By−Ay√
(Bx−Ax)2+(By−Ay)2+(Bz−Az)2

(3)

On the other hand, using the projection equations of the pinhole camera model [7], the

following relations can be found:

X = − xlb

xr − xl
− b

2
(4)

Y = − ylb

xr − xl
(5)

Z =
f b

xr − xl
(6)

43Probabilistic Analysis of Projected Features in Binocular Stereo



4 Stereo Vision

where (X, Y, Z) correspond to the coordinates of a generic point in the real world and (xl , yl),
(xr , yr) correspond to its projections on the left and right images, respectively.

Now, using eqs. (4) to (6) together with eqs. (1) and (2), it is possible to find the expressions of

the following terms involved in the calculation of the projected angles:

Bx − Ax (7)

By − Ay (8)

Bz − Az (9)

Then, using these expressions in eq. (3) and writing all the terms as functions of the real world

coordinates of A, the coordinates of Br, the camera parameters f and b and the orientation of

the projections of the edgel (θl and θr), we find the equations that lead us from (α, β) to (θl , θr):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α = arctan

[

Z sin(θr−θl)

X sin(θr−θl)− b
2 sin(θr+θl)

]

β = arctan

[

b sin θl sin θr−Y sin(θr−θl)√
[X sin(θr−θl)−b sin(θr+θl)]2+[Z sin(θr−θl)]2

] (10)

After these operations, we are ready to derive the joint pdf of the orientation of the projections

of the segment: fθl,θr
(θl , θr). To this end, only the pdf of (α, β) is required at this stage.

Since there is no reason to think differently, we will assume that these two parameters

are independent uniform random variables (rv’s) ranging from 0 to π [10]. Under these

hypotheses, it is evident that the joint pdf of (α, β) is fαβ(α, β) = 1
π2 . So, in order to

derive the desired expression, we only need to calculate the modulus of the Jacobian of the

transformation [15]:

|Jd| =

∣

∣

∣

∣

∣

∣

∂α
∂θl

∂α
∂θr

∂β
∂θl

∂β
∂θr

∣

∣

∣

∣

∣

∣

(11)

Thus, we must find the partial derivatives of α and β with respect to θl y θr. These are not

simple expressions because of the functions involved. As an example, observe the result

obtained for the last element of Jd:

∂β

∂θr
=

[b sin θl cos θr−Ycos(θr−θl)]{[Xsin(θr−θl)−b sin(θr+θl)]
2+Z2 sin2(θr−θl)}−. . .

{[X sin(θr − θl)− b sin(θr + θl)]2 + . . .
· · ·

· · · . . . [b sin θl sin θr − Y sin(θr − θl)]{[X sin(θr − θl)− b sin(θr + θl)] . . .

. . . Z2 sin2(θr − θl) + [b sin θl sin θr − Y sin(θr − θl)]2} . . .
· · ·

· · · . . . [X cos(θr − θl)− b cos(θr + θl)] + Z2 sin(θr − θl) cos(θr − θl)}
. . .
√

[X sin(θr − θl)− b sin(θr + θl)]2 + Z2 sin2(θr − θl)
(12)
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Probabilistic Analysis of Projected Features in Binocular Stereo 5

Since analytical expressions for all the required terms can be found by direct calculations, it is

possible to obtain the desired pdf operating in the usual way [15]:

fθl,θr
(θl , θr) =

1

π2
|Jd| (13)

Unfortunately, this expression far from being simple because of the complexity of the terms

involved. This fact should encourage us to search for a more usable expression capable of

statistically describing a certain relation between the orientation of the projected segments. In

the next section, we find such expression by using a function of cot θl and cot θr .

4. Probability density function of the difference of the cot of the

orientation of projected segments

A tractable expression to relate the orientation of projected segments can be found by defining

a suitable function of the projected angles shown in Fig. 1. Let fK(k), with k a function of

{θl , θr} denote such function.

More specifically, the pdf of the modulus of the difference of the cot of the projected angles in

the selected binocular stereo system will be derived.

Taking into account the scene depicted in Fig. 1, let AB define, again, a straight segment with

arbitrary length δ. The orientation of this segment is described by the angles α y β as shown

in the figure.

Now, the location of the edges of the segment in the real world coordinate system will be

written as follows:

A : (Ax, Ay, Az) = (X, Y, Z) (14)

B : (Bx , By, Bz) = (X + δ cos β cos α, Y − δ sin β, Z − δ cos β sin α) (15)

And taking into account the geometry selected, the coordinates of the projections of the edges

of the segment can be written as:

Arx = − f

Az
(Ax −

b

2
) Alx = − f

Az
(Ax +

b

2
) (16)

Ary = − f

Az
Ay Aly = − f

Az
Ay (17)

Brx = − f

Bz
(Bx −

b

2
) Blx = − f

Bz
(Bx +

b

2
) (18)

Bry = − f

Bz
By Bly = − f

Bz
By (19)

Now, let

k = | cot(θl)− cot(θr)| (20)

Substituting the cot functions by the corresponding expressions in terms of the projections of

the edges of the segment, using the projection equations (16) to (19), multiplying by AzBz,

45Probabilistic Analysis of Projected Features in Binocular Stereo



6 Stereo Vision

substituting Bi as a function of the coordinates of A and dividing by cos β, the following

expression is found:

k =

∣

∣

∣

∣

−b sin α

Z tan β − Y sin α

∣

∣

∣

∣

(21)

This expression will be used to derive the pdf of k.

To begin with, the joint pdf of k and α will be derived. To this end, the following

transformation equations will be used:

⎧

⎨

⎩

k =
∣

∣

∣

−b sin α
Z tan β−Y sin α

∣

∣

∣

α = α
(22)

The modulus of the Jacobian of the transformation can be easily determined:

|J| =

∣

∣

∣

∣

∣

∣

∂k
∂α

∂k
∂β

∂α
∂α

∂α
∂β

∣

∣

∣

∣

∣

∣

=
b sin αZ sec2 β

(Z tan β − Y sin α)2
(23)

With all this, the joint pdf of k and α can be readily obtained [16], [15]:

fk,α(k, α) = ∑
r

f (α(kr , αr), β(kr, αr))
1

|Jr|
(24)

where r represents the set of roots of the transformation of (α, β) as a function of (k, α). Two

different solutions can be found for this transformation because of the modulus operation in

equation (22):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎨

⎩

β = arctan
[

sin α
(

kY+b
kZ

)]

, with k = b sin α
Z tan β−Y sin alpha

β = arctan
[

sin α
(

kY−b
kZ

)]

, with k = −b sin α
Z tan β−Y sin alpha

α = α

(25)

Assuming, that the orientation angles α and β behave as uniform random variables [10] with

range (0, π) and assuming independence, it is clear that f (α, β) = 1
π2 [15]. Then, equation (24)

can be written, after substitution of the terms involved as:

fk,α(k, α) =
1

π2

(Z tan β − Y sin α)2

b sin αZ sec2 β

∣

∣

∣

∣

β=arctan[sin α kY+b
kZ ]

+
1

π2

(Z tan β − Y sin α)2

b sin αZ sec2 β

∣

∣

∣

∣

β=arctan[sin α kY−b
kZ ]

(26)

Now, α and β can be expressed in terms of α and k, making use of the following identity:

sec[arctan a] =
√

1 + a2. Thus, the following expression is found after some simplifications:

fk,α(k, α) =
1

π2

b sin α

k2Z

[

1 + sin2 α
(

kY+b
kZ

)2
] +

1

π2

b sin α

k2Z

[

1 + sin2 α
(

kY−b
kZ

)2
] (27)

46 Current Advancements in Stereo Vision
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Now, the last step to reach our objective is to integrate with respect to α. The two terms of the

previous fdp can be integrated similarly. It will be shown how the first one is handled:

I1 =
∫ π

α=0

b

π2k2Z

sin α
[

1 + sin2 α
(

kY+b
kZ

)2
] dα =

{

cos α = x

− sin αdα = dx

}

⇒

b

π2k2Z

∫ x(α=π)

x(α=0)

−dx

1 + (1 − x2)
(

kY+b
kZ

)2
=

b

π2k2Z

[

1 +
(

kY+b
kZ

)2
]

∫ x(α=π)

x(α=0)

−dx

1 − x2 ( kY+b
kZ )

2

1+( kY+b
kZ )

2

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x
kY+b

kZ
√

1+( kY+b
kZ )

2
= y

dx =

√

1+( kY+b
kZ )

2

kY+b
kZ

dy

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⇒

b

π2k2Z

√

1 +
(

kY+b
kZ

)2
kY+b

kZ

∫ y(x(α=π))

y(x(α=0))

−dy

1 − y2
=

2b

π2k

√

1 +
(

kY+b
kZ

)2
(kY + b)

arctanh

(

kY + b
√

k2Z2 + (kY + b)2

)

(28)

The second term can be integrated likewise.

Finally, the target pdf, fk(k), can be written:

fk(k) =
2b

π2k

√

1 +
(

kY+b
kZ

)2
(kY + b)

arctanh

(

kY + b
√

k2Z2 + (kY + b)2

)

+

2b

π2k

√

1 +
(

kY−b
kZ

)2
(kY − b)

arctanh

(

kY − b
√

k2Z2 + (kY − b)2

)

, k > 0 (29)

This is the expression we were looking for. The behaviour of this function is represented in

Fig. 2.

5. The disparity gradient

The disparity gradient has been successfully used in the process of establishment of the

correspondence relationships in stereo vision systems. Although the probabilistic behaviour

of this feature has been used previously [9], [23], the process to derive some of the pdfs

related to the disparity gradient has not been detailed. In this section, we will focus on

the specific procedure to find different approximations of the probabilistic characterization

47Probabilistic Analysis of Projected Features in Binocular Stereo
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Figure 2. Probability density function of the modulus of the difference of the cot of the orientation of
projected segments (Y = 0).

of the disparity gradient. Thus, we will derive several expressions of the pdf of the disparity

gradient1:

fDG(dg) (30)

We will pay attention to the assumptions required to derive the pdfs and to the

approximations used in the different cases considered.

5.1. Comments on the disparity gradient

The disparity gradient has been successfully used as a source of information to solve the

correspondence problem in stereo systems [8], [18], [17], [6], [12], [11], [23].

Generally speaking, the disparity gradient provides a priori information regarding how the

real world scene is projected onto the image planes of a stereo system and, consequently, how

different matching points in the projected images must be related in terms of geometrical

(disparity related) relationships

The disparity refers to the difference between the coordinates of the projections of a certain

point of the 3D world onto the image planes of a stereo system. Obviously, the disparity

gradient refers to the rate of change of the disparity between nearby or related points [17].

Furthermore, it has been confirmed that the human visual system shows certain limitations

related to the disparity gradient when matching stereo images [4]. More specifically, it was

proved that 1 represents the limit of the disparity gradient for most of the subjects evaluated.

On the other hand, other experiments were performed by other authors that showed that,

1 DG represents the random variable whereas dg represents a realization of DG.
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under certain conditions, the disparity gradient can be over that threshold but with low

probability. In fact, Pollard [19] derived a probability function for the disparity gradient in

a stereo system with fixation point.

Additionally, the disparity gradient is able to consider other important constraints often

employed for the analysis of three dimensional scenes such as figural continuity, ordering

of projected features or continuity of the disparity gradient itself [11], [17].

5.2. Stereo system for the probabilistic analysis of the disparity gradient

In the following sections devoted to the probabilistic analysis of the disparity gradient in a

parallel binocular stereo system, the specific geometry that will be considered is shown in Fig.

3. According to this figure, the locations in the real world of the points A and B, that define

a straight segment with its mid-point at (X0, Y0, Z0) and length 2δ, are given by the following

expressions:

A = (X0 + δ cos β cos α, Y0 + δ cos β sin α, Z0 − δ sin β) (31)

B = (X0 − δ cos β cos α, Y0 − δ cos β sin α, Z0 + δ sin β) (32)

Then, the projections of the edge points of the segment onto the right and left image planes

2

C
l

C
r

δ

X

Z

A
β

α
(X , Y , Z )

0 0 0

A
r

A

B rBl

l

Y

B

Figure 3. Parallel binocular stereo system for the analysis of the disparity gradient.
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are given by:

Ar =

(

− f

Az
(Ax −

b

2
),− f

Az
Ay

)

(33)

Br =

(

− f

Bz
(Bx −

b

2
),− f

Bz
By

)

(34)

Al =

(

− f

Az
(Ax +

b

2
),− f

Az
Ay

)

(35)

Bl =

(

− f

Bz
(Bx +

b

2
),− f

Bz
By

)

(36)

In this scenario, the disparity gradient is defined as the quotient between the difference of

disparity between the two points observed and their Cyclopean separation [19]:

dg =
Difference of disparity

Cyclopean separation
(37)

Taking into account that the Cyclopean projections of A and B are given by the following

equation:
Ar + Al

2
and

Br + Bl

2
(38)

and using the disparity vectors associated to the points A and B given by

(Al − Ar) and (Bl − Br) (39)

respectively. Then the disparity gradient can be written as follows:

dg = 2
||(Ar − Br)− (Al − Bl)||
||(Ar − Br) + (Al − Bl)||

(40)

Now, by substitution of the expressions of Al , Bl , Ar and Br, multiplying by AzBz, substituting

by their expressions in terms of δ, β and Z0, after some simplifications and reordering all the

terms, the following expression is found:

dg =
|b sin β|

|| (−X0 sin β − Z0 cos β cos α,−Y0 sin β − Z0 cos β sin α) || (41)

This is the main equation that will be used to derive different expressions of the disparity

gradient in different scenarios.

The following sections describe the scenarios and the procedures issued to derive the different

probability density functions.

5.3. Primitives centred in the world reference system

In our first scenario, we will be able to derive an exact analytical expression of the pdf of

the disparity gradient This expression can be considered to be illustrative of the behaviour of

50 Current Advancements in Stereo Vision



Probabilistic Analysis of Projected Features in Binocular Stereo 11

dg. Moreover, in the next subsection, we will show how the same expression is found under

different conditions and assumptions.

In this first scenario, we will assume that X0 = 0, Y0 = 0 and α = 0 (see Fig. 3). Then, the

expression of the disparity gradient (eq. (41)) is readily simplified to give:

dg =
b

Z0
| tan β| (42)

We will assume that the angle of orientation β behaves as a uniform random variable in the

range (0, π).

Paying attention to the symmetry of dg, it is possible to pose the problem in a more convenient

way. Without loss of generality, the modulus of tan β in eq. (42) can be removed by simply

allowing the random variable β to be defined as a uniform random variable in (0, π
2 ). The

application of this and other symmetry conditions that will be considered later will allow us

to avoid some expressions that involve the calculation of the modulus of certain functions and

thus the analysis and some of the expressions involved will remain conveniently more simple.

According to equation (42), it is quite simple to obtain the derivative of the disparity gradient

with respect to β. Let g(β) = dg, then g′(β) = b
Z0 cos2 β

. On the other hand, it is possible to

obtain β as g−1(dg) = arctan
(

Z0
b dg

)

. Thus, finally, the pdf of DG is directly obtained:

fDG(dg) =
π
2

b
Z0

∣

∣

∣

1
cos2 β

∣

∣

∣

∣

∣

∣

∣

∣

∣

β=g−1(dg)

=
2Z0
πb

1 + tan2 β

∣

∣

∣

∣

∣

β=g−1(dg)

=
2Z0
πb

[

tan
(

arctan
(

Z0
b dg

))]2
+ 1

=

fDG(dg) =
2
π

b
Z0

dg2 +
(

b
Z0

)2
, dg ∈ (0, ∞) (43)

In this expression (eq. (43) and Fig. 4), a unilateral Cauchy probability density function

should be identified. In our scenario, this Cauchy function is tuned by the parameters 0 and
b

Z0
[20]. The distribution function can be easily found (See Fig. 5):

FDG(dg) =
2

π
arctan

(

Z0

b
dg

)

, dg ∈ (0, ∞) (44)

5.4. Narrow field of view cameras

In this section, another step in the analysis of the behaviour of the disparity gradient will

be done. We will consider a binocular stereo system with cameras of narrow field of view

satisfying the epipolar constraint. This is a scenario that can be applied in numerous cases.

Moreover, we can consider this scenario as a basic model for the analysis of stereo systems

and suitable for practical applications.
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Figure 4. Probability density function of the disparity gradient when the primitives projected are
centred in the world reference system.

In this scenario, the disparity gradient is given by:

dg = 2
||
(

f b
Az

, 0
)

−
(

f b
Bz

, 0
)

||

||
(

− 2 f
Az
(X0 + δ cos β cos α),− 2 f

Az
(Y0 + δ cos β sin α)

)

. . .
· · ·

· · ·
. . . −

(

− 2 f
Bz
(X0 − δ cos β cos α),− 2 f

Bz
(Y0 − δ cos β sin α)

)

||
(45)

After the substitution of Az and Bz by their respective expressions in terms of X0, Y0, Z0, α, β

and δ and reordering all the terms the following expression can be found:

dg =

√

b2 sin2 β
√

(X2
0 + Y2

0 ) sin2 β + Z2
0 cos2 β + 2Z0 sin β cos β(X0 cos α + Y0 sin α)

(46)

We will derive the desired pdf making use of this equation.

The fact that the cameras of the stereo system have a narrow field of view implies that the

coordinates in the real world of the projected objects should satisfy the following condition:

Z0 ≫ X0, Y0. On the other hand, the angle β should not be equal to π
2 (as a matter of fact, being

β a continuous random variable, this conditions represents and event with zero probability).
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Figure 5. Distribution function of the disparity gradient when the primitives projected are centred in the
world reference system.

Under the hypotheses described, removing X0 and Y0 from the expression of the disparity

gradient, because of the narrow field approximation, and assuming that Z0 ≪ Z2
0 , the

following simplified expression is found:

dg ≈

√

b2 sin2 β
√

Z2
0 cos2 β

=
b sin β

Z0| cos β| (47)

In this scenario, the symmetry of the geometry and the behaviour of the random variables α

and β allows us to consider the following range for the uniform random variables α and β:

(− π
2 , π

2 ) and (0, π
2 ), respectively. And then, the expression of the disparity gradient can be

written as:

dg =
b sin β

Z0 cos β
(48)

Now, in order to derive the behaviour of the disparity gradient, we will observe the region in

which the random variable DG is smaller than a certain value dg. Then, Prob{DG < dg} is

given by the probability that the random variables α and β are such that DG < dg. Let Cdg

denote the region in the α-β plane that complies with this condition:

Prob{DG < dg} = Prob{(α, β) ∈ Cdg} (49)

53Probabilistic Analysis of Projected Features in Binocular Stereo



14 Stereo Vision

This probability can be easily found by integrating the joint pdf of α and β in the region Cdg:

FDG(dg) =
∫ ∫

Cdg

fα,β(α, β)dαdβ (50)

where, according to the selected hypotheses, the joint pdf required is given by fα,β(α, β) = 2
π2 .

In order to define the region Cdg, eq. (48) must be used in order to obtain the solutions of β:

β = arctan

(

dgZ0

b

)

(51)

So, the region in the α-β plane that defines Cdg is given by the following relations:

⎧

⎨

⎩

α ∈
(

− π
2 , π

2

)

β ∈
(

0, arctan
(

dgZ0

b

)) (52)

Thus, it is possible to derive the probability distribution function of the disparity gradient

solving the following integral:

FDG(dg) =
∫ α= π

2

α=− π
2

∫ β=arctan
(

dgZ0
b

)

β=0

2

π2
dβdα (53)

which is given by:

FDG(dg) =
2

π
arctan

(

Z0

b
dg

)

(54)

Then, the probability density function can be readily obtained:

fDG(dg) =
2
π

b
Z0

dg2 +
(

b
Z0

)2
(55)

Observe that, under different conditions and hypotheses, the same expressions for the

behaviour of the disparity gradient as in the case of primitives centred in the world coordinate

system (Sec. 5.3 ) have been obtained. Of course, this fact comes from the assumption that

Z0 ≫ X0, Y0 which asymptotically leads to the more specific case in which X0 = 0 and

Y0 = 0.

5.5. General case. Approximate expression

Under general conditions, a close analytic solution for the probability density function or the

probability distribution function of the disparity gradient has not been found. So, we will face

the derivation of an approximate solution.

To this end, consider the following approximate expression of the disparity gradient in our

stereo system (Fig. 3):

54 Current Advancements in Stereo Vision



Probabilistic Analysis of Projected Features in Binocular Stereo 15

dg =
b

√

X2
0 + Y2

0 + Z2
0 cot2 β + 2Z0 cot βK(X0 + Y0)

(56)

In this expression, obtained after eq. (46), the terms (X0 cos α+Y0 sin α) have been substituted

by K(X0 + Y0). Note that K should not modify the region in which the disparity gradient is

properly defined: DG ∈ [0, ∞). Using this idea, it is possible to arrive at the desired goal.

Now the procedure is described.

We know that if β → 0, then dg → 0. So, we can find a condition to impose on K so that

max {DG} → ∞. To this end, the minimum of the denominator in eq. (56) can be found in the

usual way, deriving the expression in the square root with respect to β and finding the roots:

∂

∂β

[

X2
0 + Y2

0 + Z2
0 cot2 β + 2Z0 cot βK(X0 + Y0)

]

= 0 (57)

− 2Z2
0 cot β csc2 β − 2Z0 csc2 βK(X0 + Y0) = 0 (58)

Now, since csc β 
= 0 ∀ β, the following must be fulfilled:

Z0 cot β + K(X0 + Y0) = 0 (59)

Thus, the following relation is found:

cot β = −K(X0 + Y0)

Z0
(60)

Recall that in the minimum the denominator in eq. (56) must be zero. Substituting cot β

according to the previous expression in the denominator of eq. (56), the following must be

fulfilled:

X2
0 + Y2

0 + Z2
0

[

−K(X0 + Y0)

Z0

]2

+ 2Z0

[

−K(X0 + Y0)

Z0

]

K(X0 + Y0) = 0 (61)

which leads to the following expression:

K =

√

X2
0 + Y2

0

(X0 + Y0)2
(62)

Thus, the approximation of the disparity gradient that will be used is given by:

dg ≈ b
√

X2
0 + Y2

0 + Z2
0 cot2 β + 2Z0

√

X2
0 + Y2

0 cot β

(63)

Now, the probability distribution function will be found. Consider Cdg as the region in which

DG < dg and let Cdg(α, β) denote the region in the α-β plane such that DG < dg. Then, again:

FDG(dg) =
∫ ∫

Cdg(α,β)
fα,β(α, β)dαdβ (64)

Since DG does not depend on α (eq. (63)), the region Cdg(α, β) can be defined as a function of

β, exclusively:
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FDG(dg) =
∫

Cdg(β)

∫

α
fα,β(α, β)dαdβ =

∫

Cdg(β)

1

π
dβ (65)

In order to define Cdg(β), dg must also be written as a function of β; the following result if

easily obtained:

cot β = −

√

X2
0 + Y2

0

Z0
± b

dgZ0
(66)

Let β1 and β2 represent the two solutions of this equation, then the region Cdg(β) is defined

by the following intervals:

Cdg(β) =

⎧

⎨

⎩

(− π
2 , min(β1, β2))

⋃

(max(β1, β2),
π
2 )

(67)

With all this, the desired solution, the probability distribution function of the disparity

gradient, is given by (Figs. 6 and 7):
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Figure 6. Probability distribution function of the disparity gradient {1}. General case: simulation results
(solid line) and analytic approximation (dashed line).
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Figure 7. Probability distribution function of the disparity gradient {2}. General case: simulation results
(solid line) and analytic approximation (dashed line).

FDG(dg)=1− 1

π

⎡

⎣arccot

⎛

⎝−

√

X2
0 + Y2

0

Z0
− b

dgZ0

⎞

⎠−arccot

⎛

⎝−

√

X2
0 + Y2

0

Z0
+

b

dgZ0

⎞

⎠

⎤

⎦ (68)

Note that this solution is mathematically correct, however some considerations must be taken

into account so that FDG(dg) behaves as a proper probability distribution function [16, sec.

2.2]. Specifically, the function arccot returns an angular value which, ultimately, can be seen

as a periodic function with period π. This means that there is an infinite number of solutions

of arccot, although the main solution is often considered to be in the interval (− π
2 , π

2 ). In our

specific development, the function derived behaves properly if the solutions of the function

arccot are selected in the range (−π, 0).
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After the probability distribution function (eq. (68)), the probability density function (pdf) of

the disparity gradient is readily found [15]:

fDG(dg) =
1

π

2bZ
[

dg2Z2
0 + b2 + dg2(X2

0 + Y2
0 )
]

dg4Z4
0 + b4 + dg4(X2

0 + Y2
0 )

2 + 2dg2Z2
0b2 . . .

· · ·

· · ·
. . . + 2dg4Z2

0(X
2
0 + Y2

0 )− 2b2dg2(X2
0 + Y2

0 )
(69)

which is a usable expression of the pdf of the disparity gradient that completes the analysis of

the probabilistic behaviour of this parameter under the conditions and hypotheses selected.

6. Concluding summary

In this chapter, we have dealt with the probabilistic behaviour of certain relations established

between the projection of features onto the image planes of a parallel stereo system.

Specifically, we have considered relations between the orientation of projected edgels and

the disparity gradient.

The projected edgels are simple features that can be considered in a matching stage [13]. The

relation between their orientations constitutes an a priori source of information that, using

the models proposed, can be used in the matching processes [14] of stereo systems. The

formulae of the relation between the orientation of the projections derived are perfectly suited

for application in Bayesian models for stereo matching [5].

The disparity gradient is an important parameter for stereo matching systems [18]. In this

chapter, it has been analysed under different conditions to find proper probability density

functions usable in a probabilistic context.

The functions derived can be used alone to match random dot stereo pairs [1], [2], [11],

[22]. Also, these functions can contribute and collaborate with other matching models in the

solution of the correspondence problem in stereo systems. Specifically, Bayesian approaches

can be employed to solve the correspondence problem [25] using the proposed models of the

disparity gradient [23].
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