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1. Introduction 

Communication systems have to be made secure against unauthorized interception or 
against disruption or corruption in complicated electromagnetic environments. There are 
mainly three security categories used to delineate wireless communication systems 
generally, such as shown in Fig. 1, i.e., INFOSEC, COMSEC, and TRANSEC. We state about 
information security (INFOSEC) as that trying to against unauthorized access to or 
modification of information; we describe the communications security (COMSEC) as that 
keeping important communications secure. And we describe transmission security 
(TRANSEC) as that making it difficult for someone to intercept or interfere with 
communications without prior accurate waveforms, modulation schemes, and coding 
(Nicholson, 1987). 

 

Fig. 1. Wireless communication security delineation 

Therefore, in general, the basic strategies for acquiring and paralyzing the communication 
victim for the untended or intended users are to detect, intercept, exploit, and jam the 
communication signals. Relatively, the basic measures to counter these strategies for the 
victim are to design system with TRANSEC capabilities, i.e., low probability of detection, 
interception, and exploitation (LPD/I/E), and with receiving security capability, i.e., AJ or 
jam-resistant. LPD/I/E can be defined as measures with hidden signals which make it 
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difficult for the unintended or intended receivers to detect between signal plus noise and 
noise alone, to distinguish between the signals, and to abstract feature and recover message, 
respectively. Nevertheless, the requirements for AJ communications are almost directly 
opposite to those for LPD/I/E communications. For example, whenever communication 
system increases power to maintain communication distance and counter a jammer, it will 
increase the threat of being detected or even intercepted by an unintended interceptor 
receiver accordingly. On the other hand, whenever communication system decreases power 
to counter the threat of an interceptor, it will also unavoidably decrease the AJ capability. 
The same is true if power is replaced with many other system related parameters, e.g., 
antenna size. 

In addition, the receiving and transmission security achieved by a communication link 
depends very strongly on its location relative to an adversary’s jamming transmitter and 
intercept receiver, which is categorized as geometry-dependent factors. In AJ applications, it 
is very important to have an accurate estimation of the processing gain required for reliable 
communications as a function of the link geometry. In cases of LPD/I/E, the detection 
probability is significantly affected by the interaction of the link geometry and the relative 
locations of the intercept receiver and the communication transmitter. In geometric point of 
view, the central concept of TRANSEC secure communications, is trying to force the related 
jamming, detection, interception, or exploitation measures, to have to work within our 
prescribed region(s), e.g., physically dead zones or lethal zones, when in comparison with 
conventional communications, as shown in Fig. 2. (Schoolcraft, 1991) The inner red region 
represents conceptually the maximum range necessary for acquiring the TRANSEC 
communications signatures by the adversary side when in comparison with conventional 
communications in the outer yellow region. Similarly for AJ concerns, jamming has to 
approach furthermore into TRANEC communications region as well.  

 

Fig. 2. TRANSEC communication scenario and concept 

Under these circumstances as aforementioned, it is not straightforward to make wise and 
prudent evaluations and decisions for secure communications with concurrent AJ and 
LPD/I/E capabilities. Therefore, flexible and convenient metrics for achieving these are 
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expected. Moreover, how to get an analysis model and metrics of evaluating effectively a 
special type of jammer with real-time (or near concurrent) detection (passive scanning) and 
transmission capability (called repeater or follow-on jammer) for a frequency hopping (FH) 
communication system is also expected. Finally, based on these, spectrum sensing technique 
like this with real-time detection and transmission capability, especially for a cognitive radio 
(CR) FH communication, is also expected to be adapted and available for communication 
resources sensing. This chapter is organized as follows. 

In Section 2, a systematic approach for evaluating the interactions of the link geometry and 

TRANSEC system parameters (AJ and LPD are assumed) for secure communication is 

proposed. In many typical cases, communication designs have to deal simultaneously with 

adversary threats of both active jamming and passive detection to protect against jamming 

and detection. And by increasing communication power to counter jammer and enhancing 

anti-jamming capability must be weighted carefully against the increased threats of 

deteriorating low probability of detection capability and being detected by an unintended 

interceptor receiver. A qualitative and quantitative approach with sinc-type antenna 

patterns being included for evaluating both AJ and LPD concurrently is reached. And it is 

intuitive to see that by spreading signal spectrum, complicating signal waveforms, and 

lowering power control uncertainty, respectively, will enhance system security and 

performance accordingly. 

In Section 3, a cognitive radio unit (CRU) model with uniform scanning (U-scanning) and 

sequential scanning (S-scanning) techniques and cognitive perception ratio (CPR) metric 

for cognitive communications adapted from TRANSEC is investigated. In this model real-

time spectrum sensing characteristics are coordinated together with system parameters in 

temporal and frequency domains, e.g., scanning rate and framing processing time, for 

evaluating the performance of the cognitive radio (CR) communications under an 

elliptical or a hyperbolic operation scenario. CR technology has been proved to be a 

tempting solution to promote spectrum efficiency and relieve spectrum scarcity problems. 

Nevertheless, the cognitive capability cannot only be realized by monitoring on some 

frequency bands of interest but also more innovative techniques are required to capture 

the spectrum holes with temporal, frequency or spatial variations in sophisticated 

Frequency hopping spread spectrum (FHSS) radio environments, and avoid interference 

to the existing primary users. Nowadays, the FHSS systems have been widely used in civil 

and military communications, but somewhat their benefits would be potentially 

neutralized by a follow-on jamming (FOJ) with wideband scanning and responsive 

jamming capabilities covering the hopping period. The FOJ concept is actually implicitly 

analogous to a CR communication with spectrum and location awareness, listen-then-act, 

and adaptation characteristics. High CPR value means high spectrum awareness but low 

coexistence. Many intriguing numerical results are also illustrated to examine their 

interrelationships.  

In Section 4, a systematic approach with their corresponding metrics for evaluating 

independent and concurrent AJ and LPD performance qualitatively and quantitatively is 

drawn in this section. Moreover, specific scanning schemes and a quantified CPR metric 

are available for evaluations of the coexistence of radio resources. Section 5 is literatures 

listing.  

www.intechopen.com



 
Advances in Cognitive Radio Systems 

 

84

2. Secure communications system through concurrent TRANSEC evaluations 

The central concept for a secure communications system is to protect against unintended or 
intended jammers and interceptors, force them to change system parameters or work 
outside of the prescribed acceptable regions, and maintain secure system performance 
simultaneously. In this section, a systematic approach for evaluating the interactions of the 
link geometry and TRANSEC system parameters for secure communication will be 
investigated. 

2.1 Survey of related works 

There are many inspiring methods and metrics which have already been explored and 
proposed by many forerunners for secure communication related performance concerns, 

which are addressed as follows. Turner described the reasons of LPD/LPI/LPE 
communications developments and anti-jamming verse LPD/LPI/LPE communications 

requirements, which offer capabilities not available with AJ communications. The ideal 
characteristics of a LPD/LPI/LPE communications waveform and methods for detecting 

LPD/LPI/LPE transmissions are listed to form the basis for discussing of their 
developments and capabilities (Turner, 1991). Glenn made a LPI analysis and showed the 

effect of scenario-dependent parameters and detectability-threshold factors in jamming and 
non-jamming environments, and concluded that the most significant improvement in LPI 

performance can be obtained by operating at Extremely High Frequency (EHF) and by 
maximizing the effective spread-spectrum processing gain and the communicator’s antenna 

discrimination to the jamming signal, and by minimizing the number of symbols in the 
message (Glenn, 1983). Based on power gains and losses, Gutman and Prescott have given a 

LPI system quality factor (QLPI) to a grouping of quality factor terms consisting of the 
antennas (QANT), type of modulation (QMOD), atmospheric propagation conditions (QATM), 

and interference rejection capability (QADA) in the presence of jammers and intercept 
receivers (Gutman & Prescott, 1989). Based on gain difference between the communication 

receiver and the radiometer, Dillards developed a detectability gain (DG) metric for defining 
“acceptable” LPD performance of a communication signal by a radiometer, which includes 

their path losses, antenna gains, etc., plus two “mismatch” losses incurred by the 
radiometers (Dillard & Dillard, 2001). Using classical radiometer analysis and 

communication theory, Weeks et. al. developed a methodology through detectability 
distance to quantify the LPD characteristics of some COTS wireless communication systems, 

i.e., GSM, IS-54, IS-95, and WCDMA, which is obtained by exploiting the step-like function 
behavior of the probability of detection curve for a given system. Tradeoffs between the 

observation time of the interceptor and the detectability distance with multiple users are 
also investigated (Weeks et al, 1998). Mills and Prescott presented a scenario-independent 

stand-off intercept model for situations in which the collocated network transmitters and the 
relatively distant interceptor are assumed. Under these assumptions, the detectability 

performance of the network using a frequency hopping multiple access scheme (FHMA) can 
be evaluated for the wideband and channelized radiometers and LPI quality factors can be 

used to compare the performance of them (Mills & Prescott, 1995). Furthermore, Mills and 
Prescott also established two multiple access LPI network detectability models, i.e., scenario-

independent standoff network and scenario-dependent dispersed network models, and 
developed their corresponding LPI performance metrics to provide new insight into these 
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 issues (Mills & Prescott, 2000). Benia explored the effect of message length, processing gain, 
and coding gain on LPI performance and suggested a method for analyzing the effects of 
channel absorption loss models on the LPI quality factor (Binia, 2004). Wu investigated the 
impacts of the filter-bank interceptor performance and the emitter with FH waveform and 
specific antenna pattern on so-called circular equivalent vulnerable radius (CEVR) 
sensitivity within a statistical context like confidence interval (Wu, 2005).On the other hand, 
many forerunners have already investigated optimal interceptors for best detection 
probability concerns as well, which are addressed as follows.  Schoolcraft defined six 
conventional and LPD waveforms to resist against seven detection techniques and provided 
a general approach to test the effectiveness of postulated threats against candidate 
waveforms and the relative LPD strengths of competing candidate waveforms (Schoolcraft, 
1991). Wu studied the optimal interceptor for a FH-DPSK waveform, derived the detection 
algorithm based on the maximum likelihood principle, and proposed a novel performance 
evaluation approach (Wu, 2006). In spite of focusing on geometrical or power aspects of 
jamming only before, Burder analyzed and derived a mathematical intercept model for 
computation of the jamming probability when a follower jammer with a wideband-scanning 
receiver jams a single FH system (Burda, 2004). Gross and Chen developed and predicted 
the relative detection range for two types of transmitted waveforms, i.e., a benchmark 
rectangular pulse and a Welti binary coded waveform, and some classic passive receivers, 
e.g., square-law, delay and multiply, wideband, and channelized receivers possessing 
typical bandwidth, noise-floor, and loss parameters (Gross & Chen, 2005). In spite of the 
active jamming measures taken, FOJ is implicitly analogous to a cognitive radio 
communication with spectrum and location awareness, listen-then-act, and adaptation 
characteristics. For transmission security concerns, concurrent anti-jamming and low 
probability detection were investigated to have a secure communication (Liao et al., 2007). 

2.2 System analysis scenario 

The operation scenario with both AJ and LPD for a Ka-band GEO satellite communication 
system will be taken as system analysis model in this subsection. The relative geometry 
locations of the victim satellite communication system and the adversary multiple jammers 
and interceptors are shown in Fig. 3, where the victim communication terminal is put at the 
origin, and the latter two are collocated on the same fixed or varying positions, i.e., (x1, y1, 
0), (x2, y2, 0), (x, y, 0), and (xN, yN, 0) etc. The paired jammer and interceptor on the same 
position (x, y, 0) are varying in an approaching or receding way for evaluating AJ and LPD 
performance. Rc is the range between our communication system themselves (e.g., Rc is 
assumed to be 36000kM for a geosynchronous elliptic orbit (GEO) satellite). Rj/Ri is the 
jammer/interceptor range from their collocated earth position to the victim communicator 
on the position of (0, 0, R). As shown in this figure, one very important factor for the 
effectiveness of jamming or interception is the relative angle φ off the main beam pattern of 
the victim communicator (on the position of (0, 0, R)) in the direction of earth 
jammer/interceptor. Generally, our friendly communication system (communicators at the 
origin and on the position (0, 0, R)) will direct main beam patterns at each other to get 
maximum gain patterns, and the intentional jammers or unintended interceptors will only 
be able to cover from the sidelobe direction, especially when the operating frequency is 
higher. Fig. 3 shows a basic scenario with an intercepted and jammed satellite and multiple 
jammers and interceptors on the ground. Whenever the jamming and interception range is 
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very far away from the victims, e.g., a GEO satellite, the interceptor and jammer will also get 
the advantage of the main beam gain of the victim communicator on the position (0, 0, R) 
relatively easier, if no antenna shaping or nulling pattern designs are taken.  

 

Fig. 3. The operation scenario with both AJ and LPD for a Ka-band GEO satellite 
communication system 

Jammer/interceptor will get the advantages of the victim antenna pattern (mainlobe) to 
enhance their jamming or interception effects if the relative angles of the 
jammer/interceptor and the victim communicator on the position (0, 0, R) are tilted with the 
line of sight of the victim communicators themselves. The well-known parabolic antenna 
power gain Go(D) and pattern G(φ) are given as follows (Jain, 1990) 
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, (1) 

where D is antenna diameter, λ is wavelength, η is antenna efficiency, and J1 is first order 

Bessel function. If the satellite communicator on the position of (0, 0, R) is assumed to be the 

victim with a 3m sinc-type antenna, a narrower 30GHz and a wider 20GHz antenna patterns 

will be for uplink and downlink communication for the terminals on the ground, 

respectively. It is therefore good for anti-jamming design (30GHz) but not for LPD (20GHz) 

due to its wider transmission pattern. 

2.3 Evaluation method 

Not only are the power control schemes of a communication system very crucial to provide 
adaptive adjustments of transmission power and signal-to-noise ratios required, but are also 
the communication signal very dangerous to be more easily detected by the unintended or 
intended interceptors, especially, whenever the power sources are transmitted 
unscrupulously. In general, the receiving and transmission security achieved by a 
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communication link depends very strongly on its system related parameters and location 
relative to an adversary’s jamming transmitter and intercept receiver, which can be 
categorized as system-dependent and geometry-dependent factors, respectively, for 
independent or concurrent AJ and LPD security concerns. The jamming to signal ratio (J/S) 
and the intercept signal to noise ratio ((S/N)i) can be categorized, respectively, as system-
dependent factors, i.e., f(�) and g(�) and geometry-dependent factors, i.e., Rjs(�) and Rsi(�), 
respectively. In coordination with the system operation scenario as shown in Fig. 3, the 
signal bit energy to jamming density (Eb/Jo), where Jo is very large compared to noise power 
density No, can be categorized as system-dependent factor h(�) and geometry-dependent 
factors Rej(�), respectively. Furthermore, Eb/Jo can be proportionally or inversely related to 
these four system related parameters, i.e., processing gain (GP), effective jamming power for 
the adversary jammer (ΔMj), effective intercepting sensitivity for the adversary interceptor 
(ΔMi), and effective power control for the victim communication system (ΔMt). For example, 
whenever any of the latter three parameters is increased, Eb/Jo is lowered, i.e., error 
probability is increased. In contrast, whenever any of these three parameters is decreased, 
error probability is decreased. 

2.4 Concurrent AJ and LPD communications (Eb/Jo) 

In this subsection, in order to consider the AJ and LPD applications concurrently, we 

assume that the jamming power spectral density Jo is very large compared to noise power 

density No. Binary frequency shift keying (BFSK) is a kind of digital modulation method 

with two frequencies representing 0 and 1. Frequency hopping multiple access (FHMA) is a 

kind of spread spectrum schemes with many orthogonal or pseudo-orthogonal frequency 

patterns for multiple users application. The error probability for BFSK and FHMA 

combination, Pfh, is given by (Sklar, 2001) 
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where Eb (=S/Rb) and Jo are, respectively, the bit energy and jamming power density given 

as follows for the nth paired jammer/interceptor 
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By substituting equation (3) and (4) into equation (2) and taking an inverse natural 

logarithm of it, the required Eb/Jo for the nth paired jammer/interceptor is given as follows 
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where (S/N)io means the optimum intercepting signal-to-noise ratio of an interceptor 
receiver; Noi represents the output thermal noise power density of interceptor receiver, 
which is equal to kT0 Nfi,n, where k, T0 and Nfi,n are Boltzmann’s constant (1.38×10-23 
W/Hz/˚K), absolute temperature (290˚K assumed), and interceptor receiver noise figures, 
respectively. Equation (5) can also be categorized as system-dependent parameter h(�) and 
geometry-dependent parameters Rej(�) as shown in equation (6). The Eb/Jo can be further 
manipulated and given as follows  
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where Gp is the spreading spectrum processing gain given by Wss/Wbb and (S/N)t is be 
given as follows 
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From equation (7), J/S is inversely related to (S/N)i with the other parameters fixed, which 
can be further manipulated and simplified as given by 
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where ΔMj, ΔMi, and ΔMt are defined as J/S, (S/N)i/(S/N)io, and (S/N)t/(S/N)to, respectively. 

They mean the ratios of effective jamming power for the adversary jammer, effective 

intercepting sensitivity for the adversary interceptor, and effective power control for the victim 

communicator. Eb/Jo is inversely related to these three parameters if Gp is fixed. For example, 

whenever any of these three parameters is increased, Eb/Jo is lowered, i.e., error probability is 

increased. On the contrary, whenever any of these three parameters is decreased, error 

probability is decreased. From equation (9), it is intuitive for the victim communicator side to 

enhance system performance (lowering error probability) by spreading signal spectrum (Gp is 

increased), increasing signal power (ΔMj is decreased), complicating signal waveforms (ΔMi is 

decreased), and (or) lowering power control uncertainty (ΔMt is decreased), respectively. For 

the adversary side, in order to deteriorate the performance of this secure victim 

communication system, ΔMj, ΔMi, and ΔMt should be increased to lower Eb/Jo accordingly. In 

fact, the proposed concurrent AJ and LPD research can contribute to the CR communications 

for practical implementation by replacing all the collocated jammers/interceptors as shown in 

Fig. 3 with “cooperative” communicators, in which some geometry- and system-dependent 

factors can be sensed and aware of for spectrum resources adjustments or accesses, e.g., ΔMj, 

ΔMi, ΔMt, relative positioning locations, and their corresponding parameters like power, 

bandwidth, spectrum hole, and etc.  
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2.5 Eb/Jo numerical analysis 

In this section, one typical Ka-band (fup/fdn=30/20GHz) GEO satellite communication 
(SATCOM) example (Rc is assumed to be 36000kM) is illustrated through the proposed 
design approach for a secure communication system with concurrent requirements of both 
AJ and LPD capabilities. As shown in Fig. 3, the 7-m size jammer and interceptor antennas 
with maximum sinc type antenna pattern gains of Gjs and Gis, respectively, are assumed in 
simulations. The antenna sizes for the communicators at the origin and on the position (0, 0, 
R) are both 3-m, and they are pointed each other with maximum gains. The sidelobe 
patterns leaked from the victim communicator on the position (0, 0, R) (i.e., GEO satellite) to 
the collocated interceptor and jammer on the ground are tilted φ angle dependent on 
relative positions among them, i.e., Gsi(φ) and Gsj(φ). Based on equation (8) and (9) for 
concurrent AJ and LPD considerations, their corresponding figures of Eb/Jo verse Rt range 
for single or multiple collocated jammers/interceptors are shown in Fig. 4.  

 

Fig. 4. Six different Eb/Jo ratios comparison with one varying collocated jammer/interceptor 
(VJI) and multiple collocated fixed jammer/interceptor (FJI) combinations 

From Fig. 4, six different Eb/Jo ratios comparison with one varying collocated 
jammer/interceptor (VJI) and multiple collocated fixed jammer/interceptor (FJI) 
combinations are shown: 1 VJI(red solid—), 1 VJI + 1 FJI @Rt=450km(blue dot·····), 1 VJI + 1 
FJI @Rt =300km(blue dash----), 1 VJI + 1 FJI @Rt=200km(blue dash dot-·-·-), 1 VJI + 5 FJI 
@Rt=200km(thick blue dot·····), and 1 VJI + 1 FJI @Rt=100km(thick blue dash----). The 
concurrent AJ and LPD performance under these single or multiple jammers/interceptors 
operation scenario can be examined if a minimum 10-4 FH error probability (Pfh) is asked to 
maintain (Eb/Jo=12.3dB). It is clear that whenever one single paired jammer/interceptor is 
beyond the range (Rt≈139kM), the communication performance criterion will be met (Pfh<10-

4) and not affected by this threat. Nevertheless, whenever under this operation scenario with 
one varying paired jammer/interceptor plus five jammers/interceptors all at Rt=200km, the 
specified communication criterion can not be met any more. For multiple fixed paired 
jammers/interceptors with one varying jammer/interceptor concerns, we find that there 
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exist even more “smoothed” effects for Eb/Jo curves when in comparison with J/S and 
(S/N)i curves as aforementioned, which maybe are due to randomized sidelobe patterns 
effects. 

Fig. 5 shows the respective intuitive Eb/Jo contour plot with one varying jammer/ 
interceptor and one collocated fixed jammer/interceptor (1FJI) at Rt=200km. The prescribed 
Eb/Jo=12.3dB circle (radius is about 139km) within which Pfh>10-4 is also shown for 
concurrent AJ and LPD performance evaluations criterion. Therefore, a specific strategy 
could be taken to expel the approached varying jammer/interceptor beyond this zone. A 
much more smoothed Eb/Jo contour outside the prescribed criterion circle is observed, 
which means a less secure communication performance even only one more fixed 
jammer/interceptor at distant range is considered. According to equation (9), four main 
system-dependent factors can be as metrics for tradeoffs.  

 

Fig. 5. Eb/Jo contour plot with one collocated varying jammer/interceptor (1VJI) and one 
collocated fixed jammer/interceptor (1FJI) 

3. Spectrum sensing capability through specific scanning schemes 

In previous section, we have proposed the approach of TRANSEC design by considering 
both AJ and LPE capabilities concurrently for multiple jammers and interceptors. In this 
section, we will further investigate a kind of special jamming with both real-time scanning 
and transmission characteristics, i.e., concurrent detection and jamming capabilities, which 
is designed inherently to counter a FH communication system. This should be a good bench 
target to evaluate the performance of the FH spread spectrum system with both 
transmission and reception characteristics being considered simultaneously. Moreover, 
effective jamming probability metrics for specified scanning schemes taken by FOJ, are 
investigated, which will be good figures of merit for evaluating FH and CR communication 
system performance. 
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3.1 Survey of related works 

For the past years, traditional spectrum management approaches have been challenged by 

their actually inefficient use or low utilization of spectrums even with multiple allocations 

over many of the frequency bands (NTIA). Thus, within the current regulatory frameworks 

of communication, spectrum is a scarce resource ,Spectrum policy task force report, 2002). 

Cognitive radio is the latest emphasized technology that enables the spectrums to be used in 

a dynamic manner to relieve these problems. The term “cognitive radio (CR)” was first 

introduced in 1999 by Mitola and Maguire and is recognized as an enhancement of software 

defined radio (SDR), which could enhance the flexibility of personal wireless services 

through a new language called the radio knowledge representation language (RKRL), and the 

cognition cycle to parse these stimuli from outside world and to extract the available 

contextual cues necessary for the performance of its assigned tasks (Mitola III & Maguire Jr., 

1999; Mitola III, 2000). Haykin therefore defines the cognitive radio as an intelligent wireless 

communication system that is aware of its surrounding environment, and uses the 

methodology of understanding-by-building to learn from the environment and adapt its 

internal states to statistical variations in the incoming RF stimuli by making corresponding 

changes in certain operating parameters in real-time (Haykin, 2005). In addition, some 

engineering views and advances for helping the implementation of cognitive radio 

properties into practical communications are described (Jondral & Karlsruhe, 2007; Mody et 

al., 2007). With these groundbreaking investigations and developments, international 

standardization organizations and industry alliances have already established standards 

and protocols for cognitive radio as well (Cordeiro et al., 2005; Ning et al., 2006; Cordeiro et 

al., 2006). The frequency hopping spread spectrum (FHSS) systems are widely used in civil 

and military communications, but somewhat the benefits of FHSS systems could be 

potentially neutralized by a follow-on jamming (FOJ) with an effective jamming ratio 

covering the hopping period (Torrieri, 1986; Felstead, 1998; Burda, 2004).  

In spite of the active jamming measures taken, FOJ is implicitly analogous to a cognitive 
radio communication with spectrum and location awareness, listen-then-act, and adaptation 
characteristics. Therefore, the cognitive process cannot be simply realized by monitoring the 
power or signal-to-noise ratio in some frequency bands of interest in a FH radio 
environment. For transmission security concerns, concurrent anti-jamming and low 
probability detection were investigated to have a secure communication (Liao et al., 2007). 
Furthermore, real-time spectrum sweeping characteristics are coordinated together with 
system parameters in temporal and frequency domains, e.g., scanning rate and framing 
processing time, for evaluating the performance of CR communications under an elliptical 
or a hyperbolic operation scenario, which can be applied for radio spectrum sensing and 
location awareness in cognitive radio communications. The proposed schemes and metrics 
can pave one practical way for system evaluations of cognitive radio communications (Liao 
et al., 2009). Although the performance evaluation of cognitive radio (CR) networks is an 
important problem, it has received limited attention from the CR community. It is 
imperative for cognitive radio network designers to have a firm understanding of the 
interrelationships among goals, performance metrics, utility functions, link/network 
performance, and operating environments. Various performance metrics at the node, 
network, and application levels are reviewed. A radio environment map-based scenario-
driven testing (REM-SDT) for thorough performance evaluation of cognitive radios and an 
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IEEE 802.22 WRAN cognitive engine testbed are also presented to provide further insights 
into this important problem area, respectively (Zhao et al., 2009). A coexistence window 
inside which the primary user and secondary user share the radio channel in time division 
manner is proposed. Connectivity probability and link utility efficiency are defined to 
measure the performance of secondary user. Considering the practical noise channel, how 
the metrics change is studied and the data rate of the secondary user in this case is obtained 
(Liu et al., 2010). An optimal power allocation scheme for a physical layer network coding 
relay based secondary user (SU) communication in cognitive radio networks is proposed. 
SUs are located on two different primary user (PU) coverage areas and an energy and 
spectrally efficient SU communication scheme is introduced (Jayasinghe et al., 2011). Finally, 
a latest systematic overview on CR networking and communications by looking at the key 
functions of the physical (PHY), medium access control (MAC), and network layers 
involved in a CR design and how these layers are crossly related are proposed, which can 
help researchers and practitioners have a clear cross-layer view on designing CRNs (Liang 
et al., 2011). 

3.2 Model for FH jamming probability 

Fig. 7 shows the basic FOJ function block diagram with many allocated process time to 
acquire incoming “victim” signals and implement jamming, where jTz time is the total 
analytical time needed to acquire the instant hoping frequency, τr is the total activation time 
needed to synthesize and amplify a repeater signal tone or noise to jam the “victim” signal, 
which may compose of the process times of frequency synthesizer, power amplifier, and 
filter banks. 

Scanning 

Receiver

Frequency 

Synthesizer

Power 

Amplifier 

(noise/tones)

Filter Banks

r


z
jT

 

Fig. 6. Basic FOJ function block diagram 

In general, the processed times for these three parameters are in the order of us, ns, and ns, 
respectively. Furthermore, the propagation delay or difference time (τd) dependent on 
relative positions should be included for effective jamming probability analysis. For 
example, if the range difference (ΔR) is 30km, the τd propagation difference time will be 
around 100 µs, far longer than the response time τr. Therefore, this parameter can be 
assumed to be zero while compared to other larger parameters under this circumstance. 

Fig. 8 shows the effective jamming dwell time breakdown for FOJ, where Tr represents the 
jamming total delay time of process delay and propagation time (=τr+τd), Tl represents the 
latency time (=jTz + Tr), and Tj represents the effective jamming dwell time (=Th-Tl).  
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  l z r d z rT jT jT T       , (10) 

  - -J h z r t zT T jT T T jT    (11) 

Tj must be smaller than Th under any circumstance. The effective jamming probability (h) is 
defined to be the ratio of Tj and Th. 
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Fig. 7. Effective dwell time (TJ) and latency time breakdown for CRU operation 

Scanning windows available during hopping dwell interval is defined to be m, which is 
represented as 

 
-h r t

z z

T T T
m

T T

   
    
   

, (12) 

where Tz represents the analysis framing time per scanning window Ws of the jammer and  
└x┘ symbol means the maximum integer equal to or smaller than x. It follows that the 

follower jammer is able to analyze at most m scan windows during the single dwell interval, 
Th. Scanning window number available in the FH system bandwidth is defined to be n and 
represented as 

 
s

W
n

W

 
  
 

, (13) 

where W represents the hopping bandwidth of a FH system, Ws represents scanning 
window of the jammer, and ┌x┐ symbol means the minimum integer equal to or larger 

than x. Let k be the number of scan windows which the FOJ analyzes in the dwell interval. It 
is evident that 

 min( , )k m n , (14) 
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which means the smaller one of m or n is selected as the analyzed number of scanned windows. 

Let us suppose that one FH system operates in the bandwidth W only and that the follower 

jammer knows the parameters of the FH system and knows the moments of channel changes as 

well. Therefore, exactly at these moments (t=0), the jammer will initiate searching of the actual 

channel. When FH terminal transmits in jth scan window, then this transmission is found at 

moment t0 = jTz. Let t1 be the moment when the scanning receiver finds the actual transmission 

channel of the FH system. Let t2 be the moment when the follower jammer initiates jamming of 

the found channel. Let t3 be the moment when the initiated signal of the FOJ reaches the 

receiver site of the found channel, i.e., the FH receiver is jammed at the moment t3. 

3.3 Scanning schemes 

In the following sections, two schemes named uniform scanning and sequential scanning 

will be explored and taken as scanning measures to scan and trace the incoming hopping 

signals fast enough to implant effective noise or tone jamming thereafter. In addition, the 

case of delay response (Tr≠0) will be examined as well for these two scanning schemes. 

3.3.1 Uniform scanning (U-scanning) scheme 

A uniform scanning (U-scanning) technique will be explored and taken as the scanning 

measures to scan and trace the incoming hopping signals fast enough to implant 

transmission signals thereafter. If the CRU analyzes all scan windows randomly with 

uniform probability pu(TJ)=1/n, and pu(TJ)=(n-k)/n is the probability that the FH system 

operates in the scanning window which is not analyzed. Therefore, the probability 

distribution of the jammed period of the dwell interval can be given by 

 

   -
,  0

( )  
1

        ,  1,2,...

J

u J

n k
j k T

np T

j k
n


  

 

 (15) 

It is assumed that Tr is assumed not to be zero, i.e., τr is zero, but τd is not zero and 

Tr=τd=l×Th, where l is the propagation time ratio between Tr =τd and Th. The average 

jammed period of the dwell interval is therefore derived and given by 

    
1

1
1 - -

2

n

Ju J u j hu z
j

k k
T T p T l T T

n

     
 

  (16) 

From the above derived equation, the criterion of hopping rate (Rhu) and analysis framing 
time product (Tz) for effective dwell can be available and given by 

    
2

1 -
1

hu zR T l
k

  


, (17) 

which is the basic condition whenever Tr ≠ 0 for effective CRU. The effective dwell ratio and 
scanning rate (Rsu) for uniform scanning technique can be expressed and given by equation 
(18) and (19), respectively.  
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 (19) 

3.3.2 Sequential scanning (S-scanning) scheme 

A sequential scanning scheme will be taken as the scanning measure to scan the incoming 

frequency hopping signals fast enough to implant CRU transmit signal if it is allowable. 

Based on the basic definitions as aforementioned, if CRU analyzes all scanning windows 

randomly with sequential perception ps(TJ)=1/(n+1-j), then ps(TJ)=(n-k)/(n+1-j) will be the 

perception not analyzed in the scanning window. Therefore, the perception distribution of 

the effective dwell time can be given by 

  
 -

, 0
1 -

1
, 1,2,...,  

1 -

J

s J

n k
j k T

n j
p T

j k
n j

    
 
 

 (20)  

It is assumed that Tr is assumed not zero and Tr=τr+Δτd=l×Th, where l is the propagation 

time ratio between Tr and Th. The average effective dwell time can therefore be derived and 

given by 

    
1 1

1 - -

1 -

k k
hs z

Js J s j
j j

l T jT
T T p T

n j 

 
      
   (21)  

From (21), the criterion of hopping rate (Rhs=1/Ths) and framing processing time product 

(Tz) for effective dwell time can be available and given by 
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


, (22)  

which is the basic criterion whenever Tr ≠ 0 for effective coverage of the hopping  

period. Therefore, the effective dwell time ratio and the scanning rate by sequential 

scanning scheme can be manipulated further and given by equation (23) and (24), 

respectively. 
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3.4 Geometric model for FH jamming 

In this section, two analytical geometric models, i.e., elliptic and hyperbolic, will be 
examined furthermore dependent on their relative positions among the FOJ, FH transmitter, 
and FH receiver. 

3.4.1 Elliptical FH jamming model 

Fig. 9 shows an elliptic FH jamming model. If the relative positions among the FOJ, FH 
transmitter, and FH receiver are shown in Fig. 9 with fixed range Rtr=a between the FH 
transmitter and receiver and varying FOJ position, then the following expressions will be 
available by using the fact that latency time (Tl) should be smaller than the hopping period 
(Th) for an effective jamming. 

 
 -tj jr

l z r d z r h

R R a
T jT jT T

c
  


       , (25)  

where τr can be assumed to be zero for instant response for the jammer, Rjr is the range 
between transmitter and FOJ, and Rjr is the range between FOJ and receiver. 

 

Fig. 8. Elliptic FH jamming model 

After a simple manipulation, a standard ellipse equation will be given by  
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where D is assumed to be given by 

    - - -tj jr h z rR R a T jT c D     (27)  

Fig. 10 shows the typical hopping rate (Rh) contours for an elliptic FH jamming model with 
varying FOJ locations and assumed scanning time around 1ms ( jTz=10×100µs) and fixed 
Rtr=a =100km. Whenever a specified fixed hopping rate is required (e.g. Rh=500Hz), an even 
higher hopping rate is necessary for the FH communication system if FOJ is penetrated 
through this boundary and inside the specified ellipse. On the contrary, if FOJ is located 
outside the ellipse boundary, then the specified hopping rate is fast enough to counter the 
FOJ jamming for the FH communication system. 

 

Fig. 9. Typical elliptic contour of FH jamming model 

3.4.2 Hyperbolic FH jamming model 

If the relative positions among the FOJ, FH transmitter, and FH receiver are shown in Fig.  

11 with fixed range Rtj=a between the FH transmitter and FOJ and varying FH receiver 

position, then the following expressions will be available by using the fact that latency time 

(Tl) should be smaller than the hopping period (Th) for an effective jamming. 

 
 -jr tr

l z r d z r h

a R R
T jT jT T

c
  


       , (28) 

where τr can be assumed to be zero for instant response for the jammer, Rjr is the range 
between FOJ and receiver, and Rtr is the range between transmitter and receiver. After a 
simple manipulation, a standard ellipse equation will be given by  
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where D is assumed to be given by 

    jr tr h z ra+R -R T -jT -τ c=D  , (30)  

 

Fig. 10. Hyperbolic FH jamming model 

Fig. 12 shows the typical contours for a hyperbolic FH jamming model with varying FH 
receiver locations and assumed scanning time around 1ms (jTz=10×100µs) and fixed 
Rtj=a=100km. Whenever a specified fixed hopping rate is required (e.g. Rh=650Hz) under 
this circumstance, an even higher hopping rate is necessary for the FH communication 
system if the varying FH receiver is penetrated through this boundary to be closer to the 
fixed FOJ position on the right side. On the contrary, if the varying FH receiver is located on 
the left side of the hyperbolic boundary, then the specified hopping rate is fast enough to 
counter the FOJ jamming for the FH communication system. 

 

Fig. 11. Typical hyperbolic contour of FH jamming model 
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Fig. 13 shows the comparison results of effective jamming probability (h) vs. hopping rate 

(Rh) for both uniform (U-) scanning and sequential (S-) scanning schemes. Under the same 

framing time (Tz) conditions it is observed obviously that S-scanning scheme is better than 

U-scanning scheme for fixed hopping rate, e.g., the effective jamming probability value will 

be around 0.8 and 0.5 if Rh=500Hz and Tz= 100us for S- and U-scanning scheme, 

respectively. In another point of view, S-scanning scheme will have better hopping rate 

sensing capability (650Hz) than U-scanning scheme (500Hz) if effective jamming probability 

is fixed at 0.5. 

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tz=100us(U)

Tz=200us(U)

Tz=300us(U)

Tz=500us((U)

Tz=100us(S)

Tz=200us(S)

Tz=300us(S)

Tz=500us(S)

Tz=100us(U)

Tz=200us(U)

Tz=300us(U)

Tz=500us((U)

Tz=100us(S)

Tz=200us(S)

Tz=300us(S)

Tz=500us(S)

Uniform(U) vs Sequential(S) scanning(Tr=0/Ws=1MHz)

Hopping rate (Hz)

E
ff

ec
ti

v
e 

Ja
m

m
in

g
 P

ro
b

ab
il

it
y

0.5

0.8

200 500

 

Fig. 12. Effective jamming probability vs. hopping rate with specified Tz values 

3.5 Cognitive radio unit (CRU) and cognitive perception ratio (CPR) 

Fig. 7 shows the basic FOJ function block diagram with many allocated process time to 

acquire incoming “victim” signals and implement jamming. This function block diagram is 

basically analogous to a cognitive radio unit (CRU) for sensing spectrum signals while 

applied in a cognitive communications adapted from TRANSEC. In addition, CRU models 

with U-scanning and S-scanning schemes and cognitive perception ratio (CPR) metric for 

quantified cognitive communications could be available as well. In this model real-time 

spectrum sensing characteristics can be coordinated together with system parameters in 

temporal and frequency domains, e.g., scanning rate and framing processing time, for 

evaluating the performance of CR communications under an elliptical or a hyperbolic 

operation scenario. Fig. 14 and Fig. 15 show the hyperbolic and elliptic CPR contours, 

respectively, with both U- and S-scanning being put together for comparisons, and with 

Tz=100us and Rh= 500Hz. 
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Fig. 13. Hyperbolic CPR contours with U- and S-scanning & Rh= 500Hz 
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Fig. 14. Elliptic CPR contours with U & S scanning & Rh= 500Hz 

It is observed from Fig. 14 that the CPR-contour values of 0.25 to 0.45 (blue solid) and values 
of 0.3 to 0.8 (red dashed) for U-scanning and S-scanning, respectively, are shown from the 
left hyperbolic trajectories to the right trajectories. And it is observed from Fig. 15 that the 
CPR-contour values of 0.05 to 0.45 (blue solid) and values of 0.1 to 0.8 (red dashed) for U-
scanning and S-scanning, respectively, are shown from the outside elliptic trajectories to the 
inner trajectories. As stated in last section, the performance of S-scanning scheme is better 
than U-scanning scheme in many aspects. And it will be the same, if the location awareness 
conditions are established through direction finding and emitter location capability, and are 
collaborated with each other among CRUs.  

4. Conclusion 

In this paper, we have first proposed a systematic approach with their corresponding 

metrics for evaluating independent and concurrent AJ and LPD performance qualitatively 
and quantitatively. A representative GEO satellite communication scenario for independent 
and concurrent AJ and LPD performance evaluations is explored thoroughly. Based on these 
metrics, it is direct to see that by spreading signal spectrum, complicating signal waveforms, 

or lowering power control uncertainty, respectively, will enhance system performance 
accordingly. A CRU model with U-scanning or S-scanning techniques and a quantified CPR 
metric for cognitive communications adapted from TRANSEC is investigated as well. In this 

model real-time spectrum sensing characteristics are coordinated together with system 
parameters in temporal and frequency domains, e.g., scanning rate and framing processing 
time, for evaluating the performance of CR communications under an elliptical or a 
hyperbolic operation scenario, which can be applied for radio spectrum sensing and location 

awareness in cognitive radio communications. The proposed schemes and metrics can pave 
one practical way for the system evaluations of cognitive radio communications.  
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