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1. Introduction 

Endocytosis is the highly controlled and complex process by which a portion of the plasma 

membrane, including its lipids, proteins, and local extracellular fluid becomes internalized 

in a cell. Endocytosis serves to mediate a multitude of interactions between a cell and its 

environment, including nutrient uptake, mitosis, motility, as well as adaptive and innate 

immune response, among many others. There are multiple routes of endocytotic uptake into 

cells, with the most studied being clathrin mediated endocytosis (CME). Although CME 

differs significantly on a molecular level from the clathrin-independent endocytosis 

mechanisms (e.g. macropinocytosis, phagocytosis), all of the endocytic mechanisms involve 

a sequence of changes in morphology, molecular composition, and protein interactions at 

the plasma membrane, as well as throughout the bulk of the cell. Further, each of these 

changes is tightly regulated in space and time. To fully characterize endocytic pathways and 

their intertwined relationship to other signalling pathways, there is a need to visualize the 

dynamics of multiple species at the plasma membrane and within the cell with high three-

dimensional spatial resolution.  

Traditional biochemical and genetic approaches have provided, and will continue to provide, 

a wealth of information about the cellular pathways and key molecules involved in 

endocytosis. However, such bulk assays are only able to provide ensemble measurements. 

Thus, they cannot shed light on the important and stochastic sub-cellular spatiotemporal 

information that is inherent to endocytosis. High resolution electron microscopy studies can 

address this limitation with exquisite spatial detail approaching atomic resolution, but cannot 

easily capture the dynamics of endocytosis. For this reason, live cell fluorescence microscopy 

has been exploited to provide vital information at the subcellular and single molecule level 

about the localization of components involved in individual endocytosis events.  

Very early optical microscopy investigations used traditional organic fluorophores and 

widefield fluorescence imaging to follow membrane associations during endocytosis. 
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Widefield fluoresce microscopy is readily available, simple to conduct, and provides lateral 

spatial resolution of 200-400 nm when using visible excitation light and axial spatial 

resolution on the order of 1 µm with optimal objective and microscope configurations. This 

resolution is sufficient to understand the overall arrangement of proteins on the cellular 

membrane and determine uptake into cells as demonstrated by Leserman et al. (Leserman, 

et al., 1980); but, the presence of interfering signal from throughout the depth of the cell 

limits the ability to visualize single events using this approach. The addition of the confocal 

pinhole into the fluorescence microscope serves to reject much of the out-of-focus light, 

providing a significant improvement in axial spatial resolution, and signal to noise (SNR); 

confocal fluorescence microscopy has demonstrated wide success in following endocytotic 

processes within living cells in three dimensions (Betz, et al., 1996; Muller, 2006). The reader 

is referred to Stephens and Allan for a review of the basics of widefield and confocal 

fluorescence microscopy technologies for live cell imaging (Stephens & Allan, 2003).  

In this chapter, we will summarize optical imaging methodologies beyond the simple 

transmission optical, widefield fluorescence, and confocal fluorescence microscopes. The 

advanced techniques presented here have significant advantages in spatial, spectral, and/or 

temporal resolution when compared to traditional microscopy methods and are well-suited 

for real-time tracking of individual endocytotic events in living cells. We will cover: (1) total 

internal reflection fluorescence microscopy, which has become a dominant technology for 

endocytosis dynamics due to its specificity for the plasma membrane, (2) super-resolution 

microscopy, whose exquisite spatial resolution has led to emerging applications in the field of 

endocytosis, and (3) spectral imaging, which exploits the spectral properties of fluorophores 

and spectral deconvolution to extend fluorescence microscopy much further into the 

multiplexed regime. In each of these areas, we will introduce the basic concepts of the 

measurement technique, present important developments in analysis algorithms, and 

highlight recent studies with regard to endocytosis. It is important to note that although the 

focus of this chapter is advanced optical imaging methodologies for following endocytosis in 

living cells, the techniques presented here demonstrate the potential utility in visualizing 

exocytotic processes and the various vesicle trafficking events that are critical to cell function. 

2. Total internal reflection fluorescence microscopy 

2.1. Basic principles 

Total internal reflectance fluorescence (TIRF) microscopy offers a unique approach for 

selective imaging of biological components and events very near (typically <200nm) to the 

plasma membrane in cells (Axelrod, 2001). This technique avoids much of the background 

signal emanating from fluorophores within the cytoplasm, thereby increasing detection 

sensitivity over traditional widefield or confocal microscopy. TIRF was first demonstrated in 

living cells by Axelrod and colleagues for visualization of acetyl choline receptors, and as a 

sensitive measure of membrane topology (Axelrod, 1981). It has since been widely adopted 

in biological laboratories for a large range of applications, particularly after the introduction 
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of commercially available objective-based TIRF systems (Mattheyses & Axelrod, 2006). 

Demonstrations have included characterizations of cell receptor distributions (N. L. 

Thompson, et al., 1997), and other membrane bound biomolecules (Sund & Axelrod, 2000), 

dynamic imaging of exocytic/secretory vesicle trafficking and fusion (Schmoranzer, et al., 

2000), as well as single molecule (Tokunaga, et al., 1997) and single nanoparticle (Aaron, et 

al., 2011) 2D tracking within the membrane. In addition, TIRF has allowed for enhanced 

biophysical characterizations of endocytotic events, as discussed in the following section. 

The principle behind TIRF relies on the creation of evanescent excitation. Snell’s law 

accurately predicts the angle of light refraction through media of various refractive indices. 

However, it can be shown that in cases where light propagates from a higher refractive 

index material (such as glass) to a lower refractive index material (such as air or water), 

there exists a critical angle, θc, above which refraction cannot occur. Mathematically, this is 

represented by:  
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where n1 and n2 correspond to the lower and higher refractive indices, respectively. At 

angles that exceed this value, total internal reflection occurs, and light does not propagate 

through the lower refractive index material, but rather is reflected away from the interface 

in the opposite direction. Interestingly, a more detailed analysis using Maxwell’s equations 

reveals that a portion of the impinging light’s energy extends slightly into the lower 

refractive index material. This is referred to as an evanescent wave, which propagates 

parallel to the interface, and decays quickly in the perpendicular direction. The decrease in 

intensity from the surface can be described by an exponential function, with characteristic 

decay constant, d, given by: 
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where λ refers to the excitation wavelength, θ is the angle at which the light impinges 

normal to the interface (θ > θc), and n1 and n2 are as described above. Equation (2) indicates 

that the penetration depth of the evanescent field will typically extend a distance less than 

the wavelength of light used, and will decrease with increasing illumination angle. For 

instance, excitation at 532nm, passing from a glass coverslip (n1 = 1.52) to an aqueous 

environment (n2 = 1.33), at an angle of 68° to the surface, will exhibit an evanescent decay 

length of only 165nm. This represents more than a 3-fold smaller distance than the axial 

resolution of a typical confocal microscope. As such, TIRF has become a widely used 

modality to study events very near the cell membrane, including the myriad of endocytosis 

mechanisms. The following sections focus on three phenomena where TIRF imaging has 

dramatically impacted current knowledge of internalization-related phenomena: (1) clathrin 

mediated endocytosis, (2) cellular uptake of viruses, and (3) internalization of engineered 

nanoparticles. 
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2.2. Understanding clathrin mediated endocytosis via TIRF microscopy 

CME is perhaps the best characterized pathway for internalizing receptor-specific 

biomolecules and is conserved among nearly all eukaryotic cells (Rappoport, et al., 2004). 

Many of the earliest studies examining CME relied on electron microscopy due to the ultra-

high resolving power of that modality (Kirchhausen, et al., 1986). However, the advent of 

fluorescence imaging has permitted the important advantage of capturing dynamic, 

molecular-specific behavior in living cells. When combined with fluorescent protein 

constructs or other labels, new insights into this complex process have been gleaned using 

time-resolved live cell microscopy. 

Earlier wide-field fluorescence imaging studies reported previously unseen behavior of 

clathrin-coated pits (CCPs) on or near the plasma membrane (Gaidarov, et al., 1999). 

Interestingly, distinct patterns were observed within a cell-wide population of CCPs. A 

majority of CCPs displayed limited/random, or no lateral motion within the membrane, 

and were generally termed “static”. With the introduction of TIRF microscopy, a subset of 

CCPs was observed to be motile – exhibiting rapid active transport motion (Keyel, et al., 

2004). This latter observation has led to a shift in the overall model of the CME pathway. 

While clathrin was originally thought to only participate in vesicle formation, Rappoport 

et al. showed that some clathrin coated vesicles (CCVs) persisted beyond the initial 

plasma membrane-bound state, and were transferred to microtubules parallel to the 

membrane (Rappoport, Taha, & Simon, 2003). This rapid motion was correlated with CCV 

internalization. However, still others were shown to disappear or re-appear from the TIRF 

field of view without active transport-like motion. This suggested that some disassembly 

or reassembly of the clathrin triskelia is concomitant with their internalization away from 

the evanescent field, without transport by motor proteins/microtubule network 

(Merrifield, et al., 2002; Merrifield, et al., 2005).  

Matters were complicated further when later data suggested that a single CCP could give 

rise to multiple vesicles (Rappoport, 2008). Single particle analysis of TIRF data showed that 

some CCV were initiated de novo – that is, the assembly of a single CCP resulted in complete 

disappearance of clathrin-associated signal into an internalized vesicle. However, other 

CCPs were seen to separate into sub-structures, only a portion of which were seen to 

internalize, while other CCPs were seen to merge into larger structures (often termed 

clathrin coated plaques). As an example, Figure 1 shows TIRF images and analysis 

representing a single event of the latter type, taken from (Rappoport, 2008). Close inspection 

of the indicated point spread function from a single sub-diffraction sized CCP shows a 

broadening and eventual separation into two distinct features. This was followed by the 

disappearance of the newly isolated CCP, presumably as it is internalized as a vesicle. This 

model of CCV formation has been referred to as iterative budding. The relative 

contributions of de novo formation and iterative budding mechanisms to overall CME 

behavior have shown to be highly cell-line dependent. Swiss 3T3 fibroblasts exhibited 

59%:41% iterative:de novo behavior in one study (Merrifield, et al., 2005), while BSC1 cells 

showed exclusively de novo CCV formation in another (Ehrlich, et al., 2004).  
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Figure 1. Iterative budding of a CCV from a larger CCP. At top, an image sequence illustrates TIRF 

images of CME. At bottom, signal intensity profiles indicate the progressive widening of a single CCP, and 

eventual partial separation, resulting in the iterative budding of a single CCV (Rappoport, 2008). 

Reproduced with permission, from Rappoport, (2008), Biochem. J., 412, 415-523. © The Biochemical Society. 

The complexity and mechanistic diversity of CME has been postulated to arise in part from 

variety of adapter and accessory proteins that are expressed in a given cell. However, there 

does appear to be a “core” group of molecular players present in nearly all forms of CME. 

Arguably the most ubiquitous accessory proteins are dynamin and actin. Dynamin fulfills a 

plethora of roles within many cell signaling pathways (particularly dynamin-2). One of its 

most prominent functions is in aiding the initial formation of CCVs, and their scission from 

the plasma membrane. Despite its importance, the precise sequence of events surrounding 

the role of dynamin is still uncertain. Merrifield et al. initially showed, via dual-color TIRF 

microscopy, an increase in dynamin-associated fluorescence immediately prior to clathrin 

internalization, and a synchronized decrease during CCV internalization (Merrifield et.al, 

2002). However, the underlying reason for the increase in fluorescence is still not clear. 

Alternate models predict either a recruitment of dynamin from the cytosol directly to the 

“neck” of the newly formed CCV, or recruitment from the cytosol to the whole vesicle, and 

then translocation to the point of invagination.  

Along with dynamin, actin also plays a role in CCV formation as an accessory protein in 

many cells (Kaksonen, et al., 2006; Merrifield, et al., 2002). Merrifield et al. showed that 

EGFP-actin signal displayed a transient increase near CCPs during internalization 
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(Merrifield, et al., 2002). Interestingly, using TIRF microscopy to compare the kinetics of 

dynamin and actin recruitment over a number of cells clearly indicated that dynamin 

recruitment consistently precedes local actin polymerization (in addition to clathrin 

internalization), thus giving valuable insight to the sequence of events in the CME process.  

TIRF microscopy has also been instrumental in disentangling the complex interactions of 

adapter proteins involved in CME (Rappoport, et al., 2006). The first identified, and most 

studied, of these are the adaptins (Boehm & Bonifacino, 2001). These proteins can form a 

tetrameric complex referred to as AP-2, and act as an intermediate between cell surface 

receptors and the endocytic machinery by concentrating cargo bound for internalization into 

a CCP. However, the role for AP-2 during the post-internalization phase has been 

controversial. Rappoport et al. initially showed that AP-2 is lost from the CCV during 

internalization (Rappoport, Taha, Lemeer, et al., 2003), although Keyel et al. later proposed 

that AP-2 accompanies CCVs into the cytosol, suggesting its possible regulatory role the 

downstream sorting machinery (Keyel, et al., 2004). However, more detailed TIRF image 

analysis confirmed the former hypothesis, and showed that while AP-2 was co-localized to 

static CCPs in the membrane, it was absent from those CCPs observed to disappear into the 

cytosol (Rappoport, et al., 2005).  

2.3. Tracking single viruses and endocytosis in living cells with TIRF imaging 

Simliar to its utility in understanding the kinetics of endogenous protein-protein 

interactions during CME, TIRF microscopy has also been highly useful to probe the 

mechanisms of pathogen invasion via similar routes. Of particular interest is the mechanism 

by which viruses enter their host cells (Brandenburg & Zhuang, 2007). Although some 

viruses (such as HIV) replicate via direct genome injection through the plasma membrane, 

most have evolved a multitude of methods to gain entry to cells via endocytosis; specific 

mechanisms include CME, macropinocytosis, and caveolin-dependent internalization 

(Sieczkarski & Whittaker, 2002a). As a prominent example, this section will highlight studies 

of Influenza A viral entry by CME, as elucidated by TIRF microscopy. 

Zhuang and colleagues were among the first to visualize the interactions between single 

influenza A viruses and host cells using both widefield (Lakadamyali, et al., 2003) and TIRF 

microscopy (Floyd, et al., 2008; Rust, et al., 2004). Influenza A is an enveloped, single-

stranded RNA virus thought to enter cells via CME, although more recent data indicate it 

may also utilize a clathrin-independent pathway (Sieczkarski & Whittaker, 2002b). One of 

the first TIRF imaging studies revealed that influenza A particles were internalized via de 

novo CCP formation and internalization to CCV, as shown in Figure 2 (Rust, et al., 2004). 

Images indicate that Influenza viruses, which were labeled with a lipophilic fluorescent 

tracer (DiD, shown in red), bind to the surface of live BSC1 cells. A few minutes after 

binding, GFP-tagged clathrin is seen to accumulate around a subset of viral particles, as 

shown in (B). Following this, the velocity of the viral particle dramatically increases, 

indicative of attachment to microtubules. The increase in viral velocity is then correlated 

with a complete disappearance of both DiD and GFP fluorescence signal, suggesting 
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directed internalization within a single, de novo CCV. Interestingly, however, some viral 

particles were seen to exhibit the aforementioned velocity increase without apparent 

recruitment of clathrin. While that may simply suggest the presence of non-fluorescent 

clathrin, it may also point to the presence of alternate endocytosis mechanisms. This later 

hypothesis is supported by other data that demonstrate little change in influenza infectivity 

in the presence of inhibitors of CME (Sieczkarski & Whittaker, 2002b). Nevertheless, CME 

does seem to be a route that is well-exploited by viral pathogens, albeit not always in the 

classical sense. For instance, Johannsdottir, et al. used single particle tracking TIRF 

microscopy to show that while dynamin-2 was required for Vesicular stomatis virus (VSV) 

internalization, AP-2 was not (Johannsdottir, et al., 2009).  

  

Figure 2. Dual color TIRF microscopy reveals that Influenza virus is endocytosed via de novo CCV 

formation. In (a), a single influenza virus (shown in red) binds to the cell surface, and is eventually 

colocalized to EGFP-tagged clathrin. After colocalization, the clathrin/virus complex displays enhanced 

motility, and eventual disappearance from the evanescent field. In (b), intensity profiles (in green) show 

the recruitment of clathrin near the single influenza virus. Black traces indicate viral velocity, indictative 

of active transport into the cytoplasm. In (c), an example of viral internalization is shown that does not 

indicate dependance on clathrin (Rust, et al., 2004). Adapted by permission from Macmillan Publishers Ltd: 
Nature Structural and Molecular Biology M.J. Rust, et al., 11(5), 567-573, © 2004.   

TIRF microscopy has been used to not only visualize initial viral entry, but also its behavior 

later in the endocytosis pathway. When enveloped viruses are labeled with high density of a 

fluorescent dye such as DiD or lipophilic Rhodamine, fluorescence self-quenching occurs 

such that viral particles are relatively non-fluorescent. Upon fusion of the virus to the 

endosomal membrane, the density of fluorophore decreases, resulting in a dramatic increase 

in detectable signal (Hoekstra, et al., 1984; van der Schaar, et al., 2007). Furthermore, viral 

particles can independently or simultaneously be loaded with a tracer molecule to measure 
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release of genomic material into the cytosol, subsequent to fusion (Brandenburg, et al., 

2007). For instance, Floyd, et al. used a dual-labeling approach to gain new insights into 

influenza fusion using a supported lipid bilayer model under TIRF interrogation as shown 

in Figure 3 (Floyd, et al., 2008).   

 

Figure 3. In vitro TIRF characterization of influenza fusion and content mixing. In (A), the experimental 

setup is illustrated, showing influenza virus binding to a dextran-supported lipid bilayer to model the 

endosomal membrane. Viral envelopes are labeled with lipophilic rhodamine (green), and the interior is 

loaded with sulforhodamine B (SRB) (red). Images in (B) show representative dual color TIRF images. 

In (C), fluorescence intensity plots show a sharp spike in the lipophilic rhodamine signal (green), 

indicative of viral hemifusion, while the SRB (red) shows the dispersal of viral cargo into the sub-bilayer 

space after pore formation (Floyd, et al., 2008). Reproduced with permission, from D.L. Floyd, et al., Proc. 

Nat. Acad. Sci., 105(40), 15382-15387, ©2008 by the National Academy of Sciences. 
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In this study, influenza viruses were labeled first with a lipophilic Rhodamine derivative, 

which exhibits a fusion dependent signal increase under these conditins. Additionally, the 

interior of the virus was labeled with sulforhodamine B (SRB). While only 30% of virus 

contained both dyes in sufficient quantities, the sequence of viral docking, fusion, and 

content release was able to be monitored in near real time, and corresponding rate constants, 

number of intermediate states, and lag times between fusion and pore formation were all 

able to be calculated. Figure 3 shows TIRF experimental setup (A) and data (B-C) obtained 

from influenza virus interactions with a liquid supported bilayer. In (C), dual color TIRF 

microscopy shows pore formation (red) vs. hemifusion (green) as a function of time. 

Hemifusion can be detected by a sharp, transient increase in fluorescence intensity as the 

lipophilic dye is released from its self-quenching state, and diffuses throughout the bilayer. 

The viral content release is assessed by the decay in red fluorescence as the SRB enters the 

sub-bilayer space and diffuses away.  

As can be seen, TIRF microscopy has produced notable insight into pathogenic infection 

mechanisms, particularly with regard to their endocytosis by host cells. As opposed to bulk 

studies, imaging approaches allow for a “single cell”, and even “single virus” quantification 

of behavior. This capability has far-reaching consequences in understanding fundamental 

molecular mechanisms. For instance, the data above was used to model the kinetics of viral 

hemifusion with endosomal membranes to clearly reveal that three intermediate stages exist 

in this process, thereby opening avenues for potential, specific therapeutic targets for 

Influenza infection. 

2.4. TIRF microscopy for studying endocytosis of engineered nanomaterials 

In addition to monitoring the internalization of pathogens, TIRF microscopy has also been 

instrumental in characterizing the uptake of engineered nanoparticles aimed at therapeutic 

or diagnostic applications (West & Halas, 2003), as well as in an effort to assess possible 

toxicological consequences of these materials (Marquis, et al., 2009). Engineered 

nanoparticles comprised of porous silica (Slowing, et al., 2008), liposomes (Hashida, et al., 

2005), and other polymer materials (Panyam & Labhasetwar, 2003) have been widely 

successful as therapeutic carriers for both drug and gene delivery. Much of these 

approaches depend on the endocytic uptake and release of the material in question into the 

cytoplasm. Thus, quantitative characterizations of endocytosis are imperative in order to 

assess diagnostic/therapeutic effect. 

Among the first and most widely used nanomaterials for diagnostic use include quantum 

dots (QDs). QDs are typically <20nm in diameter, and are comprised of various heavy 

metal/semiconductor materials such as CdSe, CdTe, or PbS, among others. This 

configuration results in an electronic bandgap that typically falls in the optical/NIR 

wavelength range. As such, QDs make highly attractive optical imaging probes with narrow 

emission bandwidth, broad absorption spectra, and relative resistance to photobleaching 

(Medintz, et al., 2005). Nie and colleagues were the first to demonstrate their utility as 

molecular imaging probes (Chan & Nie, 1998), and they have since gained wide-spread 

acceptance in this regard, including their use as in vivo diagnostic agents (Gao, et al., 2005).  
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Nevertheless, questions remain about the possible cytotoxic effects of semiconductor/heavy 

metal nanomaterials. In this regard, TIRF microscopy has been utilized to quantify the 

uptake properties of various CdSe QDs in immune cells. Aaron et al. have shown that while 

QD diameter is not a good predictor of cellular uptake (both in terms of uptake rate and 

extent), there does appear to be a correlation with QD shape (Aaron, et al., 2011). Figure 4 

shows representative TIRF images of QD (emitting at 605nm, referred to as QD605) uptake 

in RBL mast cells over time. Similar to studies examining CME, this approach relied on the 

gradual disappearance of QD-associated signal as particles are transported to the cytoplasm, 

and away from the evanescent field. 

 

Figure 4. TIRF microscopy to quantify internalization rates of various shape/size quantum dots (QDs) 

in an RBL mast cell line. In (A), fluorescence signal from QDs are seen to gradually disappear over 30-60 

minutes, as they move beyond the TIRF evanescent field into the cytoplasm. The total QD signal can be 

plotted vs. time to calculate a characteristic endocytosis time (B-D) for various sized/shaped QDs. These 

values are represented in (E) for two spheroidal QDs (QD585 and QD655, in light and dark grey, 

respectively), and one rod-shaped QD (QD605, medium grey). Data suggest that particle shape 

regulates internalization, with uptake times of rod-shaped particles nearly two-fold longer than 

spheroidal QDs (Aaron, et al., 2011).  
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Live cell time-course TIRF imaging of QD uptake (shown in A) allows for a measure of 

endocytosis rates for these materials. By simply plotting fluorescence signal as a function of 

time, a typical decay behavior becomes evident. Uptake measurements taken for QDs 

emitting at 585nm, 605nm, and 655nm (B, C, and D, respectively) showed marked 

differences in their rates of internalization, summarized in (E). Interestingly, the uptake 

rates did not correlated with size (average diameter increases with increasing emission 

peak), but upon closer inspection, was found to be related to QD shape. While QD585 and 

QD655 displayed relatively small aspect ratios (1.2 and 1.6, respectively), QD605 were found 

to have more rod-shaped character, with aspect ratio of 2.0. This suggests that spheriodal 

particles are internalized at a higher rate than elliptical particles, giving insight into the 

shape and size effects on nanoparticle-cell interactions. 

2.5. Emerging TIRF microscopy methods 

TIRF microscopy is currently in the midst of another renaissance, as more advanced 

methodologies are being developed to better extract meaningful, quantitative information 

about events at the plasma membrane. Two such approaches are directly applicable to 

imaging of endocytosis, and include polarization sensitive and multi-angle TIRF imaging. 

Polarization-sensitive TIRF (pTIRF) microscopy had been proposed for some time (N. L. 

Thompson, et al., 1984), yet only in the last several years have these concepts been applied in 

biological samples (Anantharam, et al., 2010; Sund, et al., 1999). This method is based on the 

observation that, at the surface of a cell, endocytosis events create a localized birefringent 

environment, as illustrated in Figure 5. As can be seen, during endocytosis (or exocytosis), 

the deformation of the plasma membrane creates portions of the membrane that are parallel 

and perpendicular (as illustrated by arrows) to the s- and p-polarizations of the evanescent 

field, respectively. Therefore, a polarized detection scheme will be sensitive to separate 

regions within the nascent vesicle, provided that fluorescent dyes (such as DiD) are all 

oriented similarly with respect to the lipid bilayer. Resulting images may include a 

“doughnut” appearance at sites of membrane invagination, due to the alternative parallel 

and perpendicular orientations of the membrane with respect to the evanescent field 

polarization. While still in its infancy, this method has sensitively detected exocytosis of 

neuronal vesicles (Anantharam, et al., 2010), as well as fusion of SNARE-bearing vesicles on 

a supported lipid bilayer (Kiessling, et al., 2010). Further studies combining pTIRF with 

atomic force microscopy have shed light on fundamental mechanisms of protein-mediated 

membrane disordering (Oreopoulos & Yip, 2009). 

While technically more complex, pTIRF may also be an ideal method for imaging 

endocytosis pathways that do not have well identified proteomic markers. For instance, a 

growing body of evidence has shown that Influenza A virus may make use of multiple 

endocytic pathways for infection of host cells, with at least one route being both clathrin and 

caveolin-independent. Using pTIRF to image the structural and kinetic properties of this 

cryptic pathway may lead to ultimately elucidating its origin. 
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Figure 5. Principle of pTIRF. During membrane reorganization during endocytosis, fluorophores 

become oriented perpendicular and parallel to the incoming evanescent field polarization. Using cross-

polarized detection, endosomal vesicles appear as alternating dark and light rings. 

Another promising emerging strategy is the implementation of multi-angle TIRF 

microscopy. Hypothesized more than 20 years ago (Reichert, et al., 1987), it has only more 

recently been applied to quantitatively determining axial distributions of biomolecules at 

the nanoscale. Recall that Equation 2 in section 2.1 illustrates how the evanescent field depth 

is a sensitive function of illumination angle, with decreasing field penetration with 

increasing beam angle. This offers the intriguing possibility of optical sectioning at various 

axial positions near the sample/coverslip interface, far below the optical diffraction limit by 

systematically varying the TIRF angle, θ. This strategy has been successfully implemented 

in a compact design (Stock, et al., 2003), and utilized for a number of applications, including 

mapping cell membrane topology relative to the cytoplasm (Olveczky, et al., 1997), viewing 

exocytosis of secretory granules in Chromaffin cells (Oheim, et al., 1998), as well as detecting 

sub-diffraction axial movements of surface-immobilized DNA molecules, all with accuracies 

of less than 50nm along the optical axis (He, et al., 2005). Doubtless, the application of this 

methodology may shed new lights into endocytic mechanisms as well. 

3. Super-resolution microscopy 

3.1. History and background 

Until the last decade, interrogation of cells and cellular processes with a microscope was 

limited by diffraction. Practically speaking, this meant that cellular features could only be 

distinguished if they were laterally separated by at least half the wavelength of the 

illumination light,  as elegantly described by Ernest Abbe in in the late 19th century (Abbe, 

1873). Under visible wavelength excitation, this means that cellular features and structures 

must be at least 200-350 nm apart in order to be resolved in X and Y. Unfortunately, this 

resolution limit is more than an order of magnitude larger than the spatial scale on which 

most biochemical processes occur. To address this, scientists have developed specialty 

optical microscopy techniques over the years to achieve information on a spatial scale below 

the limits of optical diffraction in living organisms. The most well-known of these are 

Förster resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS), and 

TIRF microscopy which as discussed above can provide axial resolution of ca. 100 nm, but is 

limited by diffraction in the lateral dimension.  

Plasma 

Coverslip 

Evanescent Field 
Vesicle 

Formation 
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More recent advances have produced several new methodologies, collectively termed 

“super-resolution” microscopy or “nanoscopy” that effectively break the traditional 

diffraction barrier in all three spatial dimensions. These resolutions are more aligned with 

the spatial scales on which biomolecular processes occur, and have potential to re-define the 

state-of-the art in biological imaging. Though a complete review of all the super-resolution 

microscopies is outside of the scope of this chapter, this section will discuss two major 

approaches with demonstrated applications in endocytosis: (1) localization microscopy and 

(2) stimulated emission depletion microscopy (STED). The reader is referred to recent 

review articles and the references within for additional information on super-resolution 

microscopy (B. Huang, et al., 2009; Schermelleh, et al., 2010). 

3.2. Localization microscopy  

3.2.1. Fundamentals of localization microscopy 

If a single molecule within a diffraction-limited volume can be imaged independently from 

any other nearby emitters, localization techniques (R. E. Thompson, et al., 2002) can be 

employed to determine that molecule’s location with precision of approximately  

    
PSF

x
N

 (3) 

where x is the localization precision, PSF is the size of the point spread function, and N is 

the number of detected photons from a single chromophore. With laser excitation and 

modern detectors, this accuracy can routinely be accomplished with <50nm precision. 

Interestingly, if this localization procedure could be repeated for many molecules, then an 

image could be constructed from the sum of all the localizations, with lateral resolution 

nearly 10-fold less than the diffraction limit. The practical challenge of this approach is 

rendering the vast majority of fluorophores in a sample in a “dark” state, only allowing a 

small subset to be visible at any given time. Indeed, conventional immunofluorescence 

labelling may result in thousands of visible fluorophores within a diffraction limited 

volume. However, several methods based on wide-field imaging of subpopulations of 

molecules activated in a stochastic fashion have emerged, including STORM (Rust, et al., 

2006), PALM (Betzig, et al., 2006), and FPALM (Hess, et al., 2006). These approaches, 

collectively termed localization microscopies, each differ in the photophysics and 

photochemistry through which the single molecule activation and deactivation is achieved, 

but in general, make use of some form of “photoswitching” to turn individual fluorescent 

dyes to/from an on/off state. Then, the localization procedure remains essentially the same 

as described previously. In each approach, a delicate optimization is necessary between dye 

choice, imaging buffer solutions, labelling density, excitation wavelength and intensity, 

emission wavelength, and acquisition speed to produce images of the highest quality. A 

comprehensive review of fluorophore characteristics for use in localization microscopy has 

been recently published (Dempsey, et al., 2011).  
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To visualize biological processes like endocytosis which occur in three-dimensions, it is 

important to develop techniques that improve spatial resolution in x, y, and z and are 

compatible with imaging of living cells. More recent methods based on Astigmatism 

(Huang, Wang, et al., 2008) and dual-focal plane imaging (Juette, et al., 2008) have achieved 

axial localization precisions of 50 nm and 75 nm respectively, over depths of several 

hundreds of nanometers. Additionally, sub- 25 nm axial localization precision has been 

demonstrated using interferometric methods (Shtengel, et al., 2009). Z-scanning and single-

particle tracking can be combined with these methods to extend the depth to several 

micrometers permitting imaging throughout the cell. (Huang, Jones, et al., 2008; Juette, et al., 

2008). Though localization microscopies were originally limited to imaging fixed cells due to 

the conditions necessary to provide the stochastic photoswitching and the need to have no 

movement during the lengthy acquisition times, current methods are compatible with live-

cell imaging (Manley, et al., 2008; Shroff, et al., 2008) while still maintaining axial spatial 

resolutions in the 50-60 nm range. This is an active area of research and further 

advancements are anticipated to eventually permit visualization of endocytotic dynamics at 

sub-50 nm resolution in all three dimensions. 

3.2.2. Current applications of localization microscopy in endocytosis 

The past five years have seen a flurry of localization-based superresolution microscopy 

studies related to endocytic processes, in a number of contexts. For instance, Betzig et al. 

successfully detected lysosomal membrane-associated proteins using a PALM approach 

with better than 10nm lateral resolution in fixed cell sections (Betzig, et al., 2006). 

Furthermore, Zhuang and colleagues were able to construct exquisite 3D images of both 

microtubule networks and clathrin coated vesicles (CCVs) in intact samples using the 

astigmatism-based STORM approach described above (Huang, Wang, et al., 2008). In 

addition, highly multiplexed studies using another localization variant, ground state 

depletion followed by individual molecule return (GSDIM), have shed light on the 

interactions between clathrin, tubulin, actin, and peroxisomes (Testa, et al., 2010). The 

interactions of HIV with the host cell cofactor tethrin (a protein implicated in preventing 

virus internalization) were revealed with excellent detail using a combination of 

photoactivatable proteins and photoswitchable organic dyes (Lehmann, et al., 2011). 

Another excellent example of super-resolution imaging applied toward endocytosis 

mechanisms includes a study by Subach, et al. In this case, novel photoactivatable proteins 

were exploited to acquire dual-color PALM images to visualize the clustering of transferrin 

receptors into clathrin coated pits (CCPs) at 25nm spatial resolution, as illustrated in Figure 

6 (Subach, et al., 2009).  

Data in Figure 6 show the substantial increase in image detail afforded by super-resolution 

imaging (b, e, h) over TIRF microscopy (a, d, g), with enlarged areas (indicated by white 

boxes), shown in (c, f, i). Clathrin (green) is generally co-localized to clusters of transferrin 

(red), although a large background of isolated/non-colocalized receptors is also apparent. 
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Figure 6. Localization-based super-resolution microscopy of transferrin receptor co-localization to 

CCPs. (a, d, g) indicate conventional TIRF images of receptor, clathrin, and overlay image, respectively. 

(b,e,h) illustrate the large increase in image detail after super-resolution localization is preformed, with 

zoomed in regions displayed in (c, f, and i). Co-cluster analysis was performed on areas where 

transferrin receptor/clathrin density was greater than 5-fold the mean (k, l). Correlation functions 

indicate a characteristic cluster size of approximately 200nm, below the Abbe limit (j) (Subach, et al., 

2009). Reprinted by permission from Macmillan Publishers Ltd: Nature Methods F.V. Subach, et al., 6(2), 153-

159, ©2009. 
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As this data suggests, super-resolution microscopy also allows for image analysis with 

greatly increased precision over diffraction-limited imaging. In (k-j) receptor/clathrin 

clusters are analysed such that only areas where receptor density is five-fold greater than 

the image-wide average are considered (k-i). Spatial pair-correlation analysis (j) gives a 

measure of cluster diameter in the 200nm range, representing a detailed optical image 

analysis below the Abbe limit. This is important, as the above treatment demonstrates that 

while super-resolution imaging can provide images with exquisite detail and multiplexed 

capability, perhaps its greatest utility is its ability to enable improved quantification of 

biomolecular behaviour in situ. As more demonstrations are reported, new biological 

insights will doubtless be gained with the ability to monitor changes in biomolecular 

localization and dynamics at the nanoscale. 

3.3. Stimulated emission depletion microscopy  

3.3.1. Fundamentals of STED microscopy 

In contrast to the localization-based super-resolution methods described in sections 3.1-3.2, 

stimulated emission-depletion (STED) microscopy relies on a different mechanism, and falls 

into the category of illumination-based techniques. Instead of localizing many random fields 

of single fluorophors to form a complete image, Illumination-based methods rely on a 

carefully engineered point spread function (PSF) that effectively limits fluorescence 

emission to a small, sub-diffraction volume. This modified PSF is subsequently scanned 

across a field of view in order to construct an image via confocal detection. 

By far the most common way to accomplish a restriction in the PSF is to make use of two, 

superimposed beams of light, as shown in Figure 7. The first “excitation” beam (green) is a 

conventionally focused laser spot, whose diameter is subject to the diffraction limit. The 

second “depletion” beam (orange) is also diffraction limited, but a phase function is 

imparted such that it forms an optical vortex or “doughnut” when focused on the sample. 

When superimposed, the depletion beam prevents conventional fluorescence emission 

except for a small area near the center of the vortex. Using this method, optical resolutions 

approaching 7nm have been achieved (Rittweger, et al., 2009).  

The concept of stimulated emission as a means to break the diffraction barrier extends from 

Stephan Hell’s seminal paper exploring the theoretical basis (Hell & Wichmann, 1994), with 

experimental demonstration following (Klar, et al., 2000). The original implementation of 

this concept invovled complex, expensive instrumentation, including pairs of highly 

synchronized, femtosecond pulsed laser sources, in addition to other non-trivial timing 

electronics. However, subsequent simplifications were made such that STED could be 

accomplished with a single light source (Wildanger, et al., 2008), as well without any pulsed 

light sources (Willig, et al., 2007). 

STED microscopy remains a very active area of development, with applications 

demonstrated in a wide variety of fields (Nägerl, et al., 2008; Rittweger, et al., 2009; Willig, 

Kellner, et al., 2006; Willig, Rizzoli, et al., 2006). Endocytosis stands as a enticeing area in 

which to apply STED microscopy, due to the intricate interplay between proteomic 

mediators and the sensitive spatiotemporally varying nature of cargo internalization. 
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Figure 7. Principle of Stimulated Emission Depletion (STED) Microscopy. A conventional exictation 

spot (green) is overlayed with a optical vortex depletion beam (orange) to confine fluorescence emission 

to a sub-diffraction volume, and then scanned across a sample to create an image. 

3.3.2. Current applications of STED microscopy in endocytosis 

Illumination-based super-resolution techniques such as STED generally require more 

complex instrumentation as compared to localization approaches such as PALM/STORM. 

However, STED offers the advantage of more facile dynamic imaging. Although STED-

based methods have somewhat lagged in their application toward the understanding of 

endocytosis as compared to localization techniques, several studies have begun to bring the 

considerable power of STED microscopy to bear on a number of pathways that are relevant 

in this regard. For instance, Schneider, et al. utilized STED microscopy to gain insight into 

the function of flotillin proteins in the context of Alzheimer’s disease. Flotillins have been 

implicated in non-clathrin/caveolin mediated endocytosis as a mediator of amyloid 

regulation. Via knockdown models, they were able to show, with convincing image detail, 

that amyloid precursor protein (APP) internalization was reduced in the absence of flotillin-

2. Furthermore, the increased resolution also permitted measurement of membrane-bound 

APP clusters with 70nm precision, and revealed that flotillin knockdown significantly 

reduced APP cluster size (Schneider, et al., 2008).  

Additionally, Barrantes and colleagues successfully probed the nanoscale arrangement of 

acetylcholine receptors using STED microscopy (Kellner, et al., 2007). Perturbations in 

plasma membrane cholesterol via methyl-β-cyclodextrin resulted in significant, yet sub-

diffraction changes in receptor behaviour, with clear implications for their regulation via 

endocytosis (Barrantes, 2007). 

In combination with the development of video rate STED microscopy (Westphal, et al., 

2008), Hell and colleagues were able to dynamically image synaptic vesicle trafficking in 

neurons at 40-60nm resolution (Willig, Rizzoli, et al., 2006). While synaptic transmission is 

often treated as an exocytic phenomenon, these results indicated that synaptotagmin 

remains clustered after exocytic vesicle fusion with the neuronal plasma membrane. This 

observation has clear implications for neurotransmitter re-endocytosis, as the precise 

mechanism by which endosomal recycling controls neurotransmitter release is still under 

investigation. These results indicate that membrane re-sorting of neurotransmitters may not 
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be necessary for their recycling back to the cytoplasm. Via multi-temperature 

immunolabeling, combined with appropriate blocking and permeabilization, these data 

indicated re-endocytosis of synaptotagmin occurred within seconds of their initial 

exocytosis. Below, Figure 8 shows the increase in image quality afforded by STED when 

imaging re-endocytosed synaptic vesicles, taken from (Willig, Rizzoli, et al., 2006). 

 

Figure 8. Confocal (left) and STED (right) microscopy images of synaptotagmin clustering on the 

surface of neuronal cells. STED microscopy affords a nearly order of magnitude increase in image 

resolution, allowing better quantifaction of neurotransmitter clustering, thereby giving better insight 

into the role of re-endocytosis as a mediator of synaptic transmission (Willig, Rizzoli, et al., 2006). 

Reprinted by permission from Macmillan Publishers Ltd: Nature K.I. Willig et al., 440, 935-939, ©2006 

4. Spectral imaging 

4.1. Basic principles 

Traditionally, optical microscopy (including the confocal and TIRF modalities applied to 

applications in endocytosis), and even superresolution imaging have been accomplished 

using a set of one or more filters to select a specific range of emission wavelengths to pass 

on to the detector. Filter-based microscopy is readily commercially available and can be 

extremely fast, producing high quality images at frame rates of up to hundreds or 

thousands of Hz with modern detectors. Filter-based microscopy requires that multiple 

chromophores of interest have well-separated emissions in order to avoid a phenomenon 

known as spectral channel crosstalk or spectral bleed through (SBT). Thoughtful choices of 

fluorophore labels can permit two- or three-color imaging in well characterized systems 

with filter-based microscopes; however in most live cell applications, filter-based 

microscopy is further limited by the presence of cellular autofluorescence. Cellular 

autofluorescence typically displays a broad emission that can span most of the visible 

wavelengths, and its spectral characteristics and intensity can vary widely across cell types 

and even within cells. In many applications where sensitivity is not a limiting factor, 

thresholding is used to minimize the SBT effect of cellular autofluorescence. Unfortunately, 
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thresholding approaches may not be suitable for imaging of endocytotic processes if the 

signal at the single event level is often very near the intensity level of the cellular 

autofluorescence, since this will greatly confound quantitative analyses.  

Spectral imaging is an alternative to filter-based microscopy whereby an entire emission 

spectrum is collected at each image pixel (2D) or voxel (3D) (Garini, et al., 2006; 

Zimmerman, et al., 2003). Spectral imaging has been implemented in a variety of optical 

modalities for biological applications including visible reflectance (Zuzak, et al., 2002), 

fluorescence (Michalet, et al., 2003) and vibrational spectroscopies such IR absorption (Levin 

& Bhargava, 2005), Raman scattering (Christensen & Morris, 1998), and surface-enhanced 

Raman (SERS) (Sharonov, et al., 1994)), as well as in non-optical methods like mass 

spectrometry (Fletcher, et al., 2008). In practice, higher degrees of multiplexing, higher 

accuracy, and lower detection limits are achievable with spectral imaging due to the ability 

to implement multivariate analysis methods to identify and/or classify spectral signatures 

even in the presence of high degrees of spectral overlap from other labels and cellular 

autofluorescence (Mansfield, et al., 2005). The trade-off is usually a sacrifice in speed, 

however microscope designs have been recently introduced that are competitive with 

current filter-based microscope acquisition rates (Sinclair, et al., 2006). In addition, further 

advances in the speed of acquisition are possible and anticipated given the latest detector 

technology (Coates, 2011; Fowler, et al., 2010).  

Of the spectral imaging modalities, fluorescence and Raman-based spectral imaging are of 

particular interest to the field of endocytosis due to their demonstrated success in increasing 

the degree of multiplexing and providing label-free molecular specificity, respectively. 

Lerner provides a comprehensive tutorial covering the general principles of imaging 

spectrometers applicable to both fluorescence and Raman modalities and the reader is 

referred there for additional information (Lerner, 2006). 

Fluorescence spectral imaging, also termed hyperspectral fluorescence microscopy, can be 

implemented in a wide variety of formats that differ predominantly in the way the spectral 

information is obtained. Hyperspectral fluorescence microscopes typically use one of three 

approaches to generate spectrally-resolved information: (1) a prism or grating to disperse 

the fluorescence emission onto a linear detector array or a charge-coupled device (CCD) 

detector in point-scanning (Sinclair, et al., 2006) or line-scanning (Sinclair, et al., 2004) 

formats, (2) interferometric methods that measure the intensity as a function of optical path 

length difference and glean spectral information through Fourier analysis (Malik, et al., 

1996), (3) sequential, narrow bandpass filter scanning of discrete wavelength regions using 

acousto-optical or liquid crystal tunable filter (Gat, 2000). 

4.2. Applications of fluorescence spectral imaging in endocytosis 

Due to their relatively large excitation cross section, size-determined emission properties, 

and improved photostability as compared with traditional organic fluorophores, semi-

conductor quantum dots (QDs) are becoming increasingly popular for biomedical research, 
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with applications including targeted therapeutics and disease diagnostics. However the 

behavior and ultimate fate of these and other engineered nanoparticles in living systems has 

yet to be fully characterized. To this end, Aaron and co-authors took advantage of the 

multiplexing capabilities of hyperspectral confocal fluorescence microscopy and 

multivariate curve resolution (MCR), a constrained alternating least squares method, to 

identify and localize three colors of quantum dots and a lysosome-specific dye 

simultaneously (Aaron, et al., 2011), as shown in Figure 9. This work revealed unanticipated 

compartmentalization of the QDs on the plasma membrane (B and D) of a non-phagocytotic 

immune cell line (RBL cells), as well as an accurate measure of the relative fraction of QDs 

located within the lysosomes following endocytosis (C). These data were acquired with high 

precision, despite the significant spectral overlap between the various QDs and the 

lysosome-specific tracer dye, as shown in (A). 

 

Figure 9. Hyperspectral imaging of quantum dot (QD) endocytosis. In (A), pure component spectra for 

three sized/shaped of QDs and a lysosome-specific fluorescent tracer are calculated without the need for 

any a priori information, and despite signficant spectral overlap. (B) indicates QDs not present in 

lysosomes, with the white box denoting the enlarged region shown in (D). Images indicate a 

compartmentalization of similar sized/ shaped QDs into distinct regions near the membrane, rather 

than a random distribution. In (C), QD signal is shown in green, while lysosome-specific dye is 

indicated in red. Areas of QD/lysosome co-localization are shown in white. 

A B 

C D 
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Huth and colleagues have also demonstrated the power of fluorescence hyperspectral 

imaging for visualizing uptake and intracellular trafficking of liposomes (Huth, et al., 2004). 

This work has particular relevance to understanding and manipulating the mechanisms of 

drug delivery via liposomal vehicles. They utilized Fourier-transform based spectral 

imaging technology to generate hyperspectral images of five fluorescent dyes in COS-7 cells. 

With the help of multivariate analysis algorithms, they were able to determine vesicle 

distribution throughout the cell relative to membrane lipids, lysosomes, and nuclear 

compartments. Their work clearly shows the multiplexing and accuracy advantages of 

spectral imaging for visualizing multiple subcellular compartments, while following the 

distribution of endocytosed cargo. 

These highlighted applications illustrate the suitability of hyperspectral fluorescence 

microscopy for fundamental research into endocytotic mechanisms and make it easy to 

imagine future work employing hyperspectral fluorescence microscopy to follow the 

distributions of many of the cellular factors listed in Table 1 of Mercer (Mercer, et al., 2010), 

as well as potential cargo with diffraction-limited spatial and moderate temporal (10-100’s of 

frame/sec) resolution. Studies of this type would provide information unavailable with 

other techniques. 

4.3. Applications of Raman spectral imaging in endocytosis 

Unlike fluorescence spectral imaging, Raman spectral imaging does not typically utilize 

exogenous labels to generate image contrast (Lewis & Edwards, 2001). Instead, the 

technique relies on the interaction of excitation light with the native molecular vibrations 

that are characteristic of distinct molecular components within the sample. These 

molecular “signatures” provide a label-free detection method for many important 

biomolecules, including proteins, nucleic acids, lipids, phospholipids, and carbohydrates. 

Though Raman spectral signatures are much weaker than fluorescence emission spectra, it 

is possible to perform Raman spectral imaging at the single cell level with modern 

detection technologies. Hyperspectral Raman microscopy can be implemented in a variety 

of formats similar to those described for hyperspectral fluorescence microscopy 

(Christensen & Morris, 1998; Govil, et al., 1993; Morris, et al., 1996), however the most 

commonly utilized for visualizing endocytosis in living cells has been the confocal point-

scanning method, due to its availability, high sensitivity, optical sectioning capability, and 

speed. 

Chernenko and colleagues applied hyperspectral confocal Raman microscopy to 

noninvasively query the distribution of cellular organelles relative to two biodegradable 

polymeric nanoparticle delivery systems (Chernenko, et al., 2009). It is very important to 

characterize the biocompatibility, cellular uptake and intracellular trafficking of these and 

other nanoparticle vehicles for drug delivery. Typically this is accomplished through the use 

of 1-2 fluorescent labels at a time and as such is likely to be inefficient and can suffer 

problems with label stability and interference with the nanocarrier. Importantly, in addition 
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to the multiplexed advantage demonstrated with fluorescence-based spectral imaging, 

Raman spectra are exquisitely sensitive to changes in the local biochemical environment. 

This gives the added ability to detect and monitor changes that are associated with 

nanoparticle degradation (such as endosomal acidification). The authors employed a 

multivariate analysis algorithm known as Vertex Component Analysis to decompose 

spectra into their individual components (also called endmembers) (Nascimento & Dias, 

2005). The resulting data were able to represent the spatial distribution of proteins, 

nanoparticles, lipid/phospholipids rich organelle membranes, and endosomal vesicles all 

without the need for exogenous labels. 

Toward similar goals of characterizing the endocytotic uptake and trafficking of gold 

nanoparticles for applications in biomedical diagnostics and targeted gene/drug delivery, 

Park et al. used surface-enhanced Raman scattering (SERS) and dark field microscopy to 

visualize gold nanoparticles conjugated to transferrin protein (Park, et al., 2011). This work 

demonstrates the additional sensitivity offered by SERS over traditional Raman 

spectroscopy, and the potential of this method to not only follow nanoparticle distribution 

in three dimensions in a single living cell, but also make use of SERS spectral changes to 

indicate alterations in protein conjugation due to biochemical reactions. 

5. Conclusion  

A fuller understanding of endocytosis processes and the signalling cascades that regulate 

them is critically important for developing diagnostics, therapeutics, and vaccines. In this 

chapter we have presented three advanced optical imaging methodologies that have 

demonstrated advantages in spatial, temporal, and/or spectral resolution over traditional 

microscopy for interrogation of the processes involved in cellular uptake and trafficking. 

The ability to visualize dynamics of multiple species within living cells with high 3D spatial 

and temporal resolution provides unique information about molecular level interactions and 

their heterogeneity, both within and between cells, that is unavailable with other techniques. 

The examples we highlighted from recent literature illustrate how these tools are being 

engaged to address unanswered questions about the roles of key biomolecules including 

actin, dynamin, and others in the field of endocytosis as well as the sequence of 

biomolecular events during cellular response. 

Yet, the potential of advanced imaging for studying endocytosis-related processes has not 

been fully realized. Recent developments in super-resolution microscopy, spectral imaging, 

and specialized TIRF modalities have extended imaging into a realm where multiple 

biomolecules involved in individual endocytic events can be visualized with never before 

seen clarity, detail, and precision. Future efforts will doubtlessly focus on continued 

improvements to these enabling technologies individually, as well as on coupling the 

aforementioned approaches. Progress towards both ends will provide more complete 

visualizations that are necessary to complement bulk biochemical and genetic approaches, 

and thus better characterize endocytosis pathways in the living cell. 
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