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1. Introduction 

Hyaluronan (HA) is a non-sulfated linear glycosaminoglycan composed of multiple copies 

of the disaccharide unit of D-glucuronic acid (GlcA) and N-acetyl-D-glucosamine 

(GlcNAc); [β-1,4-GlcA-β -1,3-GlcNAc-]n where n is the number of repeating disaccharide 

subunits. HA is synthesized by the HA synthase family of enzymes. Three HA synthases, 

termed HAS1 through HAS3, have been identified in humans and in mice. These enzymes 

differ from each other in their catalytic activities (HAS3 > HAS2 > HAS1) as well as in the 

sizes of their final products. HAS1 and HAS2 polymerize long stretches of GlcA-GlcNAc 

disaccharide chains, whereas HAS3 polymerizes relatively short stretches (<300 kDa). 

Biosynthesis of HA is regulated by exogenous stimuli. For example, HA synthesis in 

fibroblasts is upregulated by phorbol esters, tumor growth factor alpha, and platelet 

derived growth factor, whereas HA synthesis in keratinocytes is upregulated by retinoic 

acid, epidermal growth factor, and tumor growth factor alpha and suppressed by 

corticosteroids [1-4]. HA is unique among extracellular matrix components in that it is not 

synthesized within the cell and transported to the surface via vesicles. Hyaluronan 

synthase is an integral membrane protein on the surface of cells. It links together UDP-α-N-

acetyl-D-glucosamine and UDP-α-D-glucuronate to spin out long strands of HA. Because, 

unlike other extracellular matrix carbohydrates, HA is spooled out from the cell surface, it 

can achieve molecular weights ranging from five thousand Daltons to twenty million 

Daltons. 

Although HA was originally considered to be an inert filling material in the extracellular 

matrix and intercellular spaces, this simple carbohydrate is now known to have a number of 

functions in several different biological processes including development, cancer biology, 

wound healing and the immune response. 
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2. HA endocytic pathway 

A scheme for the endocytosis of high molecular weight HA (HMW-HA) and its catabolism 

to HA oligomers have been suggested previously [5]. Figure 1 illustrates the current model 

for uptake of HMW-HA and its processing to bioactive oligomeric fragments. 

HMW-HA in the extracellular matrix can be degraded to fragments that are 50-100 

saccharides in length by the HA digesting enzyme, hyaluronidase 2 (Hyal2) [6]. Hyal2 is 

expressed in the lysosome and also as a GPI-linked cell surface protein [7]. This raises the 

interesting question of how cell surface Hyal2 retains catalytic activity for HA digestion 

given its requirement for an acid environment to function. Previous investigations have 

shown that binding of HA to the HA-receptor, CD44, leads to the interaction of CD44 with 

the NHE1 Na+/H+ exchanger. In turn, the NHE1 Na+-H+ exchanger creates an acidic 

environment facilitating Hyal2 activity [8]. The HA saccharides generated by Hyal2 can then 

be endocytosed by one of multiple pathways. To date, receptor mediated endocytosis of HA 

and macropinocytosis of bulk phase HA have been reported. Receptor mediated 

endocytosis can occur via lipid rafts or by the clathrin coated pit pathway. Receptors for HA 

endocytosis may be recycled to the cell surface or turned-over. HA saccharides are further 

digested to HA oligosaccharides by hyaluronidase 1 (Hyal1) in the endosome. The HA 

oligosaccharides could then potentially be degraded into its GlcA and GlcNAc building 

blocks by the concerted activities of β-D-glucuronidase and β-N-acetyl-D-hexosaminidase 

[9] or HA oligosaccharides could be exocytosed. The exocytosed HA fragments could have 

myriad biological functions which will be detailed below. 

Although HA endocytosis and subsequent degradation may be important for generation of 

bioactive HA fragments, the HA endocytic pathway is also essential for HA homeostasis. In 

a 70 kilogram human there is approximately 15 grams of total HA [10]. Up to 50% of the 

total HA in the body is expressed in the skin [11]. HA is turned over at a rate of 

approximately 5 grams per day [10]. In the skin, HA has a metabolic half-life <1.5 days [11]. 

HA is turned-over locally in tissues while systemic HA is cleared mostly in the liver and to a 

lesser extent the kidneys and spleen [12,13]. HA in the tissue extracellular matrix is thought 

to be partially degraded and then enters the lymph nodes via the draining lymphatics. 

Specific HA receptors in the lymphatics will be discussed below.  

3. Mechanisms of hyaluronan endocytosis 

3.1. Receptor mediated endocytosis 

Uptake of hyaluronan by various receptors has been widely studied, and several key 

receptors have been identified. Some receptors, such as CD44 and LYVE-1, serve dual 

purposes in that they not only facilitate the endocytosis of HA, but also trigger signaling 

events that generate cell specific responses to HA binding. ICAM-1 was initially believed to 

serve as a metabolic receptor for HA only but is now suspected to have cell signaling roles 

in response to HA binding [14,15].  



 
Hyaluronan Endocytosis: Mechanisms of Uptake and Biological Functions 379 

3.1.1. CD44 

CD44 is a cell surface glycoprotein that serves as the endocytic receptor for HA in 

keratinocytes, chondrocytes, and breast cancer cells [16-18]. It is important to stress that the 

binding of HA to CD44 and the uptake of HA by CD44 mediated endocytosis are two 

separate events that often do not take place at the same time [19]. Internalization of HA 

through CD44 mediated endocytosis has been shown to require acylation of the CD44 

cytoplasmic tail [20]. CD44 associates with lipid rafts for internalization as determined by 

gradient ultracentrifugation. Palmitoylation of CD44 on two cysteine residues, Cys286 in the 

transmembrane domain and Cys295 in the cytoplasmic domain, was found to be essential for 

lipid raft association, but not for HA binding. These acylation reactions could be cell type 

specific, which may explain why CD44 does not endocytose HA in all CD44 expressing cell 

types, such as B16-F10 melanoma cells [19]. There is also evidence that CD44 interacts 

directly with endocytosis proteins such as coatomer protein complexes [21]. Previous 

investigations have suggested that endocytosed CD44 can be recycled to the cell surface 

provided it is not ubiquitinated after endocytosis [22]. Recent studies in fibroblasts have 

shown that clathrin-independent carriers (CLIC) form an endocytic sorting system at the 

leading edge of migrating cells. Adhesion molecules, including CD44, are recycled in the 

CLIC pathway. CD44 and other CLIC cargo are concentrated within flotillin-1 and 

cholesterol enriched microdomains. Actin and GRAF-1 form the initial carriers within 15 

seconds. Next, Rab11 and Rab5 / EEA-1 complexes allow bulk membrane flow to early 

endosomes and plasma membrane recycling [23]. It is tempting to speculate that the CLIC 

pathway in CD44 recycling is also involved in HA endocytosis. 

3.1.2. RHAMM 

The Receptor for Hyaluronic Acid Mediated Motility (RHAMM) was discovered originally 

as a soluble protein that altered the migration of cells and could bind HA [24]. RHAMM has 

no cytoplasmic or transmembrane domain and has no signaling domains, but it has been 

implicated in ERK1/2 signaling through a complex with CD44 upon HA binding [25]. 

RHAMM is also found in the cytoplasm where it associates with the mitotic spindle 

apparatus, which is responsible for establishing cell polarity and distribution of 

chromosomes during mitosis [25]. RHAMM can be transported out of the cytoplasm to the 

cell surface. In terms of RHAMM endocytosis, very little is known. By contrast, a number of 

studies have shown a role for RHAMM in tumor progression and the differentiation of 

osteoblasts [26,27]. As it is known that CD44 and RHAMM can associate with each other 

and that RHAMM binds HA, it is possible that RHAMM/CD44/HA complexes can be 

endocytosed or leads to signaling. There is evidence that RHAMM and CD44 co-signal 

through the ERK1/2 pathway to increase basal motility in breast cancer cells and increase 

fibroblast migration and differentiation during wound repair [28,29]. 

3.1.3. LYVE-1 

Lymphatic vessel endothelial-1 (LYVE-1) is expressed on the surface of lymphatic 

endothelial cells. Interestingly, LYVE-1 has a glycosylation domain on its extracellular 
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domain that renders it inactive. Cleavage of this glycosylated region allows LYVE-1 to bind 

HA [30]. The LYVE-1 binds HA which is then bound by leukocyte CD44 in order to facilitate 

their adhesion and entry into the lymphatics [31]. Not much is known about the 

mechanisms of LYVE-1 endocytosis of HA, but it is thought to occur similarly to CD44 

mediated uptake of HA; i.e., LYVE-1 associates with lipid rafts before endocytosis [31]. 

LYVE-1 may be responsible for the transport of HA to the luminal side of the lymphatics. It 

has previously been shown that LYVE-1 binds to HA on the lymphatic endothelial cells, 

endocytosis of the complex occurs, and then the vesicles are released on the lumen side of 

the lymphatics allowing for release of HA which can possibly modulate immune responses 

or mediate removal of HA from the lymph for clearance [32]. Importantly, the lymph nodes 

are the first sites of clearance for total body HA turn-over. In fact, about 85% of total body 

HA is cleared by the lymph nodes. The remaining HA is largely turned over in the liver [33]. 

3.1.4. HARE 

Hyaluronan Receptor for Endocytosis (HARE) is expressed on sinusoid hepatocytes, the 

venous sinuses of the red pulp in spleen and the medullary sinuses in lymph nodes where it 

is important for the turnover of systemic HA [34]. Indeed, blocking HARE results in an 

inhibition of HA clearance in the liver [35]. HARE also plays a role in chondroitin sulfate 

proteoglycan endocytosis [36]. Previous investigations infer that HARE endocytosis occurs by 

the clathrin coated pit pathway and it appears that HARE is recycled to the cell surface [37]. 

Binding of HARE to HA was observed using ligand blotting and immunohistochemistry 

which shows that the HARE HA binding event occurs prior to HA internalization [38]. Four 

putative AP-2 / clathrin mediated endocytosis signaling domains have been identified in the 

HARE cytoplasmic domain: YSYFRI2485, FQHF2495, NPLY2519, and DPF2534 (315-HARE 

numbering). Deletion analyses of the signaling domains showed that three signal sequences 

(YSYFRI, FQHF, and NPLY) provide redundancy to mediate coated pit targeting and 

endocytosis of HARE. Importantly, the coated pit targeting domains did not impact binding 

of the HARE ectodomain to HA showing that HA binding to HARE and HARE mediated 

endocytosis of HA are separate events [39]. 

It is noted that HARE and LYVE-1 are both expressed in the lymph nodes. Interestingly, 

HARE and LYVE-1 show different and non-overlapping distributions [33]. How and if 

LYVE-1 and HARE coordinate HA turn-over remains to be determined. 

3.1.5. ICAM-1 

Intercellular adhesion molecule 1 (ICAM-1) is perhaps the least studied of the receptors for 

HA. It appears not to facilitate HA endocytosis but rather, it is a receptor for HA that has 

signaling capacity. Preliminary data suggests that ICAM-1 functions as a signaling molecule 

when HA binds to it. When HA is added to the macrophage cell line U937, it induces Akt 

phosphorylation which activates the nuclear factor-kappa B pathway, inducing interleukin-

6 production, but blocking of ICAM-1 with an antibody stops this from occurring [14,15].  
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3.2. Non-receptor mediated endocytosis 

3.2.1. Macropinocytosis of hyaluronan 

It has been demonstrated that HA uptake can occur without the aid of endocytic receptors. 

In [19], it was determined that B16-F10 melanoma cells endocytosed HA through 

macropinocytosis. The cells were observed to display membrane ruffling and localization of 

HA within vesicles as well as strong co-localization of HA with fluorescently labeled 

dextran, a macropinocytosis tracer. The uptake was also inhibited by amiloride, an inhibitor 

of macropinocytosis. Interestingly, the B16-F10 melanoma cells expressed surface CD44. 

Moreover, CD44 mediated adhesion of the melanoma cells to HA-coated plates. On the 

other hand, removal of CD44 from the B16-F10 melanoma cells by proteolytic cleavage 

failed to impact HA uptake. These results showed that CD44 did not play a significant role 

in the endocytosis of soluble HA. As mentioned in the previous section, the uptake of HA 

by CD44 requires CD44 to be in a specific state. It is possible, through splice variants of 

CD44, that these modifications were not present, and that there are distinct pathways in 

which HA can be taken up by cells. The ability of HA to induce macropinocytosis in B16-F10 

melanoma cells is most likely due to its ability to non-specifically interact with the cell 

surface. HA has been shown to interact with and cause rearrangement of the cell surface 

[40]. [41] also showed that blocking of CD44 failed to inhibit the uptake of HA by 10T1/2 

fibroblasts. 

4. Potential biological functions of endocytosed HA 

As shown in Figure 1, HA oligomers are produced by degradation of HA following its 

endocytosis. On the other hand, most studies on the biological activities of HA have been 

performed by adding exogenous HA oligomers to cell cultures and then determining their 

effect on biological activity. Presumably, HMW-HA co-polymers are endocytosed and 

digested and the resulting low molecular weight-HA (LMW-HA) fragments exocytosed 

under physiological conditions. Indeed, the hyaluronidase inhibitor apigenin resulted in 

accumulation of HA in pre-lysosomal endosomes in rat keratinocytes in vitro [18]. On the 

other hand, direct evidence for exocytosis of HA fragments are currently lacking. It is 

important to note that in some cases, the hyaluronidases may be secreted into the 

extracellular matrix or in the case of Hyal-2, expressed on the cell surface. HA degrading 

activity can also be exocytosed [42]. Obiviously, secreted hyaluronidase and cell surface 

Hyal-2 could circumvent the requirement for endocytosis.  

4.1. Cell activation via HA 

A number of investigators have reported that LMW-HA can induce molecular pathways 

culminating in gene expression. [43] has shown that oligomeric HA stimulated various 

transcription factors in chondrocytes including Sp1 and NF-κB. The same group showed that 

HA oligosaccharides induce expression of matrix metalloproteinase 13 by p38 MAPK and 

transcriptional activation of NF-κB [44]. It has also been shown that HA oligosaccharides  
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HMW-HA (~106Da) is first degraded by hyaluronidase 2 (HYAL2) into smaller 104Da sized fragments before it is taken 

up by a cell. The cell can either utilize surface HA receptors for receptor mediated endocytosis or macropinocytosis. 

Once internalized the HA is degraded by hyaluronidase 1 (HYAL1) into small 102Da fragments and then exocytosed. 

Figure 1. Schematic overview of HA endocytosis and processing. 

inhibit the expression of runt-related gene 2 (Runx2) in chondrocytes. Runx2 is a 

transcription factor for chondrocyte differentiation in hypertrophic chondrocytes [45,46]. 

Thus, HA oligosaccharides may impact the differentiation of chondrocytes during 

endochondrol ossification. [46] showed that binding of HA fragments to the HA receptor 

CD44 induces the Nanog-Stat-3 signaling pathway culminating in expression of the 

multidrug resistance gene, MDR-1, in breast and ovarian tumor cells. Expression of MDR-1 

in the tumor cells conferred resistance to chemotherapeutic drugs doxorubicin and 

paclitaxel. Finally, it has been shown that LMW-HA upregulated CD44 expression and 

increased the expression levels of PKCδ and PKCϵ [47]. 

4.2. Cancer cell invasion and metastasis 

Controversy has surrounded the role of the hyaluronidase enzymes in tumor biology with 

initial reports suggesting that Hyal1 was a tumor suppressor [48]. Early positional cloning 

studies identified the Hyal1 locus on 3p21.3 with LuCa1 (Lung Cancer 1). Because LuCa1 
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was either deleted or there was a loss in heterozygosity in LuCa1 in most lung cancers, it 

was hypothesized that Hyal1 behaved as a tumor suppressor. However, subsequent studies 

showed that Hyal1 was not the relevant tumor suppressor at the examined locus [49]. 

Nonetheless, the suppressive activity of hyaluronidses was confirmed by investigations 

showing that administration of high doses (300 U) of PH20 to mice with human breast 

tumor xenografts showed a significant reduction in tumor growth [50]. The over-expression 

of Hyal1 in a rat colon carcinoma line also inhibited tumor growth further suggesting that 

Hyal1 is a tumor suppressor [51]. 

Groundbreaking work by [52] showed that Hyal1 promoted tumor growth, invasion and 

angiogenesis. On the other hand, overproduction of Hyal1 to high levels (100 mU / 106 cells) 

inhibited tumor growth. These results suggested that high concentrations of Hyal1 may 

result in tumor inhibition while at lower levels Hyal1 leads to tumor progression. 

Previous studies have shown that anti-sense Hyal1 stably expressed in bladder and prostate 

cancer cells induced down regulation of cdc25c, cyclin B1, cdk1 and cdk1 kinase activity 

[52,53]. Expression of Hyal1 in oral carcinoma cells resulted in a dramatic increase in cells in 

S-phase and a decrease in the number of cells in the G0-G1 phase [54]. To date, the 

mechanism whereby Hyal1 promotes tumor cell growth remains unknown. On the other 

hand, treatment of mouse fibroblasts with PH20 leads to phosphorylation of JNK-1 and -2 as 

well as p42 / p44 ERK [55]. Importantly, ERK plays a role in the G1-S transition [56]. 

The activities of the hyaluronidase enzymes also appear to have roles in the biology of 

malignant melanoma (MM) tumors. [57] found that aberrant expression of PH20 by MM 

cells was correlated with their induction of angiogenesis in a mouse model. Histological 

studies of MM showed that tumor associated HA expression was correlated with patient 

survival with low HA levels showing poor prognosis [58]. Because the activities of HA 

synthesis (by the HAS enzymes) and HA degradation (by the hyaluronidase enzymes) is 

highly regulated and may be interconnected, these results might suggest that an imbalance 

in HA metabolism in MM tumors may lead to cancer progression in humans. 

Hyaluronidase activity has also been evaluated as a biomarker in bladder cancer. Tumor 

associated Hyal1 is released into the urine of bladder cancer patients [59]. Urinary 

hyaluronidase activity was elevated in patients with intermediate and high grade bladder 

cancer as compared with patients with: a) low grade bladder cancer, b) patients with a 

history of bladder cancer, c) normal individuals, and d) patients with benign urologic 

conditions [60]. These findings underscore the potential utility of the hyaluronidases to 

serve as biomarkers for cancer grading. 

4.3. Wound healing  

Tissue contraction during wound healing is achieved by myofibroblasts. Fibroblasts 

differentiate into myofibroblasts which line up at the edges of the wound and adhere to each 

other with desmosomes. They then use their actin networks to contract the ECM around the 

wound and shrink the size of the wounded area. Fibroblasts in the area around the wound 

then secrete collagen to stabilize the contraction. The trigger for contraction is HA production, 
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and HA plays a key role in regulating this process by directing fibroblast migration and 

proliferation at wound sites [61].  

HA’s role in wound healing is not clearly understood, but it is known that in a fetal state, as 

compared to an adult state, the extracellular matrix is composed of primarily HA. This 

abundance of HA rather than collagen reduces scar formation. CD44 mediated endocytosis 

of HA fragments also aids fibroblasts in migration to wound sites [62].  

5. Applications of hyaluronan endocytosis 

5.1. Drug delivery 

HA may allow the targeted delivery of chemotherapeutic reagents to tumor cells via CD44. 

HA have a number of functional groups for “decoration” including a carboxylate on the 

glucuronic acid, the N-acetylglucosamine hydroxyl and the reducing end. Thus, a wide 

array of different chemotherapeutic reagents can be chemically conjugated to HA. A review 

of the chemical derivatization of HA and the potential applications of HA to disease 

treatment is beyond the scope of this chapter but has been recently reviewed [63,64]. In 

brief, previous investigations in vitro showed that a taxol-HA bioconjugate was cytotoxic to 

a panel of tumor cell lines (breast, colon and ovarian) but not human fibroblasts [65]. 

Although there are relatively few in vivo studies that have evaluated the efficacy of HA 

bioconjugates, previous investigations with a paclitaxol-HA bioconjugate have shown that it 

inhibits tumor growth of RT-112/84 human transitional cell carcinomas in mice and 

increases the survival of mice that had been inoculated with the NMP-1 or SK-OV-3ip 

human ovarian carcinoma lines [66,67]. Similarly, a butyrate-HA bioconjugate was found to 

inhibit tumor growth and reduced lung metastasis in mice inoculated with LL3 murine lung 

carcinoma cells [68]. Thus, a number of reports reinforce the concept that HA may be useful 

as a drug carrier / ligand targeting delivery agent. Other investigators conjugated 

doxorubicin, a chemotherapeutic agent, to HA and administered it topically to B16-F10 

melanoma tumors in mice [69]. They found that doxorubicin-conjugated HA selectively 

targeted the tumor cells and reduced tumor growth. These findings open the door for future 

work with drug delivery to tumor cells using HA. 

HA may also be a useful carrier of carboranes for boron neutron capture therapy for tumors. 

Previous investigations have shown that a water soluble HA-polycarborane derivative was 

taken up and showed toxicity to a number of tumor cell lines in vitro [70]. 

5.2. Imaging  

HA may also be derivatized for imaging tumor cells. An activatable HA molecular probe, 

called FRET-HA, designed to detect hyaluronidase activity was recently reported [71]. 

Briefly, the HA co-polymer was chemically labeled with donor and acceptor fluorescent 

probes. Energy transfer from the donor to acceptor probe resulted in quenching of the 

acceptor (i.e., fluorescence resonance energy transfer or FRET). Because energy transfer is 

distance dependent, an increase in the distance between the donor and acceptor probes, for 
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example due to HA degradation, results in de-quenching of the donor. The rate of donor 

fluorescence change was used to determine the enzyme kinetics of bovine testes 

hyaluronidase with high precision and accuracy. FRET-HA has also been used to detect 

hyaluronidase activity in B16-F10 melanoma cells in vitro (unpublished results). The 

potential utility for FRET-HA to detect increased hyaluronidase activities in vivo is 

currently under investigation. 

Recently, HA has been coated onto superparamagnetic iron oxide nanoparticles [72]. These 

HA-coated nanoparticles were endocytosed by cancer cells allowing their magnetic 

resonance imaging in vitro. 

6. Conclusion 

HA is a glycosaminoglycan with diverse biological functions. The molecular weight of HA is 

important for dictating its biological functions with HA fragments inducing distinct responses 

from high molecular weight co-polymers. Endocytosis of HA via receptor dependent and 

independent pathways is likely required for digestion of HA to biologically active fragments. 

In addition, endocytosis of HA may be exploited for the uptake of chemotherapeutic drugs for 

cancer treatment or imaging probes for the detection of metastatic tumors. Future directions 

include, 1) better understanding of the endocytic mechanism for HA metabolism, 2) better 

understanding of HA receptor signaling and interactions and 3) the development of second 

generation HA scaffolds for delivery and medical imaging. 
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