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1. Introduction 

Endocytosis is the general term for internalization of fluid, solutes, macromolecules, plasma 

membrane components, and particles by the invagination of the plasma membrane and the 

formation of vesicles and vacuoles through membrane fusion. The means by which food 

material enters the body is to a great extent dependent on the size of the particles involved 

[1, 2]. One type of endocytosis is phagocytosis where large (>250 nm) particles are taken up 

by cells. In protozoa, phagocytosis is a feeding mechanism. Particles are brought into the cell 

in large endocytic vesicles called phagosomes (food vacuoles). The phagosomes fuse with 

lysosomes and digestion of the ingested particles occurs. In multicellular organisms, 

phagocytosis is a behavior seen only in certain specialized cells (for example, macrophages). 

The process is essentially the same whether it is phagocytosis of particles or other organisms 

or pinocytosis of molecules. Both endocytic processes are affected identically by inhibitors of 

aerobic metabolism and by low temperatures.  

The various forms of endocytosis (or food uptake) really only differ in degree. They are 

closely linked in that the combined volume taken up by endocytosis is constant and 

critical. As phagocytosis increases, pinocytosis must decrease proportionally.  In 

addition to the forms of bulk transport just considered, which involve invagination of 

the plasma membrane, other essential substances, dissolved nutrients of low molecu1ar 

weight, enter the organism by facilitated diffusion or active transport through the 

plasma membrane. 

Some protozoa secrete hydrolyzing enzymes into the external medium to degrade large 

nutritive molecules into smaller soluble units for transport through the plasma membrane. 

This facility for extracellular digestion is of value to facultative and obligate parasites and to 

other protozoa which live in a highly nutritive environment. 
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Ciliated protozoa collect or capture their food in a variety of ways, involving phagocytosis, 

fluid phase and receptor-mediated endocytosis 

2. Phagocytosis 

2.1. Phagocytosis in ciliates 

Ciliates acquire their food as particles from the surrounding medium by a variety of means 

[1-5]. Filter feeders create water currents with special ciliary structures associated with the 

cytostome. The synchronized beating of these membranelles acts as a collecting sieve, where 

the food particles become trapped. Using this mode of feeding, ciliates can shift considerable 

volumes of water in relation to their size. Some of the most efficient filter feeders are the 

hymenostomes Paramecium, Tetrahymena and Glaucoma. All have a ventral buccal (oral) 

cavity containing well-developed ciliary membranelles and some form of paroral membrane 

on its right margin. Fluid and suspended food particles are collected in the buccal cavity and 

directed, by oral membranelle beating, downward to the cytopharynx and cytostome to 

form a new food vacuole [6, 7]. 

Herbivorous ciliates, instead, lack complex oral cilia and gather their food by a complex 

pharyngeal basket of rods and sheets of microtubules that forms an internal support to the 

cytostome. They ingest filamentous algae by grasping the filament, bending it like a hairpin, 

and drawing it into the cytopharynx, where it is broken up into fragments and enclosed in 

digestive vacuoles.  

Gulper ciliates apprehend their prey with special structures called toxicysts, which are found 

in the oral region and release toxins that paralyze or kill the swimming prey organims. The 

paralyzed prey can then be ingested without difficulty. Indeed the oral area of gulpers can be 

extended greatly, as most carnivores take food at least as big as themselves. The initial contact 

may be due to chemotactic orientation or fortuitous contact. Some ciliates develop carnivorous 

tendencies only when their preferred food supply is exhausted. In the absence of bacteria 

Blepharisma eats its own kind and develops giant forms for self-protection [8].  

Sophisticated organelles involved in ingestion are tentacles of suctoria. The predatory or 

parasitic suctorians are sessile ciliates. The ectocommensals on a wide variety of marine and 

freshwater hosts use the motile activities of their host or its feeding strategy to bring food to 

them. Carnivores have developed a special method of feeding in which the tips of the 

tentacles act as cytostomes. The contact between the prey and the tentacles of the predator 

triggers the stimulus for ingestion. The cell contents of the prey are transported up through 

the feeding tentacles into the suctorian, where digestive vacuoles are formed. The 

transporting mechanism is mediated by a complex array of microtubules within the tentacle.  

A number of ciliates respond to exudates from animal tissues and have exploited this 

response by becoming active scavengers. Sheet-like membranous organelles associated with 

feeding are a feature of apostome ciliates which live in or on a variety of animal hosts, 

arthropods, echinoderms and sea anemones.  
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2.2. Paramecium as a model system for membrane trafficking 

The ciliated protozoan Paramecium is easily cultured and manipulated. Therefore, it is 

especially useful to study in vivo vesicle formation, transport and fusion during the digestive 

process. It disposes of well-defined sites for formation of phagosomes (oral cavity, with 

cytostome and cytopharynx) [9, 10]. 

Food vacuoles undergo a series of sequential changes from their formation at the cytostome 

to their defecation at the cytoproct. Depending on their age, size, morphology, vacuolar pH, 

acid phosphatase activity and degree of bacteria digestion, they have been grouped into 

four stages [11-17]. 

The first stage, stage I, includes the nascent and newly formed food vacuoles which separate 

from the base of the cytopharynx and move toward the posterior end of the cell (Figure 1). 

During stage I, food vacuoles have no acid phosphatase activity and are bounded by 

acidosomes. Their content condenses, becoming progressively more acidic, and surplus 

vacuolar membrane and excess fluid are removed by pinocytosis of vesicles which migrate 

back to the cytopharynx. The condensed and acidic food vacuoles (stage II) are surrounded 

by enzyme-containing primary lysosomes. As lysosomes fuse and digestion proceeds, the 

vacuole enlarges again, becoming less acidic or even slightly alkaline (stage III). The 

breakdown products are pinched off as small vesicles (secondary lysosomes) to be 

transported where necessary. Following membrane and water elimination, the food vacuole 

decreases in size and tends to a neutral pH (stage IV); the active retrieval of lysosomal 

membrane may continue during this stage, but active acid phosphatase is not present. In the 

final stage, when the food vacuole becomes defecation-competent, it fuses with the plasma 

membrane at the cytoproct (a fixed spot on the ventral surface, posterior to the buccal 

cavity). The indigestible material is excreted, while the vacuolar membrane is retrieved and 

recycled as discoidal vesicles moving back to cytopharynx and providing the membrane to 

the nascent food vacuole.  

2.3. Phagocytosis in Paramecium by confocal microscopy 

In paramecia fed with indigestible particles, the duration of the digestive cycle is relatively 

short (20 to 60 minutes), and the digestive processes are synchronous enough and so 

temporally defined as to allow food vacuole selection in a specific digestion stage using a 

pulse-chase protocol. By immobilizing living cells pulsed with a food vacuole marker at 

succeeding times after a chase of unlabeled medium, it is possible visualize in vivo the 

intracellular movement of food vacuoles along an orderly path from their formation at the 

cytostome to their egestion at the cytoproct, as well as the flow of pinocytic vesicles from 

vacuolar membrane evagination to the fusion with other food vacuoles. 

The sequence of appearance of the four vacuole stages in different regions of the cell follows 

the general path of cyclosis and indicates that the cytoplasm moves forward in the dorsal 

zone and backward in the ventral zone [6, 18]. Notwithstanding the fact that the digestive 

processes are sufficiently synchronous and separated in time, there is considerable overlap 
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and variability in the length of the food vacuole stages from cell to cell, and possibly from 

food vacuole to food vacuole [16]. Food vacuoles less than 5 min old are vacuoles of stage I 

located in the posterior end of the cell and undergoing rapid acidification and condensation. 

Vacuoles between 5 to 10 min old are acidic and condensed food vacuoles of stage II; they 

are located near the oral region and around the macronucleus. The vacuoles of stage III 

range in age from 10 to about 20 min and are generally located in the anterior half of the cell, 

while stage IV food vacuoles are more than 21 min old and move toward the cytoproct. 

Vacuolar defecation has been shown to begin at about 20 min and is essentially completed 

by 60 min in axenically grown cells [14] as well as in bacterized cells. 

 

Figure 1. Schematic drawing of phagocytic and endocytic pathways of internalization in Paramecium 

based upon WGA-FITC and dextran-TXR staining. Without phagocytosis inhibition the ingested 

material is directed by the oral membranelle beating into the buccal cavity (bc), the cytopharynx and, at 

last, into the nascent food vacuole (nfv). The newly formed food vacuole (I) is surrounded by 

acidosomes (ac) discharging their content into it. The vacuole reduces its size by eliminating water and 

membrane trough small pinocytic vesicles. The condensed vacuole (II) receives the enzymes contained 

into lysosomes (ly). The cargo is digested (III) and pinocytic vesicles containing digestion products are 

pinched off. At last, the indigestible material (IV) is excreted at the cytoproct (cp), while the vacuolar 

membrane is retrieved (rm). The endocytosis of WGA-FITC and dextran-TXR also occurs at the 

parasomal sacs located next the ciliar basal bodies. Exogenous fluid and plasma membrane components 

are internalized by vesicles which fuse with food vacuoles. G = Golgi apparatus; * = WGA-FTC; ° = 

dextran-TXR; + = degraded material;   = flow direction (modified from Allen et al. [17]). 

In order to characterize the cytoplasmic distribution and movement of food vacuoles and 

pynocytic vesicles, living cells were continuously fed with BSA-FITC and latex particles (LP) 

in culture medium for a time period ranging from 30 sec to 30 min, washed, immobilized 

with NiCl2 [19]. NiCl2 inhibits both locomotive activity [20] and formation of food vacuoles 

with solid particle content [21], without affecting cytoplasmic streaming [21]. To 

demonstrate the reutilization of pinocytic vesicles and vesicles formed by the membrane 

retrieved from spent vacuoles at the cytoproct, cells first fed with BSA-FITC and LP for 30 

min, then washed in sterile filtered culture medium for 20 to 30 min, were labeled with 

carmine particles or BSA-Texas red for 1 min, washed and immobilized at various times 

during chase [19].  
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Figure 2. (a) One nascent food vacuole (arrow) at the bottom of buccal cavity (bc) and two newly 

formed food vacuole in a cell fed (carmine particles). (b) In cells fed with BSA-TXR, newly formed food 

vacuoles which fused with BSA-FITC labeled recycled vesicles (arrow), contain both fluorochromes. 

Bars, 10 m. 

In cells fed with carmine particles for 30 sec, only 1-2 food vacuoles are labeled (Figure 

2a). To enlarge the membrane surrounding the nascent food vacuoles, cells utilize 

recycled vesicles that are pinched off from food vacuoles during the digestive process and 

the vesicles deriving from the membrane of the spent vacuoles at the cytoproct. So, in cells 

fed with BSA-Texas red newly formed food vacuoles, which fused with BSA-FITC labeled 

recycled vesicles, contain both fluorochromes (Figure 2b). Food vacuoles separating from 

the cytopharynx and moving toward the posterior end of the cell, are surrounded by 

small acidic vesicles (acidosomes) and by lysosomes (containing hydrolytic enzymes) 

which fuse with vacuolar membrane. To analyze the distribution of acidosomes and 

lysosomes during food vacuole migration, living cells pulsed with LP for 1-2 min, were 

labeled with acridine orange (AO) at various times after the chase in unlabeled medium, 

and immobilized. AO is a fluorescent tertiary amine that accumulates in the acidic 

compartment of living cells and is commonly used to stain lysosomes [23-25]. The 

fluorescence around the newly formed food vacuoles (<5 min old) is due to acidosomes 

[25], whereas the fluorescence around and within >5 min-old food vacuoles is due to 

lysosomes. The AO-stained granules produce a punctuate pattern throughout the cell and 

around certain food vacuoles. Fluorescent granules, including both primary and 

secondary lysosomes, form a relatively thin rim around 6 min-old food vacuoles 

containing LP (Figure 3a). The rim becomes quite prominent in other food vacuoles (10 

min old), as the lysosomes fuse with the vacuolar membrane and discharge their content 

into the vacuole (Figure 3b).  
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Figure 3. (a) Stage II LP-labeled food vacuoles (non-fluorescent) surrounded by AO-labeled lysosomes 

(arrows). (b) Stage III LP-labeled food vacuole (more fluorescent in the surface area, arrow): AO-labeled 

lysosomes are fusing and discharging their content into the vacuole. Bars, 10 µm .(modified from 

Ramoino et al. [19]) 

As the vacuolar content is digested by lysosomal enzymes, the breakdown substances pass 

into the cytoplasm through vacuolar membrane or by way of small pinocytic vesicles. The 

vesicles evaginated from the membrane, go away from the food vacuole and move in the 

cytoplasm toward the cytopharynx where they enlarge the membrane of the nascent food 

vacuole. These vesicles can also fuse with stage II food vacuoles (Figure 4), when the 

vacuoles of stage II increase their size, changing from an acidic to an alkaline status. For 

better visualization of the movement of the pinocytic vesicles, cells are fed with BSA-FITC 

and LP for 30 sec. and washed in a sterile culture medium. So, only 1 or 2 labeled vacuoles 

are formed and few fluorescent vesicles move in the cytoplasm. When the cells are 

immobilized between 15 to 20 min after chase in sterile medium, the food vacuoles are in the 

digestion stage and small pinocytic fluorescent vesicles pinch off. The multimodal image 

analysis utilizing the pseudo-color technique [26] shows changes on the direction of 

movement of the vesicles going away from the vacuole (Figure 5a). 

 

Figure 4. (a) Carmine-labeled food vacuole (non-fluorescent) surrounded by FITC- labeled fluorescent 

vesicles. Carmine-labeled food vacuole (more fluorescent in the superficial zone) surrounded by FITC-

labeled fluorescent vesicles. Bars, 5 µm (modified from  Ramoino et al. [19]) 
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The utilization of recycled vesicles from stage II and early stage III food vacuoles is 

evidenced by labeling food vacuoles either with carmine particles or with a second 

fluorescent probe. When carmine particles are utilized, food vacuoles in cells immobilized 

after a 5-min. chase (stage II) are initially non-fluorescent and surrounded with a lot of 

fluorescent small vesicles (Figure 4a), then, as the vesicles fuse with the food vacuole (stage 

III), their content becomes fluorescent. At the beginning fluorescence is only located in the 

surface area (Figure 4b), then, it increases as the food vacuole age progresses and more 

vesicles fuse discharging their labeled content inside the vacuole. Vesicles, which fuse with 

food vacuoles, move apparently in unidirectional manner (Figure 5b). 

 

Figure 5. Composite false-color images showing the global vesicle movement of one FITC-labeled 

vesicle moving away from a food vacuole (a) as well as of one small FlTC-labeled vesicle moving 

toward the vacuole (b). A different color, green, blue and red, was associated with three successive 

temporal images t1, t2, t3, respectively. Bar, 10 µm. (modified from Ramoino et al. [19]) 

In Paramecium, a saltatory movement with   changes in direction and velocity, stops and 

starts, was described for cell organelles such as mitochondria and trichocysts in subcortical 

regions of the cell [27] and for all motions within the cytoplasmic streaming [28], whereas a 

smooth and continuous unidirectional movement along the microtubules joined to the 

cytopharynx was reported for acidosomes and discoidal vesicles [29].  

After a digestion period, the food vacuole becomes defecation-competent and fuses with 

plasma membrane; the indigestible material is excreted. Figure 6 is a composite picture of 

phase-contrast CLSM images demonstrating the temporal and spatial movement and 

egestion of food vacuoles at the cytoproct.  

In P. primaurelia food vacuole formation depends on membrane material supply [30]. By 

using different solid particle concentrations in unbacterized culture medium it is shown that 

a given amount of membrane material is available for food vacuole formation. This 

membrane amount is utilized more rapidly if the concentration of particles is higher, where 

the food vacuole size is larger, than for a lower concentration, where the food vacuole size is 

smaller. After the utilization of the membrane made available for the cell, a decrease in the 

food vacuole number occurs. Furthermore, the rate of food ingestion decreases in starved 

cells pressed continuously to form food vacuoles because of particles suspended in the 
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culture medium. The kinetics of food vacuole formation does not differ when cells are fed 

on latex particles in bacterized and unbacterized medium for short periods of time. For 

longer labeling periods with high particle concentrations, the food vacuole number 

decreases after the maximum value more rapidly in cells stained with particles in non-

nutrient medium than in cells fed with particles diluted in bacterized medium. The spent 

vacuole membrane is insufficient to keep the food vacuole number at a high level. Failing 

new syntheses, the vacuolar membrane amount goes on depressing. 

 

Figure 6. Composite image showing the movement of a food vacuole egesting its content at the 

cytoproct. A different color cyan, yellow, red, blue, green and magenta was associated with six 

successive temporal images t1, t2, t3, t4, t5 and t6, respectively. Bar, 10 µm.  

3. Endocytosis  

3.1. Endocytosis in ciliates 

Fluid phase and receptor-mediated endocytosis has been extensively studied in mammalian 

cells [31-34] and most of what is understood about the endocytic process in protozoa comes 

from the studies of pinocytosis in amoeba [35-37]. In an amoeba pinocytotic vesicles are 

formed at the bases of long narrow invaginations, pinocytotic channels. Small vesicles are 

pinched off at the base of a channel deep in the cytoplasm and are passed into the interior. 

But fluid phase endocytosis does not necessarily involve the development of channels. The 

parasitic Opalina ranarum, which must take up nutrients through its plasma membrane, 

pinches off small vesicles in the grooves between the folds in its pellicle [38]. Once inside, 

vesicles coalesce to form larger vacuoles bounded by unit membranes, vacuoles which are 

not markedly different from endocytic vacuoles produced by phagocytosis. Fluid phase 

endocytosis may occur simultaneously all over the surface as in amoebae, or it may be 

restricted to clearly defined regions, such as the walls of the flagellar pocket of some 

trypanosomes. 
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The limited data about endocytosis in ciliates is also due to the difficulty of visualizing this 

process at an optical level. Indeed, in ciliates only defined areas on cell surface are potential 

sites for endocytic uptake since most of the surface is covered internally by an extensive 

system of alveoli and an underlying fibrous epiplasm [39]. This system is interrupted only at 

the cytopharynx, the cytoproct, contractile vacuole pores and along the junctions of the 

abutting units of alveolar membrane sacs. Only the punctuate indentations of the plasma 

membrane, called parasomal sacs, and pellicular pores are potential endocytic entry ports of 

all fluid phase and putative receptor-mediated endocytosis [17, 40-42]. 

Detailed morphological and tracer studies on endocytosis carried out by electron 

microscopy showed that in Paramecium multimicronucleatum fluid phase markers such as 

horseradish peroxidase (HRP) and in Tetrahymena pyriformis receptor-mediated markers 

such as cationized ferritin are internalized via coated pits and are found in coated vesicles 

[40, 41]. Both coated pits and vesicles are also labeled in fixed cells when a monoclonal 

antibody against the plasma membrane of P. multimicronucleatum (C6 antigen) is applied to 

cryosections, suggesting that both membrane-bound and fluid phase markers are 

internalized at the coated pits [40]. Most endocytic sites are clathrin coated pits, however 

there is increasing evidence for mammalian cells for clathrin-independent pathways, 

mediated by caveolae or non-coated vesicles [43].  

In Paramecium the fluorescence amount internalized by endocytosis is less than that 

internalized by phagocytosis even if an increased endocytic rate is obtained when food 

vacuole formation is blocked. Indeed, evidence was provided by electron microscopy 

studies that the number of endocytic vesicles increased when food vacuole formation was 

blocked by trifluoperazine, a calmodulin antagonist [41]. In addition, by means of a 

quantitative analysis, it was evidenced more specifically that the HRP influx rate increased 

twofold when phagocytosis was blocked by propranolol, a -adrenergic antagonist [44]. 

Wyroba [44] suggested that in Paramecium the increased fluid phase uptake indicates that 

the two pathways, though independent, may be limited by a membrane pool and/or energy 

requirements. Indeed, forskolin and phorbol ester, powerful stimulants of Paramecium 

phagocytosis [45], reduce the HRP uptake rate. 

3.2. Endocytosis in Paramecium by confocal microscopy  

Endocytosis in P. primaurelia was studied using WGA (Triticum vulgaris agglutinin) and 

GABAB receptor antibodies, which bind to surface constituents of fixed [46, 47] and living 

cells, as markers for membrane transport and dextran as a marker for fluid phase 

endocytosis.  

Endocytosis markers are internalized via food vacuoles formed at the cytopharynx when 

they are added to the cell incubation medium without phagocytosis inhibition [48]. Cells 

pulsed with WGA-FITC for 3 min show some food vacuoles at the posterior pole of the 

body. After a 10-min chase in unlabeled medium the number of fluorescent food vacuoles 

increases (data not shown). The increase in labeled food vacuoles in a fluorochrome-free 
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medium is due to the fact that the ingested lectins are degraded and pass into the 

cytoplasm by small vesicles which then fuse with other food vacuoles [19]. Increasing the 

chase in unlabeled medium increases the fluorescence inside the cytoplasm, which is 

found later in the vesicles of the phagosome-lysosome system and at the plasma 

membrane level. Conversely, when phagocytosis is blocked by trifluoperazine, the 

fluorescence is initially found, in 3 min pulsed cells, on the plasma membrane and cilia 

and inside the cell into small cytoplasmic vesicles (Figure 7a). After a 5-10 min chase in 

unlabeled medium, fluorescent vesicles fuse with some food vacuoles (Figure 7b), and 

after 20-30 min the labeled food vacuoles increase in number and small vesicles 

throughout the cytoplasm fluoresce (Figure 7c). Therefore, the digestion inside the 

vacuoles of lectins internalized via endocytosis begins later with respect to lectins 

internalized via food vacuole formation (phagocytosis). Moreover, a very weak 

fluorescence is detectable on plasma membrane after longer time periods compared with 

lectin internalization via food vacuole formation.  

 

 

 

 

 
 

 

 

Figure 7. WGA internalization and intracellular flow.  Cells labeled with WGA-FITC for 3 min. Plasma 

membrane and small vesicles inside the cell fluoresce (a). After a 10 min chase in unlabeled medium (b) 

fluorescence is visible in a few food vacuoles whereas after 30 min (c) small vesicles throughout the 

cytoplasm fluoresce. Bar, 20 m.  
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The fusion of endocytic vesicles with food vacuoles is evidenced by a double-labeling 

experiment in which the vesicles are dyed with WGA-FITC and the food vacuoles with BSA-

TXR (Figure 8). 

Similar results were obtained in cells blocked in the phagocytic activity, incubated at 25°C in 

a culture medium containing an antibody anti-GABAB R1 receptor for 15-30 minutes and 

then fixed and processed for immunolabeling.  

Dextran-TXR, a fluid phase endocytosis marker, does not label the plasma membrane and 

enters the cell via small vesicles initially localized at the cortical level (Figure 9a). The 

vesicles later migrate in the cytoplasm and fuse with other endocytic vesicles and with food 

vacuoles (Figure 9b). The number of labeled food vacuoles increases as the dextran-labeled 

vesicles fuse with food vacuoles (Figure 9c) and then decreases when the vacuolar content is 

digested and food vacuoles containing the indigestible material are ejected at the cytoproct. 

 

 

 

 

 
 

 

 

 

Figure 8. Fusion of endocytic vesicles with food vacuoles.  Cells fed with BSA-TXR for 20 min, washed, 

and labeled with WGA-FITC for 5 min. At first, green fluorescence is localized on plasma membrane 

(a); after 20 (b) and 30 min (c) of chase in unlabeled medium green fluorescence is also present inside 

the food vacuoles. Bar, 20 m. 
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Figure 9. Dextran internalization and intracellular flow. In cells labeled with dextran-TXR for 3 min 

fluorescence is visible in small vesicles located in the cortex under the plasma membrane (a). After a 10 

min chase in unlabeled medium (b), vesicles decrease in number and increase in size. After 30 min 

several food vacuoles are labeled (c). Bar, 20 m. 

The relationships between the two different routes of internalization, membrane transport 

and fluid phase endocytosis, are clearly shown when cells blocked in their phagocytic 

activity are simultaneously fed with WGA-FITC and dextran-TXR (Figure 10). The data 

obtained by confocal microscopy suggest that WGA and dextran are present in different 

endocytic vesicles soon after initiation of uptake (< 10 min). The two probes probably partly 

join prior to their fusion with the phago-lysosomal compartment. From these data we can 

assume that dextran-TXR and WGA-FITC enter the cells through two different vesicle 

populations, which then can fuse together or with food vacuoles.  

In order to understand if the two markers are internalized through two separate pathways, 

cells were incubated either in a hypertonic medium or in acetic acid. Indeed, subjecting 

mammalian cells to either incubation in media containing sucrose [49] or cytosol 

acidification with acetic acid [50, 51] has been shown to inhibit clathrin-mediated 

endocytosis by interfering with clathrin-adaptor interactions [52], or by altering the 

structure of clathrin itself [53-55]. In P. primaurelia 0.20 M sucrose incubation completely 

blocks the internalization of WGA, which stops at the plasma membrane (Figure 11a). It also 

reduces dextran uptake, which is localized in small vesicles in the cortical part of the cell 

and in a few vesicles throughout the cytoplasm. Through cytosol acidification by 10 mM 

acetic acid, pH 5.0, WGA fluorescence is localized at the plasma membrane level whereas 



 
Imaging of Endocytosis in Paramecium by Confocal Microscopy 

 

135 

small red vesicles containing dextran are localized both in the cortex, under the plasma 

membrane, and throughout the cytoplasm (Figure 11b). A similar fluorescent pattern was 

seen by using chlorpromazine (data not shown), a cationic amphiphilic drug which inhibits 

clathrin-dependent receptor mediated endocytosis by reducing the number of coated pit-

associated receptors at the cell surface [56, 57]. 

 

 

Figure 10. Double labeling with WGA and dextran. Cells are fed with WGA-FITC and dextran-TXR for 

5 min (a, b), and fixed after 10 (c) and 20 min (d) of chase in unlabeled medium. (a) and (b) are images of 

the same cell acquired at different focus planes. WGA and dextran are present in different endocytic 

vesicles soon after initiation of uptake (< 10 min), then the two probes partly join prior to their fusion 

with food vacuoles. Bar, 20 m. 

 

 

Figure 11. Fig. 11. Inhibition of clathrin-mediated endocytosis. (a) Effect of hypertonic medium on fluid 

phase and membrane mediated transport. Cells blocked in phagocytic activity are incubated in 0.20 M 

sucrose, WGA-FITC and dextran-TXR for 10 min. Sucrose inhibits WGA internalization and reduces 

dextran internalization. (b) Effect of cytosol acidification on fluid phase and membrane mediated 

transport. Cells blocked in phagocytic activity are incubated in 10 mM acetic acid, pH 5.0, WGA-FITC 

and dextran-TXR for 5 min. Green fluorescence is localized on the plasma membrane and red 

fluorescence in vesicles in both the cortical region and throughout the cytoplasm. (a, b) Two images of 

the same cell acquired at different focus planes from the dorsal side (left) to the internal cytoplasm 

(right). Bars, 20 m. 
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Conversely, dextran internalization is blocked by filipin and nystatin (Figure 12), sterol-

binding agents that disrupt caveolar structure and function [58]. 

 

Figure 12. Inhibition of clathrin-independent endocytosis. Effect of nystatin on fluid phase and 

membrane mediated transport. Cells blocked in phagocytic activity are incubated in 2µg/ml nystatin, 

WGA-FITC and dextran-TXR for 5 (a, b) and 20 min (c) min. (a) and (b) are images of the same cell 

acquired at different focus planes. Green fluorescence locate on the plasma membrane and in vesicles 

through the cytoplasm; no red vesicles are seen inside the cell. Bar, 20 m. 

4. Receptor internalization and recycling  

4.1. Receptor endocytosis  

The classical paradigm of receptor function assumes that receptors localize on the cell 

surface and are activated by the binding of agonist ligands. After activation, most receptors 

are endocytosed from cell surface and travel to low pH endosomes, allowing the ligand to 

detach before the receptor is recycled back to the cell surface or sent through late endosomes 

to lysosomes for degradation [59]. Increasing evidence shows that some G protein-coupled 

receptors are not totally inactive in the absence of ligands but exhibit a constitutive activity, 

too, with elevated basal levels of intracellular signaling [60, 61]. It was found that receptor 

internalization from the neuronal surface occurring both constitutively and in response to 

agonist exposure is mediated by clathrin-dependent endocytosis [62-64]. Clathrin-coated 

vesicles are the initial vehicles for sequestration of surface receptors, which are ultimately 

degraded or recycled. Endocytosis of such membrane proteins involves a series of steps 

beginning with the clustering of receptors at specific sites of the plasma membrane, regions 

that later turn into clathrin-coated pits. Receptors do this by recruiting cytosolic AP2 

adaptor complexes through their cytoplasmic tails.   
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AP2 is a key component of the endocytic machinery that links cargo membrane proteins to the 

clathrin lattice, selects molecules for sorting into clathrin-coated vesicles and recruits clathrin 

to the plasma membrane [65-69]. It is composed of subunits: α, β2, µ2, and σ. The µ2 subunit 

(AP50) binds the endocytic sequence motif of cargo proteins, whereas the β2 subunit binds to 

clathrin and the α region interacts via distinct domains with amphiphysin, AP180 and eps15. 

In addition to the AP2 adaptor complex, amphiphysin interacts with dynamin and the 

disruption of dynamin-amphiphysin interaction by recombinant amphiphysin src homology 3 

(SH3) domain in vivo leads to a potent block in clathrin-mediated endocytosis [70, 71]. 

Dynamin, a large GTP-binding protein, pinches off vesicles at constricted clathrin-coated pits 

by forming a ring-like structure collaring the neck of the vesicle that is thought to drive vesicle 

separation. Eps15 binds the C-terminal domain of the AP2 adaptor -subunit and mediates the 

interaction of AP2 with proteins such as epsin, CALM/AP180 and synaptojanin, implicated in 

regulation of receptor-mediated endocytosis. Eps15 function in clathrin-dependent 

endocytosis seems to be restricted to the early events leading to clathrin-coated pit formation: 

indeed eps15 is not present in clathrin-coated vesicles [72]. 

It has been shown that endocytosis of receptors may also occur through other membrane 

structures, including noncoated membrane invaginations [73, 74] and caveolae [75]. The 2-

adrenergic receptor, which is endocytosed by clathrin-coated pits in several cell types [76, 

77], is endocytosed by membrane invaginations resembling to caveolae in other cells [74, 

75]. Cholecystokinin receptors have been observed in both clathrin-coated pits and caveolae 

in the same cells [73]. Caveolae are cholesterol- and sphingolipid-rich smooth invaginations 

of the plasma membrane that partition into raft fractions and the expression of which is 

associated with caveolin 1. 

A clathrin- and dynamim-dependent mechanism in the β2-adrenergic receptor 

internalization has been already shown in Paramecium [78, 79]. An homologue of dynamin, a 

protein present in mammalian cells with three isoforms generating more than 25 possible 

spliced variants expressed in a tissue-specific manner, was identified in Paramecium, too [80]. 

A gene fragment of this dynamin reveals 74% similarity to human dynamin 2 mRNA and 

the deduced amino acid sequence shows 61.1% homology in a 175 amino acid overlap to the 

N-terminal region of human, mouse and rat dynamin [81]. Endocytosis in Tetrahymena also 

involves a protein in the dynamin family [82]. 

4.2. Receptor trafficking after internalization 

Endocytosis of receptors can contribute to functional resensitization of signal transduction 

by promoting dephosphorylation and recycling of receptors to the plasma membrane [83] as 

well as to down-regulation of receptors, a process that leads to functional desensitization of 

signal transduction by reducing the number of receptors present in the plasma membrane 

and promoting degradation of receptors in lysosomes [73, 84, 85].  

These processes of receptor regulation are thought to involve membrane trafficking of 

receptors via distinct recycling or degradative pathways and can mediate opposite effects on 

the regulation of functional signal transduction [83, 86].  Golgi-derived vesicles provide 
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newly synthesized receptors to the cell surface, whereas clathrin coated vesicles are the 

initial vehicles for sequestration of surface receptors, which are ultimately degraded or 

recycled back to the plasma membrane, either directly or through the recycling endosomes 

[87-89]. These processes are mediated by a continuous traffic of vesicular and tubular 

intermediates which needs to be coordinated to ensure proper progression of cargo through 

the different compartments. Several rab family members have been localized to distinct 

compartments of the endocytic pathway and play different roles in endocytosis and 

recycling [90-93]. Rab5 and rab4 are both localized to early endosomes but exert opposite 

effects on the uptake of membrane-bound proteins. Rab5 plays a role in the formation of 

clathrin-coated vesicles at the plasma membrane [94], their subsequent fusion with early 

endosomes, in the homotypic fusion between early endosomes [95, 96] and in the interaction 

of early endosomes with microtubules [97]. Rab4 has been implicated in the regulation of 

membrane recycling from the early endosomes to the recycling endosomes or directly to the 

plasma membrane [98]. 

In accordance with this functional diversity, rab5 lies at the center of a complex machinery 

comprising several effector proteins [99]. Of these proteins, EEA1 was identified as a core 

component of the homotypic endosome docking and fusion machinery and was shown to 

play a role in the docking/tethering of the endosome membranes [99]. EEA1 is 

predominantly localized to the early endosomes and is regarded as a specific marker of this 

compartment. Because of this localization and given its function in endosome membrane 

docking [99] it has been proposed that EEA1 may confer directionality to rab5-dependent 

vesicular transport to the early endosomes.  Another effector protein for rab5 is rabaptin-5. 

Rabaptin-5 binds directly to the GTP-bound form of rab5 and is recruited to early 

endosomes by rab5 in a GTP-dependent manner [100], stabilizes rab5 in the GTP-bound 

active form by down-regulating GTP hydrolysis [101] and, finally, it is required for the 

homotypic fusion between early endosomes as well as for the heterotypic fusion of clathrin-

coated vesicles with early endosomes in vitro [100, 102]. Rabadpin-5 also interacts, via a 

distinct structural unrelated N-terminal RBD, with GTP-bound rab4 but does not appear to 

interact with rab11, a GTPase that is highly enriched on the recycling endosome and whose 

activity is required for receptor recycling through this compartment [89]. Thus the same 

effector interacts with the two rab proteins which act sequentially in transport through the 

early endosomes. Furthermore, the lysosomal sorting of receptors is dependent upon rab 7 

activity [103]. 

Small GTPase rab is a widely conserved molecular switch among eukaryotes and regulates 

membrane trafficking, also in ciliates. In the T. thermophila genome 56 different rab protein 

genes were identified [104]. These do not include 17 putative rabs previously reported [82]. 

This is a remarkable number, considering that somewhat over 63 rabs have been identified 

in humans [105]. Some of them are very conserved and some others are ciliate specific [104, 

106]. Endocytic compartments were found to be associated with a large number of rabs, 

including both conserved endocytic rabs but also a roughly equal number of divergent rabs. 

One of the conserved rabs did not fall into any of the proposed core clades. The animal rabs 

in this clade are associated with transport of lysosome-related organelles, while the 
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Tetrahymena protein localized to phagosomes. The remaining 14 conserved rabs in 

Tetrahymena fall within five of the proposed core pathways: ER-to Golgi, 

endocytosis/recycling, endocytosis, retrograde Golgi and late endocytosis [104, 106].  

86 rab genes in the Tetrahymena genome and 229 rab genes in P. tetraurelia were found by 

Saito-Nakano et al. [107]. By comparing the amino acid sequence of rabs in humans and the 

budding yeast Saccharomyces cerevisiae, 42 conventional and 44 species-specific rabs were 

categorized in Tetrahymena and 157 conventional and 72 species-specific rabs in Paramecium. 

Among them, nine Paramecium rab genes showed high homology to seven Tetrahymena rabs, 

suggesting the conservation of ciliate-specific rab [107]. 

4.3. Investigating the GABAB receptor trafficking pathway in Paramecium using 

confocal microscopy 

In our studies we are interested in understanding the endocytic properties of GABAB 

receptors in Paramecium [108, 109]. Although most G protein-coupled receptors undergo 

endocytosis, the conditions and mechanisms of this process vary from receptor to receptor. 

Many of them are endocytosed via clathrin-coated pits, but some are not [110, 111]. Some 

have an agonist-induced endocytosis, some are continuously endocytosed even in the 

absence of stimulation, while others exhibit both a constitutive and a stimulated endocytosis 

[110, 112, 113]. Currently, very little is known about the targeting and trafficking 

mechanisms of GABAB receptor in cells. In the past years, attention has mainly been focused 

on endocytosis of ionotropic GABA (GABAA) receptors. It has been shown that GABAA 

receptors are internalized by a clathrin-coated pit-mediated process in hippocampal neurons 

and in A293 cells [114] and in a clathrin independent manner in HEK-293 cells [115]. Using a 

dominant-negative dynamin construct K44A Herring et al. [116] showed that constitutive 

endocytosis of GABAA receptors in HEK-293 cells is dynamin-mediated, while Cinar and 

Barnes [115] found that it is dynamin-independent. It was also shown that both recombinant 

and neuronal GABAA receptors can constitutively recycle between the cell surface and an 

intracellular endosomal compartment [117]. In Paramecium a dynamin- and clathrin-

dependent pathway has been already observed [78, 79]. 

Constitutive internalization and intracellular trafficking of receptors in P. primaurelia was 

visualized by multiple immunofluorescence analysis using GABAB receptors as marker. 

GABAB receptors display a dotted vesicular pattern dispersed on the cell surface and 

throughout the cytoplasm (Figure 13a), and are internalized via clathrin-dependent and -

independent endocytosis. Indeed, GABAB receptors colocalize with the adaptin complex 

AP2, which is implicated in the selective recruitment of integral membrane proteins to 

clathrin-coated vesicles, and with caveolin 1, which is associated with uncoated membrane 

invaginations [109]. 

Cells were double labeled with a guinea pig anti-GABAB receptor R1 subunit antibody and 

with a monoclonal anti-clathrin or anti-caveolin 1 antibody and visualized with Alexa Fluor 

594-conjugated anti-guinea pig and Alexa Fluor 488-conjugated anti-mouse secondary 
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antibodies, respectively. Staining with anti-clathrin or antI-caveolin antibody led to a 

punctuate pattern throughout the cytoplasm representing endocytic vesicles. The expression 

of GABAB receptors and clathrin- or caveolin-coated vesicles exhibited a clustered 

distribution on the cell membrane and inside the cytoplasm (Figure13). Importantly, GABAB 

receptor and clathrin- or caveolin-coated vesicle clusters were partly colocalized (yellow 

fluorescence). Furthermore, GABAB receptors colocalize with β2 adaptin in a number of sites 

on the plasma membrane [109].  

 

Figure 13. Colocalization of GABAB receptors and clathrin. In cells labeled with a polyclonal antibody 

against GABAB receptor (b) and a monoclonal antibody against clathrin HC (a), a clustered distribution 

of fluorescence is detected on the plasma membrane and inside the cytoplasm. GABAB receptors and 

clathrin vesicles are partly colocalized (c, yellow fluorescence). Bar, 20 m. (d) 2D cytofluorogram: 

colocalized pixels are clustered along the diagonal line (visualized in blue). 

In addition, we have shown that GABAB receptors are removed from the plasma membrane 

by clathrin-dependent and -independent endocytosis by blocking receptors internalization 

by hypertonic sucrose. However, it has recently been found that sucrose inhibits GABAA 

receptor endocytosis that is not mediated by clathrin-coated pits [115]. Therefore, we have 

also used cytosol acidification with acetic acid for clathrin-mediated endocytosis inhibition 

[50]. Furthermore, GABAB receptor internalization in Paramecium is blocked by filipin and 

nystatin, cholesterol binding drugs. The sensitivity of endocytosis to nonacute cholesterol 

depletion with agents such as filipin and nystatin distinguishes caveolae and raft pathways 

from clathrin-dependent and constitutive pinocytosis pathways [118].  
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Treatment of cells with 150 mM sucrose or cytosol acidification significantly inhibited the 

internalization of receptors, as shown by the considerable reduction in receptors inside the 

cytoplasm (Figure 14) as compared to the control (Figure14b). This observation strongly 

suggests that GABAB receptor internalization in Paramecium is mediated by clathrin-

dependent endocytosis. In these experiments phagocytosis was blocked by trifluoperazine.  

 

Figure 14. GABAB-receptor internalization is mediated by clathrin-coated vesicles. In cells whose 

phagocytic activity is blocked by trifluoperazine, 20-minute treatment with 150 mM sucrose (c) or 

citosol acidification (d) inhibits receptor internalization, which can be seen by receptor accumulation on 

the cell membrane and receptor reduction inside the cytoplasm. Controls are cells incubated with the 

anti-GABAB receptor antibody for 1 (a) and 20 min (b) in the absence of inhibitors; the antibody is 

localized in endosomes and phagosomes. Incubation temperature, 25°C. Bar, 20 m. 

Moreover, when endocytosis was blocked by filipin or by nystatin the receptor internalization 

decreased (Figure 15). In these experiments cells were incubated in the anti-GABAB receptor 

antibody for 30 minutes at 4°C (temperature inhibiting phagosome and endosome formation, 

[16], so that receptors were accumulated on the cell membrane (Figure 15a). After removal of 

the excess of antibody, cells were incubated at 25°C. 84% receptors were internalized in 

untreated cells after 20 minutes incubation at 25°C, as shown both by the reduction of cell 

membrane fluorescence intensity and by the fluorescence localization into endosomes and 

phagosomes (Figure 15b). Only 37% and 46% fluorescence was internalized in filipin (p<0.01) 

and nystatin-treated cells (p<0.01), respectively (Figure 16).  

 

Figure 15. GABAB receptors are internalized by non-coated endocytosis. Cells preincubated at 4°C for 

30 minutes and labeled with anti-GABAB receptor antibody for 30 minutes (a) are fixed after a 20-

minute chase at 25°C in the absence (b) or in the presence of non-coated-pit endocytosis inhibitors 

filipin (c) and nystatin (d). Bar, 20 m. 
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Figure 16. Measurement of the internalization shown in Figure 15. Constitutive receptor internalization 

is partially inhibited by filipin and nystatin (38% and 47%, respectively); P < 0.01, Student’s t-test). Data 

were normalized to cells before internalization at 25°C (shown in  Figure15a).  

Colocalization values reported in Table 1 and experiments carried out in living cells suggest 

that GABAB receptors are internalized through the two pathways in a similar quantity. 

Quantification of cell membrane fluorescence was performed by ImageJ 1.46b software 

(Wayne Rasband, Nat. Inst. of Health, USA). 

 

Red Green Red/green (%) Green/red (%) 

GABAB receptor Clathrin 18 ± 3 19 ± 3 

GABAB receptor Caveolin 1 21 ± 6 25 ± 4 

Every colocalization value is the average from four optical sections of ten cells. Data were calculated as the mean ± s.e. 

and are given in percent. 

Table 1. Colocalization of GABAB receptor labeling with proteins involved in endocytosis 

After internalization by clathrin-coated vesicles and by caveolae GABAB receptors are 

transported by rab5-linked vesicles to early endosomes, characterized by the EEA1 marker. 

Receptors are then partly recycled back to cell membrane and partly degraded. The 

recycling of GABAB receptors is evidenced by the overlapping of their immunolocalization 

with both rab4 and rab11 immunostaining. Rab4 controls the rapid recycling of cargo 

proteins directly back to the cell surface from rab4/rab5 positive endosomal structures, and 

the slow recycling of cargo via rab11 positive recycling endosomes. The traffic of GABAB 

receptors to Golgi apparatus is evidenced by colocalization of GABAB with TGN38 

immunoreactivity. The communication between contiguous rab-domains and thereby the 

sequential transport of receptors from one intracellular compartment to another is regulated 

by rab effector rabaptin-5. Furthermore a fraction of GABAB R1 seemed to be directed to 

lysosomes, as shown by GABAB R1 and LAMP1 (lysosomal marker) immunocolocalization, 

and to phagosomes for degradation. An immunolocalization of rab7 on phagosomal 

membrane was also reported in Paramecium [119-122]. 
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Colocalization of GABAB receptors with proteins involved in the endocytosis and recycling 

was demonstrated by both the colocalized pixels in a 2D cytofluorogram and the similarity 

of green and red profiles along the z-axes of fluorescence intensity of double-stained vesicles 

[109]. 2D cytofluorogram (Figure 14d) was generated using ICA plugin of ImageJ.  

Colocalization along the z-axes of double-stained vesicles is also demonstrated by the 

similarity of green and red profiles of their fluorescence intensity of double-labeled vesicles 

from a stack of 30 images (total thickness 2 µm). For three different focal planes a sample of 

a vesicle that shows colocalization (yellow fluorescence) was selected (Figure 17).  

 

 

Figure 17. z-Stack profile of fluorescence intensity of double-labeled vesicles. The left side of the figure 

shows a optical plane from a stack of 30 images (total thickness 2 µm). The right side of the figure 

shows fluorescence-intensity distribution along the z-axis of three yellow-labeled vesicles selected from 

different optical planes (a, top; b, middle; c, bottom) (green,  open circle; red, filled circle). 

The quantitative estimation of colocalized proteins in immunocytochemical studies has been 

performed calculating the colocalization coefficients [123] from the red- and green-channel 

scatterplot. Colocalization coefficients express the fraction of colocalizing molecular species 

in each component of a dual-color image and are based on the Pearson’s correlation 

coefficient, a standard procedure for matching one image with another in pattern 

recognition [124]. If two molecular species are colocalized, the overlay of their spatial 

distributions has a correlation value higher than what would be expected by chance alone. 

Costes et al. [125] developed an automated procedure to evaluate correlation between the 

green and red channels with a significance level >95%. The same procedure automatically 

determines an intensity threshold for each color channel based on a linear least-square fit of 

the green and red intensities in the image’s 2D correlation cytofluorogram. Costes’ approach 

has been accomplished by macro routines integrated as plug-ins (WCIF Co-localization 

Plugins, Wright Cell Imaging Facility, Toronto Western Research Institute, Canada) in the 

ImageJ 1.46b image-analysis software (Wayne Rasband, NIH, USA). 
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5. Conclusion 

In ciliates, essential components of membrane trafficking during endocytosis have been 

identified, based on work mainly with Paramecium and Tetrahymena. We used P. 

primaurelia and laser scanning microscopy to show in vivo vesicle formation, movement 

and fusion. The retrieval of membrane of stage III and stage IV food vacuoles, and 

recycling back both to nascent food vacuoles as small vesicles and to the acidified food 

vacuoles (stage II) as secondary lysosomes have been clearly and dynamically 

documented. Furthermore, the multimodal analysis using the pseudo-color technique 

enabled us to observe the changes in the direction of movement of pinocytic vesicles after 

evagination from food vacuoles.  

Using endocytosis markers and confocal microscopy we have also shown that WGA and 

dextran enter the cell via two distinct vesicle populations and that in Paramecium, as in 

mammalian cells, fluid phase endocytosis is unaffected by treatments that arrest coated pit-

mediated endocytosis, indicating that fluid phase endocytosis is primarily clathrin-

independent. So, plasma membrane components are internalized by endosomes, which are 

first localized in the cortical region of the cell, transported in the most internal cytoplasmic 

portion and fused with other endosomal compartments, until their content is transferred to 

the phagosomes. 

Furthermore, GABAB receptors are removed from the plasma membrane by clathrin-

dependent and -independent endocytosis. Indeed, internalization of receptors is blocked by 

hypertonic sucrose and cytosol acidification, classic inhibitors of clathrin-mediated 

endocytosis, as well as by nystatin and filipin, sterol-binding agents that disrupt caveolar 

structure and function.  

Using standard immunomarkers for early endosomes, recycling vesicles and lysosomes, and 

comparing our data with those obtained in mammalian cells relating to the internalization 

and recycling of some other receptors, we inferred that also in Paramecium GABAB receptors 

are partly recycled to cell plasma membrane and partly degraded into lysosomes. So, using 

immunohistochemical methods we demonstrated that in the single-celled organism 

Paramecium, as in mammalian cells, rab-like proteins are involved in the vesicle transport 

from one compartment to another.  
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