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1. Introduction

Genetic immunotherapy can be defined as a therapeutic approach in which therapeutic
genes are introduced into defined target cell types to modulate immune responses. A major
challenge for this therapeutic strategy is the delivery of these genes into target cells in an
efficient, stable manner. Possibly one of the best systems to achieve this is the use of lentivi‐
ral vectors (lentivectors) as gene carriers, as they are capable of transducing both dividing
and resting cells [1].

Lentivectors are mainly derived from the human immunodeficiency virus (HIV-1) genome,
a member of the Retroviridae family. The defining characteristic of retroviruses is their ca‐
pacity to stably integrate their RNA genome into the host cell chromosomes, in the form of a
cDNA copy (Figure 1). Therefore, retrovirus and lentivirus vectors have been used exten‐
sively in research since they are ideal gene carriers into target cells. Moreover, both retrovi‐
rus and lentivirus vectors have been successfully applied in human gene therapy for the
treatment of several genetic/metabolic inherited diseases (Cartier et al, 2009; Cavazzana-Cal‐
vo et al, 2010; Gaspar et al, 2004; Grez et al, 2010; Ott et al, 2006; Thrasher et al, 2006).

Lentiviruses are spherical enveloped viruses with a diameter around 80 to 120 nm and con‐
tain two copies of a single-stranded RNA genome (Figure 2) [2]. The genome is enclosed
within a core composed of the structural and enzymatic proteins nucleocapsid (NC), capsid
(CA), reverse transcriptase (RT), integrase (IN) and protease (PR). The core is surrounded by
a protein layer of matrix (MA) protein. The envelope protein (ENV) is embedded in the viri‐
on lipid envelope, and it binds to the target cellular receptor and mediates virion entry.

© 2013 Dufait et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. The retrovirus life cycle.The life cycle of retroviruses, including lentiviruses is shown in this figure as a multi‐
step mechanism, starting with virion binding to the cellular receptor (R), leading to direct fusion or endocytosis. Then,
the internal core is released and the two RNA molecules undergo reverse transcription as indicated, ending up with a
single cDNA molecule. The core is then transported to the nucleus (in the case of lentiviruses) and the cDNA is inte‐
grated into the cell chromosome. The integrated genome (provirus) undergoes transcription, producing more RNA
genome copies (and also spliced mRNAs, not shown here), which are also translated into structural and enzymatic
proteins. These are then assembled into virions that bud out of the infected cells.

Figure 2. In this scheme, the lentivirus virion is represented as a sphere containing a genome made of two RNA mole‐
cules associated to the nucleocapsid (NC) protein. The nucleocapsid is enclosed by a core made of capsid (CA) protein,
which is surrounded by a shell of matrix (MA) protein that associates to the virion envelope. The two subunits of the
HIV-1 envelope are also indicated (SU and TM). In addition, other enzymatic (IN, RT, PR), accessory (Vpr, p6) and cellu‐
lar (Cyclophilin A, Cy-A) proteins are shown, which are incorporated into lentivirus particles.
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Lentivectors are classified as complex retroviruses according to their genome organisation,
as it contains accessory and regulatory genes absent in other retroviruses. Nevertheless, the
retrovirus genome shares a common 5’ to the 3’ gene organisation, with Gag, Pol and Env
genes [1, 3]. Gag encodes MA, CA and NC as a polyprotein. Pol encodes enzymatic proteins
associated to reverse transcription, that is, the reverse transcriptase (RT), integrase (IN) and
protease (PR). RT synthesizes a single cDNA copy from the retrovirus genomic RNA [4]. IN
mediates cDNA integration in the host cell chromosome, while PR cleaves Gag and Gag-Pol
polyproteins during virion maturation.

The integrated cDNA genome is flanked by two long terminal repeats (LTRs) subdivided in
U3, R and U5 regions. U3 is the HIV-1 promoter. The R region marks the starting point of
transcription, and U5 region is critical for reverse transcription. The other key elements are
the packaging signal (Ψ) and the polypurine tract (PPT). The packaging signal, as in many
other virus species, allows RNA genome encapsidation during virion assembly in the cyto‐
plasm. The PPT element is a key element for reverse transcription [5].

Lentivectors are usually obtained following a three-plasmid co-transfection in 293T cells
(Figure 3) [6, 7]. The first one, the packaging plasmid, provides the structural and RT pro‐
teins (Gag-Pol). The second one, the envelope plasmid, encodes a glycoprotein to pseudo‐
type the lentivector particles. This process consists on the incorporation of an heterologous
Env in the viral lipid envelope. This will allow the lentivector to exhibit the specific cell trop‐
ism given by the Env used in pseudotyping. One of the most used Env is the Vesicular Sto‐
matitis Virus (VSV) Glycoprotein (G). The VSV-G confers stability to the lentivector particles
and a very broad tropism for human and non-human cells [8]. Lastly, the third one, the
transfer plasmid, contains the cis-acting sequences for replication/transcription and packag‐
ing (Figure 3) [9]. By including promoters within the transfer plasmid, any gene of interest
can be expressed either constitutively or inducibly, in a cell type-specific of unspecific man‐
ner (Figure 3) [1]. Therefore, lentiviral vectors can also incorporate genes with immunoregu‐
latory properties in cells from the immune system.

Two main cell types of the immune system have been preferential targets for genetic immuno‐
therapy: antigen presenting cells (APCs) and effector T lymphocytes. These two cell types are
key controllers of immune responses. By expressing transgenes of interest in APCs, such as
DCs, they can be processed and presented to antigen-specific T cells in the immunological syn‐
apse. This antigen presentation is the first step in either starting of suppressing immune re‐
sponses. Therefore, if genes with modulating properties of APC functions can be co-expressed
with antigens, the strength and type of immune response can be controlled. In fact, genetic
modification of cells from the immune system can circumvent the limitations of current immu‐
notherapeutic protocols. Using targeted lentiviral vectors, specificity and effectiveness can be
achieved by targeting key cells that modulate and polarize immune responses.

Although more challenging than DCs, T lymphocytes can also be genetically modified using
lentiviral vectors. Vectors expressing T cell receptors (TCRs) specific for antigens of interest
can modify the specificity of T cell populations, or expand their antigen profile. Therefore,
these genetically modified T cells can be adoptively transferred in the human patients. This
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strategy is particularly important to generate T cells with high affinity TCRs towards tu‐
mour-associated antigens.

Figure 3. The HIV-1 genome is shown at the top of the figure. All structural, accessory and enzymatic genes are indicat‐
ed throughout the genome. The two LTRs are shown as present in an integrated provirus. The three functional regions
of the HIV LTR are shown on top of the 5- LTR. Numbers indicate nucleotide positions. The HIV genome is splitted in three
different plasmids to engineer a gene vector. The transfer (vector) plasmid is indicated, with only the HIV-1 LTRs con‐
taining an internal promoter driving the expression of a gene of interest. In the packaging plasmid, only the Gag-Pro-
Pol and Rev, Tat genes have been retained. This increases biosafety. Transcription of these genes takes place under the
control of the cytomegalovirus promoter (CMV), as indicated in the figure. Lastly, a third plasmid encoding an enve‐
lope glycoprotein is shown on the bottom of the figure. This envelope pseudotypes the lentivector particle.

2. Genetic modification of DCs with lentivectors

For the elimination of cancer cells and chronic infections such as HIV, hepatitits B and ma‐
laria, a strong, effective T cell response is required. To initiate these strong T cell responses,
the interaction between antigen-specific T cells and antigen-presenting APCs has to be
strengthened[10]. Amongst APCs, DCs are most frequently the targets of immunotherapy
protocols since they are probably the most immunogenic [10, 11].

To activate T cells during antigen presentation, these T cells have to receive at least three
different signals from APCs (Figure 4) [10, 12-16]. The first signal, or signal 1, is the direct
recognition of the peptide-major histocompatibility molecule complex (p-MHC) by the TCR.
However, this interaction is not sufficient to confer T cells with effector activities. For this, a
second co-stimulatory signal (signal 2) has to be co-delivered together with p-MHC recogni‐
tion. This signal 2 is the consequence of the integration of activatory and inhibitory interac‐
tions between ligands/receptors on the surface of DCs and T cells (Figure 4)[16, 17]. For
example, CD80 binding to CD28 is strongly activatory, while CD80 binding with CTLA-4, or
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PD-L1 with PD-1, are strongly inhibitory[16, 17]. Apart from these two signals, T cells re‐
quire a third signal which drives their differentiation into distinct subtypes that will regulate
different types of immune responses [13, 18]. This third signal is usually provided by differ‐
ent combination of cytokines present within the immunological synapse (Figure 4). For ex‐
ample, the presence of high levels of IL12 will polarise T cell differentation towards a Th1
type (cellular cytotoxic immunity). On the other hand, high levels of IL10 will drive polari‐
sation towards Th2 (antibody responses).

Figure 4. In this scheme, DCs (left) present antigens to specific CD8 and CD4 T cells (as indicated) in the context of
MHC class I (I) or class II (II) molecules. These T cells receive further stimuli by co-stimulation through ligand-receptor
interactions between the DC and T cells (as indicated in the figure). Simultaneously, activated DCs secrete cytokines
and chemokines (indicated in the figure as spheres) that will drive T cell activation, proliferation and differentation
into either cytotoxic CD8 T cells or T helper cells, as shown on the right.

An ideal immunotherapeutic approach would be to use lentiviral vectors to deliver the antigen
of interest together with the three signals required for the desired T cell polarisation. Lentivec‐
tors have been extensively used for this purpose, because they are particularly effective in
transducing DCs without affecting their functionality, unlike other vectors such as those based
on adenoviruses [8, 19-26]. In fact, the stable integration of the lentivector genome allows long-
term, sustained transgene expression[1, 9]. In addition, the expressed transgene is processed
and its antigen peptides loaded in MHC I and MHC II molecules [27]. This is of the outmost im‐
portance for immunotherapy, since expressed proteins can be processed and loaded onto
MHC-II molecules through several pathways. While secreted proteins can enter the endocytic
pathway and membrane proteins can be recycled towards the endosomal pathway, cytoplas‐
mic proteins can still enter the MHC II pathway by autophagy[28]. Nevertheless, to improve
MHC II loading of peptides from cytoplasmic proteins, endocytic localisation sequences can be
fused to the transgene, with the lysosomal-associated membrane protein 1 or with the amino-
terminal portion of the MHC II invariant chain [29-32].

The use of lentivectors to express whole trangenes rather than antigen petides circumvents
the necessity of designing specific peptide/protein vaccines for loading into specific MHC
genotypes [27]. Thus, lentivectors expressing model antigens have been extensively used as
a proof of principle. Amongst others, the antigens chicken ovalbumin (OVA), tumour-tu‐
mour associated antigens such as MELAN-A, tyrosinase related protein (Trp), NY-ESO or
antigens from infectious agents have been expressed in DCs. These modified DCs induced
strong activation and proliferation of antigen-specific T cells. [17, 33-38].
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3. Lentivector immunogenicity

Lentivectors have been extensively used in vaccination protocols, due to their capacity of
raising strong transgene-specific immune responses [9, 17, 30, 38-40]. Interestingly, some re‐
ports suggest that lentivectors are incapable of inducing DC maturation in vitro, suggesting
that some components of the lentivector preparations provide signals 2 and 3 through a
mechanisms not well understood [40, 41].

DC maturation is a complex, step-wise process in which they up-regulate the surface expres‐
sion of co-stimulatory molecules such as CD80, CD83, CD86, CD40, adhesion molecules
such as ICAM-1 and also the expression of MHC molecules. In general terms, DC matura‐
tion can be triggered by recognition of pathogen-derived molecules by specific receptors on
the DC surface, such as the family of toll-like receptors (TLRs) [42, 43]. DCs can also mature
through the exposure of pro-inflammatory cytokines by a process called cytokine priming
[13-15]. Matured DCs can effectively provide strong signals 1 and 2, leading to efficient T
cell activation and proliferation. Thus, their administration in vivo induces DC maturation
and production of type I interferon that can provide signal 3 [9, 39, 44, 45].

The capacity of lentivectors to induce DC maturation after vaccination is probably caused by
either specific components of the lentivector particle or by contaminants present in the lenti‐
vector preparation. As a matter of fact, lentivector particles resemble viruses and therefore,
some components have the potential to stimulate immune responses such as the RNA genome
or the cDNA [46]. These are ligands for TLR7 and TLR9, respectively [41, 45]. In addition to
specific components of the lentivector particle, contaminants can also alter their immunosti‐
mulatory properties. In fact, most lentivector preparations pseudotyped with VSV G contain
VSV-G tubulo-vesicular structures enclosing plasmid DNA that stimulate TLR9 in vitro, lead‐
ing to type I IFN production by pDCs [47]. In addition, foetal calf serum (FCS) contributes to
immunogenicity by providing T cell epitopes with adjuvant capacities [48].

4. Control of DC maturation by expression of molecular activators with
lentivectors

Lentivector preparations can induce DC maturation in vivo. However, in some circumstan‐
ces this is not enough for effective therapeutic activities. This is the case for cancer immuno‐
therapy, in which breaking tolerance towards TAAs is still a medical challenge. One
possible solution is to co-express TAAs with molecular activators of DCs using lentivectors,
particularly using activators of signalling cascades belonging to the TLR pathways.

This has been firstly achieved by over-expressing adaptor molecules, which associate with
TLR cytoplasmic tails. These adaptor molecules recruit activatory protein kinases leading to
DC maturation. Thus, lentivectors have been used to express MYD88 or TRIF1 in mouse
myeloid DCs, which also increases secretion of pro-inflammatory cytokines IL-6, IL-12 and
IFN-α, which enhanced T cell cytotoxicity [49]. The NF-κB pathway has also been an attrac‐
tive target because it controls transcription of the majority of pro-inflammatory genes (Fig‐
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ure 5). Lentivectors have thus been used to express the Kaposi’s sarcoma-associated herpes
virus FLICE-like inhibitory protein (vFLIP), a constitutive activator of NF-κB by direct asso‐
ciation and activation of NF-κB essential modulator (NEMO) [50-53]. In fact, vFLIP expres‐
sion has resulted to be a strong adjuvant when expressed in DCs, leading to strong DC
maturation and effective CD4 and CD8 T cell responses. Lentivector expression of vFLIP sig‐
nificantly improves anti-tumour activities in a lymphoma mouse model and anti-parasitic
efficacy in an OVA-expressing leishmania model [38, 54]. Lentivectors have also been used
to inhibit negative regulators of NF-κB activation, such as the ubiqutin ligase A20. Lentivec‐
tors have successfully delivered to DCs short hairpin RNAs (shRNAs) targeting A20. The
abrogation of A20 expression caused DC maturation, effective CD8 cell responses and inihi‐
bition of regulatory T cells (Tregs) [55, 56].

Other molecular activators of mitogen activated protein kinases (MAPKs), activated after
TLR engagement, have also been co-expressed in DCs with antigens of interest (Figure 5).
MAPKs are mainly divided in three groups, ERK, p38 and JNK. While ERK is associated to
survival and immune suppression, p38 and JNK are thought to stimulate DC maturation
and inflammation (Figure 5). Constitutive p38 activation was achieved by expressing the
MKK6 EE mutant using lentivectors, and it resulted in CD80, CD40 and ICAM-I up-regula‐
tion without significant secretion of pro-inflammatory cytokines [17, 40, 41]. A similar result
was achieved by JNK1 activation, following expression of the MKK7-JNK1 fusion gene in
DCs. Interestingly, although a full DC maturation phenotype was not achieved ex vivo, co-
expression of these MAPK activators with an OVA-containing transgene or MELAN-A in‐
duced significant antigen-specific CD4 and CD8 T cell responses. Moreover, these
lentivectors improved survival in a murine tumour model for lymphoma, both with inte‐
grating and non-integrating lentivectors [38].

Figure 5. Intracellular signalling pathways regulating DC functions.

Other molecules have been applied for DC maturation. For example, CD40 ligand expres‐
sion achieved human DC activation and up-regulated the expression of CD83, CD80, MHC-I
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and induced IL-12 secretion [57]. This strategy increased CD4 and CD8 responses towards
influenza epitopes and the TAA gp100. Co-expression of DC-promoting cytokines such as
GM-CSF- and IL-4 using lentivectors resulted in long-lasting immunity against melanoma
when co-expressed with TAAs Trp-2 and Mart-1 [58].

In this scheme, the main signalling pathways triggered after the engagement of a wide
range of receptors on the DC surface (see the indicated receptors embedded in the mem‐
brane) with their ligands. Engagement of these receptors starts a complicated cascade of sig‐
nalling pathways that will converge in a few, well-characterised ones, the NK-κB, MAPKs
and interferon regulatory factors (IRFs) (as indicated below the membrane). Some of these
pathways, such as NK-κB, MAPKs p38 and JNK1 are pro-inflammatory and lead to DC ma‐
turation. Others, such as ERK, are clearly immunosuppressive.

5. Control of DC maturation by inhibiting negative co-stimulation using
lentivectors

DC maturation can also up-regulate molecules that provide negative stimulation to T cells,
such as programmed cell death receptor ligand 1 (PD-L1) and PD-L2, the ligands for the
PD-1 receptor on T cells. Negative co-stimulation is part of a regulatory mechanism that
controls the activation state of T cells following antigen presentation [17, 59, 60]. Thus, inter‐
ference with negative co-stimulation could in principle reinforce T cell activation and en‐
hance cytotoxic activities. Therefore, lentivectors have been used to deliver shRNAs in DC
against PD-L1. PD-L1 silencing in antigen-presenting DCs hyperactivated T cells by pre‐
venting the up-regulation of Casitas B-lymphoma (Cbl)-b E3 ubiquitin ligase. This strategy
co- accelerated anti-tumour immune responses, particularly if combined with a p38 activa‐
tor or dominant negative mutant of MEK1, the upstream kinase of ERK [17, 59].

6. Lentivectors and cancer immunotherapy

Lentivectors are particularly promising in cancer immunotherapy, for which conventional im‐
munization is largely ineffective due to two major barriers. Firstly, TAAs are generally self-
proteins to which there is strong immunological tolerance. Secondly, that tumours are strongly
immune-suppressive and they use several mechanisms to avoid immune responses [41].

Lentivectors can be used in cancer immunotherapy in two different ways. In the first one,
DCs can be generated ex vivo from the patient, followed by lentivector transduction and in
vivo administration. Thus, cellular vaccination with transduced DCs expressing HLA-Cw3
induced activation and proliferation of CD8 T cells in a mouse model [37]. Similarly, lenti‐
vector transduction was shown to be superior to peptide pulsing in inducing OVA-specific
T cell responses [61], protected mice from OVA-expressing tumour cells and significantly in‐
hibited tumour growth. The second strategy is direct lentivector vaccination, taking advant‐
age of their intrinsic immuno-stimulatory capacities and their reduced cost [24, 26, 35].
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Figure 6. A scheme of the TCR is shown embedded in the cellular membrane. Both α and β chains are shown as indi‐
cated, subdivided in variable and constant regions (V, C). The other CD3 chains that associate with the TCR are also
included in the figure. On the bottom, a lentivector co-expressing α and β TCR chains is shown, under the control of
the spleen focus forming virus promoter (SFFV) and an internal ribosome entry site (IRES) [67]. This particular lentivec‐
tor is self-inactivating (SIN) and presents a deletion of viral enhancers in the 3’ LTR. When this construct is integrated,
the 5’ LTR disappears and it is replaced with the deleted version.

As mentioned above, a major issue with cancer immunotherapy is that most TAA-specific T
cells may have been eliminated during thymic clonal deletion. Thus, even if effective and
strong DC maturation is achieved, no effective responses will be achieved due to lack of
TAA-specific T cells. To circumvent this, TAA-specific T cells can be generated by lentivec‐
tor transduction in vitro, and adoptively transfered in patients (Figure 6) [62]. Clinical effica‐
cy has been reported for melanoma, synovial cell sarcoma, colorectal, neuroblastoma and
lymphoma, but using γ-retrovirus vectors instead of lentivectors [63-66].

T cells are largely refractory to transduction by VSV G-pseudotyped lentivectors, and they
require some level of T cell stimulation [67]. Treatment with IL-2 and IL-7 allows lentivector
transduction and preserves a functional T cell repertoire [68, 69]. As an example, Wilms tu‐
mour antigen (WT1)-specific T cells were generated by lentivector expression of a WT1-spe‐
cific TCR in the presence of IL-15 and IL-21. These modified T cells were multifunctional
and exhibited the expected antigen specificity [67]. This approach of T cell modification is
rather promising. In a clinical trial with 15 terminally sick melanoma patients, 2 showed
complete regression and long-term survival after transfer of T cells expressing a MART-1-
specific TCR using γ-retrovirus vectors [70]. Interestingly, it has been recently demonstrated
that entivectors pseudotyped with measles virus H/F glycoproteins effectively transduce
quiescent adult T cells in the absence of any exogenous stimulus, whether cytokines or anti-
CD3/anti-CD28 stimulation. In fact, transduction with these lentivectors did not affect T cells
in any way [17, 71-73].
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7. Lentivector gene immunotherapy for the treatment of autoimmune
disorders

It is relatively “straightforward” to achieve immune stimulation using lentivectors. Howev‐
er, the induction of immune suppression or tolerance with lentivectors is rather challenging.
Nevertheless, the induction and maintenance of immunological tolerance is critical for ho‐
meostasis. The organism is permanently and closely in contact with a very wide range of an‐
tigens of many origins. A large majority of them are innocuous and do not pose a direct
threat. Thus, the immune system must not respond to these antigens, as an immune re‐
sponse is associated with significant collateral tissue damage. The immune system should be
activated only if a real threat appears. Therefore, the immune system possesses several tol‐
erogenic mechanisms in place to keep immunological homeostasis. As mentioned before, a
key one is clonal deletion of auto-reactive T cells in the thymus [74]. However, there is a sig‐
nificant number of auto-reactive T cells that escape from clonal deletion. Many of them will
differentiate towards natural Foxp3 CD4 regulatory T cells [74-77].

In addition to clonal deletion and differentiation of natural Tregs, there are a number of tol‐
erogenic mechanisms in place that regulate immune responses towards peripheral antigens.
The organism is in permanent direct contact with many substances and commensal organ‐
isms in mucosal areas and in peripheral tissues. In these situations, inducible Tregs differen‐
tiate from naïve CD4 T cells after antigen presentation by tolerogenic DCs. These regulatory
T cell types are usually classified in Tr1 (CD4 CD25 IL10 or TGF-β) and Th3 (CD4 CD25
Foxp3) cells [78-82]. Therefore, DCs can also be converted in tolerogenic by expression of
immunomodulatory genes with lentivectors. This strategy opens up the application of lenti‐
vectors for the treatment of autoimmune disorders.

8. Induction of tolerogenic DCs using lentivectors

It is relatively “straightforward” to achieve immune stimulation using lentivectors. Howev‐
er, the induction of immune suppression or tolerance with lentivectors is rather challenging.
However, the induction and maintenance of immunological tolerance is critical for homeo‐
stasis. The organism is permanently and closely in contact with a very wide range of anti‐
gens of many origins. A large majority of them are innocuous and do not pose a direct
threat. Thus, the immune system must not respond to these antigens, as an immune re‐
sponse is associated with significant collateral tissue damage. The immune system should be
activated only if a real threat appears. Therefore, the immune system possesses several tol‐
erogenic mechanisms in place to keep immunological homeostasis. As mentioned before, a
key one is clonal deletion of auto-reactive T cells in the thymus [74]. However, there is a sig‐
nificant number of auto-reactive T cells that escape from clonal deletion. Many of them will
differentiate towards natural Foxp3 CD4 regulatory T cells [74-77].

In addition to clonal deletion and differentiation of natural Tregs, there are a number of tol‐
erogenic mechanisms in place that regulate immune responses towards peripheral antigens.
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The organism is in permanent direct contact with many substances and commensal organ‐
isms in mucosal areas and in peripheral tissues. In these situations, inducible Tregs differen‐
tiate from naïve CD4 T cells after antigen presentation by tolerogenic DCs. These regulatory
T cell types are usually classified in Tr1 (CD4 CD25 IL10 or TGF-β) and Th3 (CD4 CD25
Foxp3) cells [78-82]. Therefore, DCs can also be converted in tolerogenic by expression of
immunomodulatory genes with lentivectors. This strategy opens up the application of lenti‐
vectors for the treatment of autoimmune disorders

9. Induction of tolerogenic DCs using lentivectors

DCs can induce immunological tolerance through a number of mechanisms. It is generally
accepted that antigen presentation by immature DCs is poorly immunogenic, and results in
Treg differentiation, T cell apoptosis and T cell anergy [83-86]. These immature tolerogenic
DCs express low levels of co-stimulatory molecules CD80, CD86, CD83, CD40 and MHC
molecules [10, 40, 41, 78, 87]. Resident mucosal DCs are intrinsically tolerogenic independ‐
ently on their maturation phenotype as a consequence of the presence of retinoic-acid [88].
In addition, these DCs become strongly immunosuppressive due to contact with TLR ago‐
nists from commensal microbiota [88-90]. DCs can also become strongly immunosuppres‐
sive after treatment with lectin ligands or exposure to immunosuppressive cytokines such as
IL-10, IL-4 or TGF-β[78, 87, 89-92]. Tolerogenic DCs usually express high levels of these im‐
munosuppressive cytokines, even if they are phenotypically mature [10, 40, 78, 87, 89-93]. In
this situation, they provide strong signals 1 and 2 to T cells, together with a simultaneous
strong tolerogenic signal 3. For example, in the presence of bioactive TGF-β, strong antigen
presentation leads to differentiation to antigen-specific Foxp3 Tregs, while secretion of IL-10
usually results in Tr1 differentiation [91, 93-95].

Tolerogenic DCs can also up-regulate molecules that provide an inhibitory signal to T cells,
such as PD-L1 (or B7-H1), a member of the B7 co-stimulatory molecules [17, 96]. PD-L1 ex‐
pression in DCs regulates T cell activities during antigen presentation and prevents T cell
hyperactivation [17]. In addition, PD-L1-CD80 binding on T cells induces antigen-specific
Treg differentiation [97]. Other members of the B7 family are immunosuppressive [98]. Im‐
munosuppressive DCs also up-regulate aminoacid-metabolising enzymes, such as arginase
or indoleamine 2,3-dioxygenase (IDO) [99-104]. It is thought that these enzymes deplete T
cells of essential aminoacids.

Lentivectors can be used to confer tolerogenic activities to DCs by expression of immunore‐
gulatory genes together with antigens of interest. The first strategy that was tested experi‐
mental was the expression of potent immunosuppressive cytokines. This approach was used
with γ-retroviral vectors for inflammatory diseases [95, 105, 106], 105, 106]. Lentivectors
have been applied in an experimental model of asthma by expressing IL-10, leading to ex‐
pansion of IL-10-expressing Foxp3 Tregs with potent anti-inflammatory properties [107]. Al‐
ternatively, small immunosuppressive peptides can also be delivered with lentivectors, such
as the vasointestinal peptide (VIP). Intraperitoneal administration of VIP-encoding lentivec‐
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tors in mice effectively inhibited the development of experimental collagen-induced arthri‐
tis. This was achieved by a markedly reduction of pro-inflammatory cytokine secretion and
the expansion of Foxp3 Tregs [108]. The administration of genetically modified VIP-express‐
ing DCs also showed significant therapeutic effects in EAE and in the coecal ligation and
puncture (CLP) model [109].

DCs can also be reprogrammed by direct modulation tolerogenic signalling pathways with‐
in DCs (Figure 5). Therefore, lentivector expression of a constitutively active MEK1 mutant
resulted in sustained MAPK ERK phosphorylation, resulting in immunological tolerance
[40, 90, 110-114]. These genetically modified DCs exhibit an immature phenotype with low
levels of CD40 and secretion of bioactive TGF-β[40, 78]. Antigen presentation by these ERK-
activated DCs differentiated antigen-specific Foxp3 Tregs both ex vivo and in vivo in a mouse
model [78]. Direct lentivector vaccination encoding the ERK activator effectively controlled
antigen-induced inflammatory arthritis in a mouse model [78].

Similarly, lentivector expression of a constitutively active IRF3 mutant induced high expres‐
sion levels of IL-10, and expanded antigen-specific Foxp3 Tregs which inhibited immune re‐
sponses (Figure 5) [40]. Activation of endogenous negative feedback mechanisms of DC
maturation pathways has also been applied to induce immune suppression. In this way, by
over-expressing the suppressor of cytokine signalling 3 (SOCS-3) in DCs, pro-inflammatory
signalling pathways were severly impaired [115]. These genetically modified DCs signifi‐
cantly decreased secretion of pro-inflammatory cytokines IFN-γ, IL-12 and IL-23, and
showed an enhanced IL-10 production, which effectively inhibited effectively inhibit experi‐
mental autoimmune encephalomyelitis (EAE) in mice [115].

An alternative strategy to generate tolerogenic DCs is the inhibition of pro-inflammatory sig‐
nalling pathways instead of activating immunosuppressive pathways. As NF-κB is a critical
inflammatory signalling pathway, its inhibition in promising for the induction of immunologi‐
cal tolerance [41]. To achieve this, Rel-B was silenced by the delivery of a shRNA targeted to
Rel-B [116]. In this way, its inhibition could effectively prevent DC maturation after engage‐
ment with TLR ligands, and it was sufficient to treat autoimmune myasthenia gravis in a
mouse model [116]. In an analogous manner, lentivectors have also been applied to silence B
cell activating factor (BAFF) in the inflamed joint [117, 118], which was very effective for the
treatment of experimental collagen-induced arthritis [119] without the need of targeting the ar‐
thritogenic antigen. These lentivectors were directly injected in the inflamed joint, where they
preferentially transduced resident DCs. BAFF silencing in these DCs inhibited their matura‐
tion, and most importantly, inhibited differentiation of pathogenic Th17 [119].

10. Conclussions

Classical immunotherapeutic strategies for the treatment of cancer and infectious diseases
rely on either administration of the antigen peptides together with adjuvants, or the inocula‐
tion with attenuated strains of pathogenic agents. This approach has been largely successful
for the treatment of a wide range of infectious agents. However, for cancer immunotherapy,
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most potent and targeted immunotherapeutic approaches are required to break the natural
tolerance towards TAAs. The targeted co-delivery of immunomodulatory genes with anti‐
gens of interests to DCs has opened the application of gene therapy for immunotherapy.
Lentivectors exhibit a remarkable transduction capacity of DCs and also T cells, and thus,
they are ideal tools to achieve immunodulation. In this way, the immune system can be
strongly and specifically activated for the treatment of cancer and infectious diseases, but it
can on the other hand be strongly immunosuppressed. This makes it possible the induction
of immunological tolerance and treatment of autoimmune disorders.
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