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Industrial Robot Control System Parametric  

Design on the Base of Methods for 

 Uncertain Systems Robustness 
 
 

Alla A. Nesenchuk and Victor A. Nesenchuk 
 

1. Introduction 

Industrial robots often operate in conditions of their parameters substantial 
variation that causes variation of their control systems characteristic equations 
coefficients values, thus generating the equations families. Analysis of the dy-
namic systems characteristic polynomial families stability, the stable polyno-
mials and polynomial families synthesis represent complicated and important 
task (Polyak, 2002, a). Within the parametric approach to the problem the se-
ries of the effective methods for analysis have been developed (Bhattaharyya 
et al., 1995; Polyak, 2002, a). In this way, V. L. Kharitonov (Kharitonov, 1978) 
proved that for the interval uncertain polynomials family asymptotic stability 
verification it is necessary and enough to verify only four polynomials of the 
family with the definite constant coefficients. In the works of Y. Z. Tsypkin and 
B. T. Polyak the frequency approach to the polynomially described systems 
robustness was offered (Polyak & Tsypkin, 1990; Polyak & Scherbakov, 2002; 
Tsypkin & Polyak, 1990; Tsypkin, 1995). This approach comprises the robust 
stability criteria for linear continuous systems, the methods for calculating the 
maximal disturbance swing for the nominal stable system on the base of the 
Tsypkin – Polyak hodograph. These results were generalized to the linear dis-
crete systems (Tsypkin & Polyak, 1990). The robust stability criterion for the re-
lay control systems with the interval linear part was obtained (Tsypkin, 1995). 
The super-stable linear systems were considered (Polyak & Scherbakov, 2002).  
The problem for calculating the polynomial instability radius on the base of 
the frequency approach is investigated (Kraev & Fursov, 2004). The technique 
for composing the stability domain in the space of a single parameter or two 
parameters of the system with the D-decomposition approach application is 
developed (Gryazina & Polyak. 2006). 
The method for definition of the nominal polynomial coefficients deviations 
limit values, ensuring the hurwitz stability, has been offered (Barmish, 1984). 
The task here is reduced to the single-parameter optimization problem. The 
similar tasks are solved by A. Bartlett (Bartlett et al., 1987) and C. Soh (Soh et 
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al., 1985). Conditions for the generalized stability of polynomials with the line-
arly dependent coefficients (polytopes) have been obtained (Bartlett et al., 
1987; Rantzer, 1992).  
One of the most important stages, while calculating dynamic systems with un-
certain parameters, is ensuring robust quality. The control process qualitative 
characteristics are defined by the characteristic equations roots location in the 
complex plane (the plane of system fundamental frequencies). In this connec-
tion, three main groups of tasks being solved can be distinguished: determin-
ing the assured roots location domain (region) for the given system, finding 
conditions of whether roots get into the given region or not (determination of 

the Λ-stability conditions) and locating roots in the given domain (ensuring Λ-
stability).  
The frequency stability criteria for the linear systems families and also the 
method for finding the largest disturbance range of their characteristic equa-
tions coefficients, which guarantees the system asymptotic stability, are con-
sidered by B. T. Polyak and Y. Z. Tsypkin (Polyak & Tsypkin, 1990). The as-
sured domain of the interval polynomial roots location is found in (Soh et al., 
1985). The root locus theory is used in (Gaivoronsky, 2006) for this task solu-
tion. Conditions (Vicino, 1989; Shaw & Jayasuriya, 1993) for the interval poly-
nomial roots getting into the given domain of some convex shape are defined.  
The parametric approach to robustness, based on the root locus theory (Rim-
sky, 1972; Rimsky & Taborovetz, 1978; Nesenchuk, 2002; Nesenchuk, 2005), is 
considered in this chapter in application to the industrial anthropomorphous 
robot control system parametric design. The developed techniques allow to set 
up the values of the parameter variation intervals limits for the cases when the 
stability verification showed, that the given system was unstable, and to en-
sure the system robust quality by locating the characteristic equations family 
roots within the given quality domain.  

2. Industrial robot and its control system description  

Most industrial robots are used for transportation of various items (parts), e. g. 
for installing parts and machine tools in the cutting machines adjustments, for 
moving parts and units, etc. During the robot operation due to some internal 
or external reasons its parameters vary, causing variation of the system charac-
teristic equation coefficients. This variation can be rather substantial. In such 
conditions the system is considered, as the uncertain system.  

2.1 General description of the anthropomorphous industrial robot  

The industrial robot considered here is used for operation as an integrated part 
of the flexible industrial modules including those for stamping, mechanical as-
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sembly, welding, machine cutting, casting production, etc. The industrial robot 
is shown in fig. 1. It comprises manipulator 1 of anthropomorphous structure, 
control block 2 including periphery equipment and connecting cables 3. Ma-
nipulator has six units (1–8 in fig. 1) and correspondingly is of six degrees of 
freedom (see fig. 1): column 4 turn, shoulder 5 swing, arm 6 swing, hand 7 
swing, turn and rotation. The arm is connected with the joining element 8. 
Controlling robots of such a type, belonging to the third generation, is based 
on the hierarchical principle and features the distributed data processing. It is 
based on application of special control processors for autonomous control by 
every degree of freedom (lower executive control level) and central processor 
coordinating their operation (higher tactical control level). 

2.2 Industrial robot manipulator unit control system, its structure and 
mathematical model 

Executive control of every manipulator unit is usually executed in coordinates 
of this unit (Nof, 1989) and is of the positional type. It is the closed-loop servo-
control system not depending on the other control levels. Although real unit 
control is executed by a digital device (microprocessor, controller) in a discrete 
way, the effect of digitization is usually neglected, as the digitization fre-
quency is high enough to consider the unit and the controller as the analog 
(continuous) systems. As for the structure, the unit control loops are almost 
similar and differ only in the parameter values. Therefore, any unit of the in-
dustrial robot can be considered for investigating the dynamic properties. 
 
 

 
 
 
Figure 1. Anthropomorphous industrial robot 
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The structure of the manipulator unit subordinate control is shown in fig. 2. 
The simplified version of the structure is presented in fig 3. 
In fig. 2 the plant is represented by elements 1–4 (a DC motor); 5 is the sensor 
transforming the analog speed signal into the speed code (photo-pulse sensor), 
6 is the element combining the speed PI regulator, code-pulse width trans-
former and capacity amplifier, 7 is the transformer of analog position signal 
into the position code (photo-pulse sensor), 8 is the proportional regulator of 
the manipulator shoulder position, 9 is the transfer mechanism (reducer). In 
fig. 3 the transfer function 
 

ssWsW pp )()(' =  

 

where )(sW p  is the plant transfer function. 

 
Substitute corresponding parameters and express the plant transfer function as 
follows: 
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where gU  is the input voltage, ϕ is the object shaft angle of rotation. 

 
 

 
 

Figure 2. Control system for the industrial robot manipulator shoulder unit 

 
 
On the basis of (1) write the manipulator unit control system characteristic 
equation  
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- AR  is the  motor anchor resistance; 

- AL  is the anchor inductance; 

- lj  is the load inertia moment; 

- mj  is the anchor inertia moment; 

- eC  is the electric-mechanical ratio of the motor; 

- MC is the constructive constant of the motor; 

- T is the time constant of the PI regulator; 

- 1K  and 2K  are photo-electric sensor coefficients; 

- sK  and pK  are  gains of regulators by speed and position correspon-

dingly. 
 
Suppose the robot unit has the following nominal parameters: 
 

- AR = 0,63 Ω; 

- AL = 0,0014 henry; 

- lj = 2,04⋅ 5 210 kg / m−  

- mj = 40,8⋅ 5 210 kg / m− ; 

- eC = 0,16
rad

sV ⋅
; 

- MC = eC ; 

- T= 0,23 s; 

- 1K = 66,7, 2K = 250; 

- .5,2,078,0 == ps KK  
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Figure 3. Structure of the position control system loop for the manipulator shoulder 
unit 
 

After substitution of the nominal values into (2) rewrite the unit characteristic 
equation as 
 

01056,0106,010427,0105,0 8725334 =⋅+⋅+⋅+⋅+ ssss                       (3) 

 
The coefficients of (3) are the nominal ones and while robot operation they of-
ten vary within the enough wide intervals. For this reason when calculating 
the robot control system it is necessary to consider the parameters uncertainty 
and ensure the control system robustness.  
 

3. The techniques for robust stability of systems with parametric uncertainty 

The method is described for synthesis of the interval dynamic system (IDS) 
stable characteristic polynomials family from the given unstable one, based on 
the system model in the form of the free root locus portrait. This method al-
lows to set up the given interval polynomial for ensuring its stability in cases, 
when it was found, that this polynomial was unstable. The distance, measured 
along the root locus portrait trajectories, is defined as the setting up criterion, 
in particular, the new polynomial can be selected as the nearest to the given 
one with consideration of the system quality requirements. The synthesis is 
carried on by calculating new boundaries of the polynomial constant term 
variation interval (stability interval), that allows to ensure stability without the 
system root locus portrait configuration modification  

3.1 The task description 

While investigating uncertain control systems for getting more complete rep-
resentation of the processes, which occur in them, it seems substantial to dis-
cover correlation between algebraic, frequency and root locus methods of in-
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vestigation. Such correlation exists and can be applied for finding dependence 
between the system characteristic equation coefficients values (parameters) 
and its dynamic properties to determine how and what coefficients should be 
changed for ensuring stability. One of the ways for establishing the above 
mentioned correlation can be investigation of the systems root locus portraits 
and Kharitonov's polynomials root loci (Kharitonov, 1978).  
Consider the IDS, described by the family of characteristic polynomials  
 

P(s) = ∑
=

− =
n

j

jn
j sa

0

0 ,                                                      (4) 

 

where aj ∈ [ ja , ja ], 0a  > 0, j = 0, …, n; ja  and ja  are correspondingly the lower 

and upper boundaries of the closed interval of uncertainty, [ ja , ja ]; s = σ + iω. 

The coefficients of polynomial (4) are in fact the uncertain parameters. 
The task consists in synthesis of the stable interval family of polynomials (4) on 
the basis of the initial (given) unstable one, i. e., when the initial system stabil-
ity verification by application of Kharitonov's polynomials gave the negative 
result. Calculation of new parameter variation intervals boundaries is made on 
the base of the initial boundaries in correspondence with the required dynamic 
characteristics of the system. The new boundaries values definition criteria can 
be different, in particular they can be selected the nearest to the given ones. In 
this case the distance, measured along the system roots trajectories, is accepted 
to be the criterion of such proximity.  

3.2 The interval system model in the form of the root locus portrait 

 

Introduce the series of definitions. 
 
Definition 1.   Name the root locus of the dynamic system characteristic 

equation (polynomial), as the dynamic system root locus.  
Definition 2.  Name the family (the set) of the interval dynamic system root 

loci, as the root locus portrait of the interval dynamic system. 
Definition 3.  The algebraic equation coefficient or the parameter of the dy-

namic system, described by this equation, being varied in a 
definite way for generating the root locus, when it is assumed, 
that all the rest coefficients (parameters) are constant, name as 
the algebraic equation root locus free parameter or simply the 
root locus parameter.  

Definition 4.  The root locus, which parameter is the coefficient ka , name as 

the algebraic equation root locus relative to the coefficient ka . 
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Definition 5.  The root locus relative to the dynamic system characteristic 
equation constant term name as the free root locus of the dynamic 
system. 

Definition 6.  The points, where the root locus branches begin and the root 
locus parameter is equal to zero, name as the root locus initial 
points.  

Remark 1.  One of the free root locus initial points is always located at the 
origin of the roots complex plane. 

 The above remark correctness  follows from the form of equa-
tion (4). 

Remark 2.  The free root locus positive real branch portion, adjacent to 
the initial point, located at the origin, is directed along the 

negative real half-branch σ of the complex plane to the left 
half-plane.  

 
Remark 2 is correct due to the root loci properties (Uderman, 1972) and because 
real roots of equations with positive coefficients are always negative (see fig. 
4).  
 
The peculiarity of the free root loci, which distinguishes them from another 
types of root loci,  consists in the fact, that all their branches strive to infinity, 
approaching to the corresponding asymptotes.  
For carrying on investigation apply the Teodorchik – Evans free root loci 
(TEFRL) (Rimsky, 1972), i. e. the term "root locus" within this section will mean 
the TEFRL, which parameter is the system characteristic equation constant 
term.  
To generate the IDS root locus portrait apply the family of the mapping func-
tions 
 

sn + a1sn–1 + a2sn–2 +…+ an–2s2 + an–1s = u(σ,ω) + iv(σ,ω) = – an,                  (5) 

 

where u(σ,ω) and v(σ,ω) are harmonic functions of two independent variables 

σ and ω; an is the root locus parameter; s = σ + iω. Analytical and graphical 
root loci are formed using mapping function (5). The root locus equation is 
as follows: 
 

iv(σ,ω) = 0                                                               (6) 
 
and the parameter equation (Rimsky, 1972) as follows: 
 

u(σ,ω) = – an.                                                           (7) 
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The fragmentary root locus portrait for the IDS of the forth order, which is 
made up of four Kharitonov's polynomials free root loci, is shown in fig. 4. 
The Kharitonov's polynomials h1, h2, h3 and h4 in this figure are represented 
by points (roots), marked with circles, triangles, squares and painted over 
squares correspondingly. There are the following designations: 

ih
σ , i = 1, 2, 3, 

4, – the cross centers of asymptotes for the root loci of every polynomial hi, tl, l 
= 1, 2, 3, – cross points of the root loci branches with the system asymptotic sta-
bility boundary, axis iǚ. The root loci initial points, which represent zeroes of 
mapping function (5), are depicted  by  X-s. Because in fig. 4 all  roots of the 
Kharitonov's polynomials are completely located in the left half-plane, the 
given interval system is asymptotically stable (Kharitonov, 1978). 
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Figure 4. Root loci of the Kharitonov's polynomials for the system of class [4;0] 
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3.3 Investigation of the characteristic polynomial family root loci branches 
behavior at the asymptotic stability boundary of the system 

The branches of the IDS root locus portrait, when crossing the stability bound-
ary, generate on it the region (set) of cross points. Name this region, as the cross 

region and designate it as Rω. According to the theory of the complex variable 
(Lavrentyev & Shabat, 1987) and due  to the complex mapping function (5) 
continuity property, this region is the many-sheeted one and is composed of 
the separate sheets with every sheet (continuous subregion), formed by the 
separate branch while it moves in the complex plane following the parameters 
variation. The cross region portion, generated by only positive branches of the 
system root locus portrait, name as the positive cross region and designate it as 

Rω
+.  

 

Rω
+ ⊂ Rω.                                                               (8) 

 

Define also the subregion rω
+ (either continuous or discrete one) of the cross 

region Rω
+ (8) generated by the root loci branches of any arbitrary subfamily f 

of the interval system polynomials family (4), and name it as the (positive) cross 
subregion, thus,  
 

rω
+ ⊂ Rω

+.                                                              (9) 

 
Introduce the following sets: 
 

Wr
+ = { }r iǚ+                                                            (10) 

 

Ar
+ = { }r ia+                                                             (11) 

 

where Wr
+ is the set (family) of the cross subregion rω

+ (9) points coordinates 

ir
+ω ; Ar

+ is the set (family) of  values r ia+  of the root locus parameter аn  at the 

set Wr
+ points. 

 

Define the minimal positive value 
min

+
ra  of the root locus parameter within the 

cross subregion rω
+: 

 

min

+
ra  = inf Ar+.                                                         (12) 
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Peculiarities of the IDS root loci initial points location  make it possible to draw 
a conclusion about existence of its characteristic equation coefficients variation 
intervals, ensuring asymptotic stability of the given system.  
 
Statement. If the initial points of the IDS characteristic polynomials arbitrary 
subfamily f free root loci, excluding points always situated at the origin, are lo-
cated in the left complex half-plane s, there exists the interval d of the root loci 
parameter an values, ensuring asymptotic stability of the subfamily f.  

 

 

d = (0,
min

+
ra ),                                                        (13) 

 

Proof. The subfamily f free root loci generate at the system stability boundary 

the cross subregion rω
+ (9) of cross points, which is formed by the set (10) of the 

cross points coordinates and corresponding set (11) of the parameters values. If 

the initial points are located, as it is defined by the statement, on every i-th 

branch of every polynomial root loci there exist an interval ri = (
il

σ ,0) of roots 

values (starting from the branch initial point with coordinate 
il

σ  until the 

point, where it crosses the stability boundary, axis iω of the complex plane), 

which is completely located in the left half-plane. Therefore, there exists also 

the appropriate maximum possible common interval dm (which is common for 

all the branches) of the root loci parameter an values (beginning from zero up 

to the definite maximum possible value an = 
mr

a+ ), corresponding to the values 

of roots within some interval rk = (
kl

σ ,0), which ensures the system stability. 

Name this interval dm the dominating interval and define it as dm = (0,
mr

a+ ). Des-

ignate the roots iσ  coordinates values interval, located on every positive i-th 

branch of the family and corresponding to the dominating interval, as 

rd = (
il

σ ,
irσ ). It is evident, that 

mr
a+  will be maximum possible at the stability 

boundary, i. e. at 
ir

σ = 0. Then, ∀
ir

σ [
mr

a+  = 
min

+
ra  → 

ir
σ  ≤ 0], i. e. the dominat-

ing one is the interval dm = (0,
min

+
ra ), which represents itself the interval d (13). 

Hence, the statement is correct.  

 
Definition 7.  The interval of polynomial (4) root loci parameter values name 

the polynomial stability interval by this parameter or simply the 
polynomial stability interval, if the polynomial asymptotic stabil-
ity property holds within this interval.  

 

In case, if some initial points are located at the stability boundary (excluding 
the point, which is always located at the origin), and on the assumption, that 
all the rest points are located in the left half-plane, the additional analysis is 
required for finding the stability interval existence. For this purpose it is neces-
sary to define the root loci branches direction at their outcome from the initial 
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points, located at the stability boundary, i. e. just to determine what half-plane 
they are directed to: left one or right one. Obviously, such stability interval ex-
ists in the following cases:  
 

a) all the root loci branches with initial points, located at the stability 
boundary, are directed from these points to the left half-plane; 

b) all positive root loci branches with initial points, located at the stability 
boundary, are directed from these points to the left half-plane. 

 
To determine the above indicated branches direction at the initial points, it is 
enough to define the root locus sensitivity vector (Nesenchuk, 2005) direction 
at them.  
As a result of the IDS root locus portraits analysis several general regularities 
have been discovered, being inherent in Kharitonov’s polynomials free root 
loci: paired convergence of the root loci branches at the complex plane imagi-
nary axis (points t1, t2, t3, t4  in fig. 4); paired convergence of the corresponding 

asymptotes at the real axis of the complex plane (points 
1h

σ , 
2h

σ , 
3h

σ , 
4h

σ  in 

fig. 4); the tendency for the system robust properties variation while varying 
its characteristic polynomial coefficients values. It gives the possibility to fix 
the fact of existence of the system characteristic equation coefficients variation 
intervals, ensuring its robust stability and also to determine how the coeffi-
cients values should be changed for the system dynamic characteristics correc-
tion, if it is unstable.  
The IDS root locus portraits investigation, which has been carried out, con-
firms that they can be successfully applied for the in-depth studying robust 
properties of these systems.  
 

3.4 Parametric synthesis of stable uncertain systems 

The conditions for existence of the polynomials (4) family coefficients stability 
intervals were formulated in the previous section. Here we define what these 
intervals values should be. For this purpose consider the polynomials (4) sub-
family f, consisting of the system Kharitonov’s polynomials, and develop the 
procedure for synthesis of the stable Kharitonov’s polynomials on the base of 
the unstable ones, which depends on the root loci initial points location in rela-
tion to the asymptotic stability boundary. For the synthesis procedure devel-
opment apply the Kharitonov’s polynomials free root loci.  Consider the case, 
when initial points are located in the left half-plane. In this case the algorithm 
of synthesis can be divided into the following stages. 
 



908       Industrial Robotics: Theory, Modelling and Control 

Stage 1. Obtaining the Teodorchik – Evans free root loci equation (6) for each 
one of the IDS four Kharitonov’s polynomials.  
As the Kharitonov’s polynomials represent the subfamily of the IDS polyno-

mials family, they generate the above described cross subregion rω
+ (9) on the 

stability boundary, which is formed by the set (10) of the cross points coordi-
nates. 
 

Stage 2. Calculating coordinates 
ir

+ω  of the set (10) by solution of the TEFRL 

equations, obtained in stage 1, relative to ω in condition, that σ = 0. In this way 
the set Wr

+ (10) is formed.  

For every obtained value of 
ir

+ω  from Wr
+ the corresponding value of the vari-

able coefficient an is calculated by formula (7), thus, forming the set Ar
+ (11).  

 

Stage 3. Definition of the stability interval by the coefficient an. 

For this purpose, using (12), define the minimal one, 
min

+
ra , of the parameter 

values at points of the set Ar
+. Thus obtain the interval d (13) of the parameter 

an  variation, which ensures stability of the Kharitonov’s polynomials and, 
therefore, the system in whole.  
 

Before describing the next stage of synthesis formulate the following theorem.  
 
Theorem. For robust stability of the polynomial family (4) it is necessary and 
enough to ensure the upper limit of the constant term an variation interval to 
satisfy the inequality  
 

na  < min

+
ra ,                                                            (14) 

 

if the family is stable at an = 0. 
 
Proof. Let the coefficient an to be the polynomial (4) root locus parameter. Un-
der the theorem condition family of (4) is stable at an = 0, i.e. the root loci initial 
points  are located in the left half-plane. Therefore, in view of statement 1 the 
theorem is valid.  
 

Stage 4. Comparing the obtained stability interval (13) with the given interval 

an ∈ [ na , na ] of the parameter an variation in correspondence with inequality 

(14).  
 

In case, if condition (14) is not satisfied, the upper limit na  of the parameter 
variation interval is set up in correspondence with this inequality.  

When the power n of the polynomial is less or equal than 3, n ≤ 3, the above 
given theorem is applied without any conditions, i. e. it is not required to sat-
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isfy condition of the Kharitonov’s polynomials roots real parts negativity at 
an = 0, because in this case the coefficients positivity always guarantees nega-
tivity of the roots real parts.   
The above described algorithm allows to carry on the parametric synthesis of 
the stable interval system without modification of its root locus portrait con-
figuration, by simple procedure of setting up the characteristic polynomial 
constant term variation interval limits.  
The numerical example , demonstrating the results obtained, is given below 
Consider the interval system, described by the initial characteristic polynomial  
 
s4 + 10s3 + 35s2 + 50s + 24 = 0,                                            (15) 
 

where the real coefficients are: а0 = 1; 8,4 ≤ а1 ≤ 11,6; 24 ≤ а2 ≤ 48; 26,5 ≤ а3 ≤ 83,1; 

8,99 ≤ а4 ≤50,3. 
 
Let the coefficient a4 to be the root locus parameter. Then, define the mapping 
function: 
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Write correspondingly the TEFRL and the parameter equations:: 
 

.36

;0)2344(

42
2

2
2

1
3

1
4

0
22

0
4

0

32
2

1
2

1
2

0
3

0

aaaaaaaa

aaaaaa

−=σ−σ+σω−σ+ω+ωσ−σ

=+σ+ω−σ+σω−σω
 

 
Define the Kharitonov’s polynomials for the interval system with the initial 
characteristic polynomial (15): 
 

.3,505,26246,11)(

;99,81,83484,8)(

;99,85,26486,11)(

;3,501,83244,8)(

234

1

234

1

234

1
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1
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sssssh
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The root loci of these polynomials are represented in fig. 4, described above.  
Number of asymptotes na (in fig. 4 they are indicated as s1, s2, …, s6) is constant 
for every one of Kharitonov’s polynomials and is equal to 
 
na =  n – m = 4 –  0 = 4,  
 
where m is the number of poles for function (5). 
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The centers of asymptotes are located on the axis σ and have coordinates: 

1h
σ  = 2,10; 

2h
σ  = 2,90; 

3h
σ  = 2,10; 

4h
σ  = 2,90 (see fig. 4). The asymptotes cen-

ters coordinates coincide in pairs: for the pair )(1 sh  and )(3 sh , and also for the 

pair )(2 sh  and )(4 sh .  

The inclination angles of asymptotes for the given root loci are correspond-
ingly the following: 
 

.180;45

;135;0
0

4

0

2

0

3

0

1

==

==

ϕϕ

ϕϕ
 

 
According to fig. 4, every pair of the root loci strives to the same asymptotes, 
i.e. the pairs are formed by those root loci, which asymptotes centers coincide, 
as it was indicated above.   
For definition of equation (15) coefficients intervals, ensuring the system stabil-

ity, stability condition (14) is applied. Thus, the following values 
ir

a+  of the set 

Ar
+ have been defined: 

 

1

+
ra  = 139,67 for the polynomial h1; 

2

+
ra  = 116,33 for the polynomial h2; 

3

+
ra  = 377,75 for the polynomial h3; 

4

+
ra  = 54,89 for the polynomial h4. 

 
The minimal value is 
 

min

+
ra  = 

4

+
ra  = 54,89. 

 

Because 4a  < 54,89, in correspondence with (14) the given interval system is 

asymptotically stable. 
 

4. The method for ensuring uncertain systems quality 

In this section the task is solved for locating the uncertain system roots within 
the trapezoidal domain. The method allows to locate roots of the uncertain 
system characteristic equations family within the given quality domain, thus 
ensuring the required system quality (generalized stability). The task is solved 
by inscribing the system circular root locus field into the given quality domain. 
The trapezoidal domain, bounded by the arbitrary algebraic curve, is consid-
ered. Peculiarity of the method consists in the root locus fields application.  
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The systems with parametric uncertainty are considered, described by the fam-
ily of characteristic polynomials 
 

p(s) = sn + a1sn–1 + … + an–1s + an                                          (16) 

 

where a1, ..., an are coefficients, which depend linearly of some uncertain pa-

rameter k, and can be either real or complex ones.  
For selection of the uncertain parameter k, transform equation (16) and rewrite 
it in the following form: 
 

φ(s) + kψ(s) = 0                                                       (17) 

 

where φ(s) and ψ(s) are some polynomials of the complex variable s; k is the 

system uncertain parameter. 
 
Based on (17), derive the expression for k in the form 
 

φ(s)
k f (s) u(σ ,ǚ) iv(σ ,ǚ)

Ǚ(s)
= = − = +                                      (18) 

 

where u(σ,ω), v(σ,ω) are harmonic functions of two independent real vari-

ables σ and ω. 
 
Consider some provisions about the root locus fields. 
 
Definition 8.   The root locus field of the control system is the field with the com-

plex potential  
 

),(),()( ωσν+ωσ=ϕ ius , 

 
that is defined in every point of the extended free parameter complex plane by 
setting the root locus image existence over the whole plane (Rimsky & Ta-
borovetz, 1978).  
Then, set the root locus image by the real function ),,,( tuhh ν=  where t is the 

constant value for every image. Name t, as the image parameter.  Suppose the 
image is defined over the whole free parameter plane by setting the corre-
sponding boundaries of the parameter t. Thus, using mapping function (18), 
define in the general form the scalar root locus field function  
 

f *= f *(σ,ω)                                                          (19) 
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and the root locus field level lines equation  
 

f *(σ,ω) = L,                                                            (20) 

 

where L = const = tj, tj is the parameter of the j-th image, – ∞ ≤  tj ≤ + ∞, j = 1, 2, 
3, … 
 

4.1 The task formulation  

Define the quality domain Q (fig. 5) in the left complex half-plane of the 
system fundamental frequencies (roots plane), bounding the equation (16) 

roots location by the lines Lη' and Lη'' of the equal degree of stability (stabil-

ity margin) and the lines L+β and L–β of constant damping, that is equivalent 
to setting permissible limits for the following system quality indicators: de-

gree of the system stability η and oscillation β. In fig. 5 the quality domain 
Q  has the shape of a trapezoid. 
The task consists in locating the characteristic equation (16) roots within the 
domain Q, i. e. in determination of such a domain D of the uncertain parame-
ter k values, which ensure location of this equation roots (e. g., p1, p2, p3, p4 in 
fig. 5) within the given domain Q, when the system qualitative characteristics 

do not get beyond the preset limits for η and β, ensuring thus the system Q-
stability and fulfillment of the condition. bounded by the lines of equal degree 
of stability and constant damping 
 

k ∈ D → si ∈ Q,                                                        (21) 

 
where i = 1, 2, 3, …, n. 
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Figure 5. The domain Q of the desired characteristic equation roots location, 
bounded by the lines of equal degree of stability and constant damping. 

 

For solving the task, apply the root locus fields of the circular image (circular 
root locus fields – CRLF) (Rimsky, 1972; Nesenchuk, 2005).  
The field function (19) and the level lines equation (20) for the CRLF in the general 
form: 
 

f* = f*(σ, ω, a, b)                                                       (22)  
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f*(σ, ω, a, b) = ρ2.                                                    (23) 
 

where a and b are the image center coordinates by axes u and υ correspond-

ingly, a = const and b = const; ρ is the circular image radius. 
The circular root locus fields for the systems of class [3;0] are represented in 
fig. 6 and 7.  
The CRLF location in the complex plane to the great extent is defined by the 
given circular image center location, which is mapped onto the complex plane 
by the field localization centers (see definition 2.4 in (Nesenchuk, 2005)).  
Localization centers of the field, described by the level lines L1 (L1', L1'', L1'''), L2, 
L3, L4, are located in the points С1, С2, С3 (fig. 6, b). The level lines bound the 
corresponding domains (W1, W2, W3, W4 in fig. 6, b) in the plane s. Every such 
many-sheeted domain W represents the mapping of the root locus level line 
disk-image of the certain radius. 
 
 

4.2 Locating roots in the given domain  

The given task is solved by inscribing the level line of the CRLF, previously 
oriented in a special way in the complex plane, into the given quality domain 
of the system. This level line image in the free parameter plane k, that repre-
sents some circle of the radius r, will be the boundary of the required domain 
D (the required disk). Then, in case, if the circular image center is located in the 

origin, the following condition should be satisfied: .rk ≤  

 

The field orientation  
For realization of the above indicated task solution algorithm, at first it is 
necessary to set orientation (location) of the scalar CRLF in relation to the 
system quality domain in such a way to ensure the possibility of the field 
level lines inscription into this domain. Assume the circular image center is 
located on the positive real axis u, including the origin. The desired location 
of the circular field is attained, when all its localization centers (i. e. the 
points, which represent mappings of the circular image center onto the 
complex plane s) are located inside the quality domain. The enough condi-
tion for ensuring such orientation of the field localization  centers  is  loca-
tion  of  function  (18)  zeroes   within   this   domain. 
As it was initially assumed, that the circular image center was located on 
the real axis, the localization centers can be set in two ways: 
 

- in zeroes of function (18), i. e. in poles of the open-loop system transfer 
function; 

- on the branches of the investigated control system Teodorchik – Evans 
root locus (TERL). 
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(а)                               b)                  (b)                                    b) 

 

Figure 6. Circular root locus field when setting the image center in the origin 
of the variable parameter plane k 

 
 

   
(а)                               b)                  (b)                                    b) 

 
 
 
 
 
 
 

Figure 7. Circular root locus field when shifting the image center in relation 
to the origin of the variable parameter plane k 
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In the first case the circular image center will be located in point C, where 
k = 0 (fig. 6, а). In the second case the field localization centers should be 
located on the TERL positive branches segments being completely located 

within the given quality domain. Coordinates u = a and υ = b (fig. 7, а) of 
the corresponding image center are determined from formula (18). 
 

The level lines inscription 
After setting the field localization centers it is possible to start inscription of its 
level lines into the given quality domain. The inscription procedure consists in 
finding such a level line, which completely belongs to the given quality do-
main and which represents itself the mapping of the circular image with the 
maximal possible radius, that evidently will guarantee the required Q-stability 
of the family (16).  
Conditionally divide the task into two subtasks of the level line inscription into 
the domain, bounded only by: 
 

- the vertical lines of equal degree of stability; 
- the inclined lines of constant damping. 
 

Consider the first subtask. For its solution find the extreme points of contact of 

the CRLF level line and the lines Lη', Lη'' of equal degree of stability (fig. 5). 
Apply the formula for the gradient of the root locus field:  
 

,j
f

i
f

gradf
ff

ω∂

∂
+

σ∂

∂
=

∗∗
∗                                                 (24) 

 

where f *(σ,ω) is the field function; ji
ff

,  are projections of the identity vector, di-

rected along the normal to the field level line, onto the axes σ and ω correspond-
ingly. 
Because in the desired points of contact the gradient (24) projections onto the 

axis iω are equal to zero, determine these points coordinates by composing two 
systems of equations: 
 
 

;
'           

0
),(*

⎪⎭

⎪
⎬
⎫

σ=σ

=
ω∂

ωσ∂

η

f

                                                        (25) 

 

,
''          

0
),(*

⎪⎭

⎪
⎬
⎫

σ=σ

=
ω∂

ωσ∂

η

f

                                                       (26)  
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where the first equation of every system represents projection of the gra-

dient onto the axis ω; ση' and ση'' are coordinates of cross points of the axis 

σ and the lines Lη' and Lη' correspondingly. From the first system of equa-

tions the coordinate ω of the extreme contact point of the line Lη', bound-
ing the quality domain from the right side, and the CRLF level line is de-

termined. The second system allows to determine the coordinate ω of the 

extreme contact point (e. g., point t3 in fig. 8) of the line Lη'', bounding the 
domain Q on the left side, and the CRLF level line. 
Turn to the second subtask consideration. For its solution it is necessary to find 

the extreme contact point (points) of the CRLF level line and the line L+β or L–β 

(fig. 5) of constant damping. The only one line, L+β or L–β, is chosen because 
when the image center is set on the axis u of the free parameter plane, the 

CRLF is symmetric in relation to the axis iω. The line L+β will be considered as 
a tangent to the CRLF level line.  
 
 

 

 
Figure 8. The domain of roots location, inscribed into the given quality domain 
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Write the equation of a tangent to the scalar CRLF level line (a tangent to the 
curve) in the general form:  
 

,0)(
),(*

)(
),(*

=ω−Ω
∂ω

ωσ∂
+σ−∆

∂σ

ωσ∂ ff
                                 (27) 

 

where ∆, Ω are current coordinates of a point on the tangent; σ, ω are the point 
of contact coordinates. 
As in this case the tangent to the level line passes through the origin, set coor-

dinates ∆ and Ω to zero and rewrite (27) in the following form: 
 

0)(
),(*

)(
),(*

=ω−
∂ω

ωσ∂
+σ−

∂σ

ωσ∂ ff
.                                   (28)  

 

On the other hand, the equation of the level line L+β is 
 

ω = µσ, 
 

where µ is the real constant, µ = tg β (fig. 5), β is the angle between the constant 

damping line and the axis ω. By composing on the basis of the last two equa-
tions the system  
 

⎪⎭

⎪
⎬
⎫

µσ=ω

=ω−
∂ω

ωσ∂
+δ−

∂δ

ωσ∂

                                              

0)(
),(*

)(
),(* ff

                                       (29) 

 

and solving (29), obtain coordinates σ and ω of the desired contact point. 
It is necessary to note, that when solving both the first and the second sub-
tasks, several points of contact to every quality domain boundary can be 
found. It is explained by the fact, that contact points are determined for both 
global and every local field level line. In this case the level line corresponding 
to the circular image of the minimal radius is always chosen. Thus, from three 
points t1, t2 and t3 (fig. 8), found by the above described method, the point t1 lo-
cated on the level line L1, corresponding to the circular image of the minimal 
radius, is chosen. This line represents itself the boundary of the desired do-
main D of the uncertain parameter k values, ensuring the required system op-
erational quality indicators.  
Consider the numerical example. The system quality domain Q (see fig. 5) is 
bounded by the lines of equal degree of stability, described by equations  
 

σ = – 1.2, σ = – 4.7, 
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and the lines of constant damping with equations 
 

σ  = ω, σ = – ω. 
 
Set the characteristic equation, describing the dynamic system of class [3;0] 

and select polynomials φ(s) and ψ(s) (see (17)): 
 

φ(s) = s3 + 7,5s2 + 17,8s + 13,1;                                             (30) 
 

ψ(s) = 1.                                                                (31) 
 
Suppose, that the polynomial constant term an is the uncertain parameter. It is 
required to determine the domain of the perturbed coefficient an values, be-
longing to the given quality domain Q. 
Evidently, the poles p1 = – 1.5, p2 = – 2.5 and p3 = – 3.5 (in fig. 8 are marked by 
X-s) of the open loop transfer function are located inside the quality domain Q.  
Define the circular root locus field by setting the root locus image existence re-
gion over the whole plane of the free parameter an. For this purpose set the cir-
cular field location by defining circular image center in the point C with coor-
dinates a = 5, b = 0 (fig. 7, а) in the free parameter plane an. Then, its 
localization centers are located in points C1, C2 and C3 on the branches of the 
system Teodorchik – Evans root locus, as shown in fig. 7, b.  
Calculations were carried on with application of the computer program for en-
suring the required quality of control systems with parametric uncertainty, 
developed for the above described method realization. Polynomials (30), (31) 
and the domain Q boundaries equations were entered as the input data. The 
following results have been obtained.  
The circular image root locus equation for the given system: 
 

+σω+σω+σω+σω+ω+σω+ωσ+ω 222324244426 1581133038,20153  

.03046435873038,911532,4 23562 =+σ+σ+σ+σ+σ+σ+ω+  

 
The CRLF function, applied for the system investigation: 
 

+σω+σω+ω+ω+σω+σω+ω=ωσ 2232244246 1133037,20153),(*f  

.3286445883039,912,153,45158 2345622 +σ+σ+σ+σ+σ+σ+ω+σω+  

 
For determination of the CRLF level line, inscribed into the quality domain, the fol-
lowing systems of equations (25), (26) and (29) were solved: 
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⎭
⎬
⎫

−=σ

=+σ+σ+σ+σ+ω+σω+σω+ω

28,1                                                                                                       

06,903162266068,8260126 23422224
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⎭
⎬
⎫

−=σ

=+σ+σ+σ+σ+ω+σω+σω+ω

68,4                                                                                                        
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; 

.
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⎪
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=ω−+σ+σ+σ+σ+ω+

+σω+σω+ω+σ−+σ+σ+σ+
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The first equation of the first and the second system represents the CRLF gra-
dient value in the contact points of the field level line and the lines, bounding 
the quality domain from the left and right (the lines of equal degree of stabil-
ity), the second equation represents the equation of the lines of equal degree of 
stability. The first equation of the third system represents the equation of a 
tangent to the CRLF level line, which passes through the origin. As a result of 

these equations three points of contact of the CRLF level lines and the lines Lη', 

Lη'' and L+β, bounding the quality domain, are defined. In fig. 8 these points are 
t1, t2 for contact of level lines L1'', L1' correspondingly and the constant damp-

ing line L+β and point t3 for contact of the level line L2'' and the line Lη'' of equal 
degree of stability. It has been found, that the point t2 belongs to the level line, 
inscribed into the domain Q, and the lines L2', L2'', which correspond to the 
contact point t3, and the level line L2''' get beyond this domain (the lines L2', L2'' 
and L2''' represent mappings of a single circular image). Thus, three simply 
connected closed regions (in fig. 8 they are cross-hatched) are formed, 
bounded correspondingly by three level lines L1', L1'' and L1'', representing 
three sheets of the three-sheeted domain, defined by mapping of the image 
disc onto the plane s using three branches of the three-valued mapping func-
tion. This three-sheeted domain represents the domain of the characteristic 
equation roots, satisfying the required quality. The image of this domain 
boundary onto the plane an is the circle of radius r = 2, bounding the desired 
closed domain D of the free parameter an values, which comply with the given 
conditions of the system stability.  
The developed method for parametric synthesis of the dynamic systems, meet-
ing the robust quality requirements, is based on the circular root locus fields 
application. It allows to select some regions of the system characteristic equa-
tion roots location, belonging to the given quality domain, which defines the 
required quality indicators values (degree of stability and oscillation), and also 
to define the corresponding regions of the variable parameters values, ensur-
ing the status when the system quality characteristics do not get beyond the 
boundaries set. The main advantage of the method is, that it allows to deter-
mine the system parameters values, which ensure the required quality indica-
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tors for cases when the given system does not comply with the requirements, 
i.e. to carry on the dynamic systems parametric synthesis. The method can be 
generalized to the tasks of roots location within the domains of other shapes.  

5. Parametric design of the industrial robot robust control systemon the base of 
the method for interval control systems synthesis 

Operation of the industrial robot (see section 2) in conditions of uncertainty is 
considered, when its parameters are subject to substantial variation. The above 
described technique is applied for solving the task of the anthropomorphous 
robot manipulator units control system parametric synthesis. It allows to find 
analytically the manipulator parameters values variation ranges, which will 
ensure maintaining the system stability property and the required operational 
quality within their limits, i. e. to ensure the system robustness.  
 

5.1 Control system model for the case of operation in conditions of uncertainty  

Robots loads change with variation of the weights of the items they carry, that 
causes variation of the load inertia moment jl, which is linearly included into 
the characteristic equation coefficients (see (1) and (2)), generating their varia-
tion intervals. Currently during the design procedure robots parameters val-
ues in the cases of substantial parameters variation are obtained by the tech-
nique of tests and mistakes. Conduct parametric synthesis of the manipulator 
shoulder control system in conditions of its parameters uncertainty using the 
analytical method described in 3. 
Let coefficients of the characteristic equation (3) for the manipulator shoulder 
unit vary within the following limits: 
 

.1056,010488,0

;106,01052,0;10427,010373,0;105,0104,0;1

9
4

9

7
3

73
2

33
1

3
0

⋅≤≤⋅

⋅≤≤⋅⋅≤≤⋅⋅≤≤⋅=

a

aaaa

 
Suppose any of the coefficients, e. g. a4, varies continuously along the real axis 
in the plane of system fundamental frequencies. Taking into account expres-
sion (1), the complex mapping function (5), that determines root loci of the in-
terval system relative to a4, is defined as 
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−= .                                  (32) 

 
The control system characteristic equation is 
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The limit values of equation (33) coefficients variation intervals are entered to 
the input of the package ANALRL for computer-aided investigation of control 
systems with variable parameters. During the package functioning the Khari-
tonov's polynomials of the system characteristic equation are formed: 
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These four equations form the basis for generation of the mathematical model 
for the robot interval control system in the form of the Kharotiniv’s polynomi-
als root loci. 
Considering presence of the load inertia moment jl substantial variations, it is 
required to find the coefficients variation intervals, ensuring stability of the 
characteristic equations family.  
 

5.2 Procedure of the control system parametric synthesis 

For the task solution apply the method, described in section 3, which allows to 
calculate the characteristic equations family coefficients intervals, ensuring the 
system robust stability. 
First, zeroes of functions (32) (the poles of the open loop transfer function) are 
calculated for the above Kharitonov's polynomials and, if they are located in 
the left-half plane of the plane s (see statement given in subsection 3.3) or on 

the stability bound iω, the root loci of Kharitonov's polynomials are generated 
on the basis of these functions. 
As for our example one of zeroes of function (32) is located on the stability 
bound (in the point s = 0), the direction of the corresponding root locus is veri-
fied. It is stated that the positive branch is directed from this zero to the left 
half plane that, according to the above given statement (see 3.3), means the ex-
istence of positive stability intervals of the system investigated. 
After constructing the parameter functions according to the technique sug-
gested above (see section 3.4), the variable coefficient values from the set Ar

+ 
(11)) in the cross points of the Kharitonov's polynomials root loci branches 

with the system stability bound iω are determined. For the given case the fol-
lowing values have been obtained: 
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1

+
ra =0,334⋅ 910  (polynomial 1h ); 

2

+
ra =0,336⋅ 910  (polynomial 2h ); 

3

+
ra =0,414⋅ 910  (polynomial 3h ); 

4

+
ra = 0,280⋅ 910 ( polynomial 4h ). 

 
According to the corresponding task algorithm and the obtained values, the 

minimal positive value 
min

+
ra  = 0.280⋅109 is determined. The interval (13) of 4a  

values variation is calculated that ensures system asymptotic stability: d = (0; 

0.280⋅109)). On the basis of the theorem, formulated in 3.4, the following stabil-
ity condition of the interval system is formed: 
 

0 < a4 < 0.280⋅109. 
 

As the root locus parameter varies within the limits 4a = 0.56⋅109, and 

4a =0.488⋅109, the upper one doesn’t comply with the stability condition. For 

ensuring stability of the considered interval control system the upper limit 

should be set to 4a = 0.280⋅109. The limits of the acceptable interval of the coef-

ficient 4a variation are the following: 

 

4a = 0.280⋅109, 4a = 0. 

 
From the above described calculations it is evident that the developed method 
can be applied not only for investigating the interval system stability, but also 
for calculating intervals of its variable parameters in case the initial system is 
not stable. It is worth to pinpoint that the method allows to ensure the system 
asymptotic stability by setting up only one coefficient of its characteristic equa-
tion. 
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6. Conclusion 

Industrial robots represent devices, which usually operate in conditions of 
substantial uncertainty. Therefore, in this chapter the problem of uncertain 
control systems stability and quality is considered in application to the indus-
trial robot analysis and synthesis tasks solution. The task for synthesis of the 
interval control systems stable polynomials has been solved. For its solution 
the investigation of the system root locus portrait behavior at the asymptotic 
stability boundary has been carried out. On this basis the system robust stabil-
ity condition was formulated. The method has been developed for setting up 
the interval polynomial for ensuring its stability in cases, when the stability 
verification showed, that the initial polynomial was unstable. If the system or-
der n > 3, this method is applicable when the Kharitonov’s polynomials free 
root loci initial points are located in the left complex half-plane, because in this 
case the root locus portrait configuration ensures existence of the stability in-
terval on every branch of the root loci. When n ≤ 3, the method is applied 
without any conditions (limitations). The algorithm considered allows to carry 
on parametric synthesis of the stable interval system without its root locus por-
trait modification by setting up the limit values of the characteristic polyno-
mial coefficients variation intervals. Thus, the stability interval for the initially 
unstable polynomial is defined. The obtained stable polynomial can be se-
lected to be the nearest to the initial (given) one in the sense of the distance, 
measured along its root trajectories with consideration of the appropriate sys-
tem quality requirements.  
The root locus method has also been developed for ensuring the required 
quality (Q-stability) of the uncertain control system. It is based on inscription 
of the circular root locus field level line into the given quality domain.  
Currently during the industrial robots design procedure in the cases of sub-
stantial parameters variation the robots control systems parametric synthesis is 
often conducted by the method of tests and mistakes. The techniques, consid-
ered here, allow to carry on the analysis and parametric synthesis of the robot 
control system, operating in conditions of parametric uncertainty, using ana-
lytical procedures. 
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