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1. Introduction

Almost all feedback control systems are realized using discretized (discrete-time and
discrete-value, i.e., digital) signals. However, the analysis and design method of
discretized/quantized (nonlinear) control systems has not been established (Desoer et al.,
1975; Elia et al., 2001; Harris et al., 1983; Kalman, 1956; Katz, 1981). This article analyzes
the nonlinear phenomena and stability of discretized control systems in a frequency domain1

(Okuyama, 2006; 2007; 2008). In these studies, it is assumed that the discretization is
executed on the input and output sides of a nonlinear element at equal spaces, and the
sampling period is chosen of such a size suitable for the discretization in the space. Based
on the premise, the discretized (point-to-point) nonlinear characteristic is examined from two
viewpoints, i.e., global and local. By partitioning the discretized nonlinear characteristic into
two sections and by defining a sectorial area over a specified threshold, the concept of the
robust stability condition for nonlinear discrete-time systems is applied to the discretized
(hereafter, simply wrriten as discrete) nonlinear control system in question. As a result, the
nonlinear phenomena of discrete control systems are clarified, and the stability of discrete
nonlinear feedback systems is elucidated.
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Fig. 1. Nonlinear sampled-data control system.

2. Discrete nonlinear control system

The discrete nonlinear control system to be considered here is represented by a sampled-data
control system with two samplers, S1, S2 and the continuous nonlinear characteristic N(·) as

1 In the time domain analysis (e.g., Lyapunov function method), it is difficult to find a Lyapunov function
for the discretized (severe nonlinear characteristic) feedback system. The frequency domain analysis
will be important in cases where physical systems with uncertainty in the system-order are considered.
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Fig. 2. Discrete nonlinear control system.

(a) (b)

Fig. 3. Discretized nonlinear characteristics.

shown in Fig. 1. Here, DH denotes the discretization and zero-order-hold, which are usually
performed in A/D(D/A) conversion, and G(s) is the transfer function of the linear controlled
system. It is assumed that the two samplers with a sampling period h operate synchronously.

The sampled-data control system can be equivalently transformed into a discrete control
system as shown in Fig. 2. Here, G(z) is the z-transform of G(s) together with zero-order-hold,
and D1 and D2 are the discretizing units on the input and output sides of the nonlinear
element, respectively. The relationship between e and v† = Nd(e) in the figure becomes a
stepwise nonlinear characteristic on integer grid coordinates as shown in Fig. 3 (a). Here, a
round-down discretization, which is usually executed on a computer, is applied. Therefore,
the relationship between e† and u† is indicated by small circles (i.e. a point-to-point transition)
on the stepwise nonlinear characteristic. Even if continuous characteristic N(·) is linear, the
discretized characteristic v† becomes nonlinear on integer grid coordinates as shown in Fig. 3
(b) (Okuyama, 2009).

In Fig. 2, each symbol e, u, y, · · · indicates the sequence e(k), u(k), y(k), · · · , (k = 0, 1, 2, · · · ) in
discrete time, but for continuous value. On the other hand, each symbol e†, u†, · · · indicates a
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Nonlinear Phenomena and Stability Analysis for Discrete Control Systems 3

discrete value that can be assigned to an integer number, e.g.,

e† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

u† ∈ {· · · ,−3γ,−2γ,−γ, 0, γ, 2γ, 3γ, · · · },

where γ is the resolution of each variable. Here, it is assumed that the input and output signals
of the nonlinear characteristic have the same resolution in the discretization. In the figure,
e† and u† also represent the sequence e†(k) and u†(k). Without loss of generality, hereafter,
γ = 1.0 is assumed. Thus, the input and output variables of the nonlinear element can be
considered in the set of integer numbers, i.e.,

e†(k), u†(k) ∈ Z

Z
def
= {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

3. Equivalent discrete-time system

In this study, the stepwise and point-to-point nonlinear characteristic is partitioned into the
following two sections:

Nd(e) = K(e + ν(e)), 0 < K < ∞,

|ν(e)| ≤ ν̄ < ∞, (1)

for |e| < ε, and

Nd(e) = K(e + n(e)), 0 < K < ∞,

|n(e)| ≤ α|e|, 0 < α ≤ 1, (2)

for |e| ≥ ε, where ν(e) and n(e) are nonlinear terms relative to nominal linear gain K. Equation
(1) represents a bounded nonlinearity which exists in a finite region. On the other hand, (2)
represents a sectorial nonlinearity of which the equivalent linear gain exists in a limited range.
Therefore, when we consider the robust stability “in a global sense”, it is sufficient to consider
the nonlinear term n(e). Here, ε is a threshold of the input signal e. As a matter of course, (1)
and (2) must be satisfied with respect to the discretized value e = e† because e† ∈ e.

Based on the above consideration, the following new sequences e∗†
m (k) and w∗†

m (k) are defined:

e∗†
m (k) = e†

m(k) + q · ∆e†(k)

h
, (3)

w∗†
m (k) = w†

m(k)− αq · ∆e†(k)

h
. (4)

where q is a non-negative number, e†
m(k) and w†

m(k) are neutral points of sequences e†(k) and
w†(k),

e†
m(k) =

e†(k) + e†(k − 1)

2
, (5)

w†
m(k) =

w†(k) + w†(k − 1)

2
, (6)
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Fig. 4. Nonlinear subsystem.
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Fig. 5. Equivalent feedback system.

and ∆e†(k) is the backward difference of sequence e†(k),

∆e†(k) = e†(k)− e†(k − 1). (7)

The relationship between equations (3) and (4) in regard to the continuous values is shown by
the block diagram in Fig. 4. In this figure, δ is defined as

δ(z) :=
2

h
· 1 − z−1

1 + z−1
. (8)

Equation (8) corresponds to the bilinear transformation between z and δ. Thus, the loop
transfer function from w∗ to e∗ can be given by F(α, q, z), as shown in Fig. 5, where

F(α, q, z) =
(1 + qδ(z))KG(z)

1 + (1 + αqδ(z))KG(z)
, (9)

and r′, d′ are transformed exogenous inputs. Here, the variables such as w∗, u′ and y′ written
in Fig. 5 indicate the z-transformed ones.

In this study, the following assumption is provided on the basis of the relatively fast sampling
and the slow response of the controlled system.

[Assumption] The absolute value of the backward difference of sequence e(k) is not more
than γ, i.e.,

|∆e(k)| = |e(k)− e(k − 1)| ≤ γ. (10)

If the condition (10) is satisfied, ∆e†(k) defined by (7) is exactly ±γ or 0 because of the
discretization. That is, the absolute value of the backward difference can be given as

|∆e†(k)| = |e†(k)− e†(k − 1)| = γ or 0. �

This assumption will be satisfied in the following examples.

190 Applications of Nonlinear Control
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Nonlinear Phenomena and Stability Analysis for Discrete Control Systems 5

4. Norm conditions

In this section, some lemmas for norm conditions are presented. Here, in regard to (2), the
following new nonlinear function is defined.

f (e) := n(e) + αe. (11)

When considering the discretized output of the nonlinear term, w† = n(e†), the following
expression can be given:

f (e†(k)) = w†(k) + αe†(k). (12)

From inequality (2), it can be seen that the function (12) belongs to the first and third
quadrants. Considering the equivalent linear characteristic, the following inequality can be
defined:

0 ≤ β(k) :=
f (e†(k))

e†(k)
≤ 2α. (13)

When this type of nonlinearity β(k) is used, inequality (2) can be expressed as

w†(k) = n(e†(k)) = (β(k)− α)e†(k). (14)

For the neutral points of e†(k) and w†(k), the following expression is given from (12):

1

2
( f (e†(k)) + f (e†(k − 1))) = w†

m(k) + αe†
m(k). (15)

Moreover, equation (14) is rewritten as

w†
m(k) = (β(k)− α)e†

m(k).

Since |e†
m(k)| ≤ |em(k)|, the following inequality is satisfied when a round-down discretization

is executed:
|w†

m(k)| ≤ α|e†
m(k)| ≤ α|em(k)|. (16)

Based on the above premise, the following norm inequalities are examined (Okuyama et al.,
1999; Okuyama, 2006).

[Lemma-1] The following inequality holds for a positive integer p:

‖w†
m(k)‖2,p ≤ α‖e†

m(k)‖2,p ≤ α‖em(k)‖2,p. (17)

Here, ‖ · ‖2,p denotes the Euclidean norm, which can be defined by

‖x(k)‖2,p :=

(

p

∑
k=1

x2(k)

)1/2

.

(Proof) The proof is clear from inequality (16). �

[Lemma-2] If the following inequality is satisfied in regard to the inner product of the neutral
points of (12) and the backward difference (7):

〈 w†
m(k) + αe†

m(k), ∆e†(k) 〉p ≥ 0, (18)

191Nonlinear Phenomena and Stability Analysis for Discrete Control Systems
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6 Nonlinear Control

the following inequality can be obtained:

‖w∗†
m (k)‖2,p ≤ α‖e∗†

m (k)‖2,p (19)

for any q ≥ 0. Here, 〈·, ·〉p denotes the inner product, which can be defined as

〈 x1(k), x2(k) 〉p =
p

∑
k=1

x1(k)x2(k).

(Proof) The following equation is obtained from (3) and (4):

α2‖e∗†
m (k)‖2

2,p − ‖w∗†
m (k)‖2

2,p = α2

∥

∥

∥

∥

e†
m(k) + q

∆e†(k)

h

∥

∥

∥

∥

2

2,p

−
∥

∥

∥

∥

w†
m(k)− αq

∆e†(k)

h

∥

∥

∥

∥

2

2,p

= α2‖e†
m(k)‖2

2,p − ‖w†
m(k)‖2

2,p +
2αq

h
· 〈w†

m(k) + αe†
m(k), ∆e†(k)〉p. (20)

Thus, (19) is satisfied by using the left inequality of (17). �

In regard to the input of n∗(·), the following inequality can be obtained from (20) and the
second inequality of (17) as follows:

‖w∗†
m (k)‖2,p ≤ α‖e∗m(k)‖2,p, (21)

when inequality (18) is satisfied.

5. Sum of trapezoidal areas

The left side of inequality (18) can be expressed as a sum of trapezoidal areas.

[Lemma-3] For any step p, the following equation is satisfied:

σ(p) := 〈 w†
m(k) + αe†

m(k), ∆e†(k) 〉p =
1

2

p

∑
k=1

( f (e†(k)) + f (e†(k − 1)))∆e†(k). (22)

(Proof) The proof is clear from (15). �

In general, the sum of trapezoidal areas holds the following property.
[Lemma-4] If inequality (10) is satisfied in regard to the discretization of the control system,
the sum of trapezoidal areas becomes non-negative for any p, that is,

σ(p) ≥ 0. (23)

(Proof) Since f (e†(k)) belongs to the first and third quadrants, the area of each trapezoid

τ(k) :=
1

2
( f (e†(k)) + f (e†(k − 1)))∆e†(k) (24)

is non-negative when e(k) increases (decreases) in the first (third) quadrant. On the other
hand, the trapezoidal area τ(k) is non-positive when e(k) decreases (increases) in the first
(third) quadrant.

Strictly speaking, when (e(k) ≥ 0 and ∆e(k) ≥ 0) or (e(k) ≤ 0 and ∆e(k) ≤ 0), τ(k) is
non-negative for any k. On the other hand, when (e(k) ≥ 0 and ∆e(k) ≤ 0) or (e(k) ≤

192 Applications of Nonlinear Control
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Nonlinear Phenomena and Stability Analysis for Discrete Control Systems 7

0 and ∆e(k) ≥ 0), τ(k) is non-positive for any k. Here, ∆e(k) ≥ 0 corresponds to ∆e†(k) =
γ or 0 (and ∆e(k) ≤ 0 corresponds to ∆e†(k) = −γ or 0) for the discretized signal, when
inequality (10) is satisfied.

The sum of trapezoidal area is given from (22) as:

σ(p) =
p

∑
k=1

τ(k). (25)

Therefore, the following result is derived based on the above. The sum of trapezoidal areas
becomes non-negative, σ(p) ≥ 0, regardless of whether e(k) (and e†(k)) increases or decreases.
Since the discretized output traces the same points on the stepwise nonlinear characteristic,
the sum of trapezoidal areas is canceled when e(k) (and e†(k) decreases (increases) from a
certain point (e†(k), f (e†(k))) in the first (third) quadrant. (Here, without loss of generality, the
response of discretized point (e†(k), f (e†(k))) is assumed to commence at the origin.) Thus,
the proof is concluded. �

6. Stability in a global sense

By applying a small gain theorem to the loop transfer characteristic (9), the following robust
stability condition of the discrete nonlinear control system can be derived.

[Theorem] If there exists a q ≥ 0 in which the sector parameter α in regard to nonlinear term
n(·) satisfies the following inequality, the discrete-time control system with sector nonlinearity
(2) is robust stable in an ℓ2 sense:

α < η(q, ω) :=
−qΩV +

√

q2Ω2V2 + (U2 + V2){(1 + U)2 + V2}
U2 + V2

, (26)

∀ω ∈ [0, ωc], ωc : cutoff frequency

when the linearized system with nominal gain K is stable. Here, Ω(ω) is the distorted
frequency of angular frequency ω and is given by

δ(ejωh) = jΩ(ω) = j
2

h
tan

(

ωh

2

)

, j =
√
−1. (27)

In addition, U(ω) and V(ω) are the real and the imaginary parts of KG(ejωh), respectively.

(Proof) Based on the loop characteristic in Fig. 5, the following inequality can be given in
regard to z = ejωh:

‖e∗m(z)‖2,p ≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p + sup
z=1

|F(α, q, z)| · ‖w∗†
m (z)‖2,p.

Here, r′m(z) and d′m(z) denote the z-transformation for the neutral points of sequences r′(k)
and d′(k), respectively. Moreover, c1 and c2 are positive constants.

By applying inequality (21), the following expression is obtained:

(

1 − α · sup
z=1

|F(α, q, z)|
)

‖e∗m(z)‖2,p ≤ c1‖r′m(z)‖2,p + c2‖d′m(z)‖2,p. (28)

193Nonlinear Phenomena and Stability Analysis for Discrete Control Systems
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8 Nonlinear Control

Therefore, if the following inequality (i.e., the small gain theorem with respect to ℓ2 gains) is
valid,

|F(α, q, ejωh)| ≤ 1/α, (29)

the sequences e∗m(k), em(k), e(k) and y(k) in the feedback system are restricted in finite values
when exogenous inputs r(k), d(k) are finite and p → ∞.

By substituting (9) into inequality (29), the following is obtained:
∣

∣

∣

∣

∣

(1 + jqΩ(ω))KG(ejωh)

1 + (1 + jαqΩ(ω))KG(ejωh)

∣

∣

∣

∣

∣

<
1

α
. (30)

From the square of both sides of inequality (30),

α2(1 + q2Ω2)(U2 + V2) < (1 + U − αqΩV)2 + (V + αqΩU)2

Then,
α2(U2 + V2) + 2αqΩV − {(1 + U2) + V2} < 0. (31)

Consequently, as a solution of inequality (31),

α <
−qΩV +

√

q2Ω2V2 + (U2 + V2){(1 + U)2 + V2}
U2 + V2

can be given. �

Since inequality (26) in Theorem-1 is for all ω (and Ω) considered and a certain q, the condition
is rewritten as the following max-min problem.

[Corollary] If the following inequality is satisfied, the discrete-time control system with sector
nonlinearity (2) is robust stable:

α < η(q0, ω0) = max
q

min
ω

η(q, ω), (32)

when the linearized system with nominal gain is stable. �

In this study, a non-conservative sufficient condition for the stability of discrete-time and
discrete-value control systems is derived by applying the concept of robust stability in our
previous paper(Okuyama et al., 2002a). The stability condition is, however, not satisfied for
the entire area of the input of nonlinearity N(e) because of the stepwise and point-to-point
characteristic. Even if the response seems to be asymptotic, there may remain a fluctuation
(a sustained oscillation in the discrete time) or an offset. Of course, a divergent response
that reaches the sustained oscillation may occur. These responses are typical nonlinear
phenomena. The theorem (and corollary) derived here should be considered as the robust
stability condition in a global sense. In addition, it is valid based on an assumption in the
relationship between the sampling period and the system dynamics. However, this result will
be useful in designing a discrete (digital, packet transmission) control system in practice.

Naturally, the stability condition becomes that of continuous-time and continuous-value
nonlinear control systems, when the sampling period h and the resolution γ approach zero.
Inequality (26) in Theorem-1 corresponds to Popov’s criterion for discrete-time systems and
contains the circle criterion for nonlinear time-varying (discrete-time) systems in a special
case. The relationship between them will be described in the next section.

194 Applications of Nonlinear Control
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7. Relation to Popov’s criterion

Inequality (30) can be rewritten as follows:
∣

∣

∣

∣

∣

αH(α, q, ejωh)

1 + αH(α, q, ejωh)

∣

∣

∣

∣

∣

< 1, (33)

where

H(α, q, ejωh) =
(1 + jqΩ(ω))KG(ejωh)

1 + (1 − α)KG(ejωh)
.

From (33), the following inequality is obtained:

2α · ℜ{H(α, , q, ejωh)}+ 1 > 0. (34)

Therefore, the following robust stability condition can be given:

ℜ
{

1 + (1 + α)KG(ejωh) + 2jαqΩ(ω)KG(ejωh)

1 + (1 − α)KG(ejωh)

}

> 0, (35)

which is equivalent to inequality (26). When α = 1 is chosen, (35) can be written as follows:

1

Km
+ℜ{(1 + jqΩ(ω))G(ejωh)}, (36)

where Km = 2K. In this case, the allowable sector of nonlinear characteristic N(·) is given as

0 ≤ N(e)e ≤ Kme2, e �= 0. (37)

When h approaches zero (or ω is a low frequency), inequalities (36) and (37) are equivalent to
an expression of Popov’s criterion for continuous-time systems.

In case of q = 0, the left side of (26) becomes the inverse the absolute value of complementary
sensitivity function T(jω).

η(0, ω) =

√

(1 + U2)) + V2
√

U2 + V2
=

1

|T(jω)| > α. (38)

On the other hand, from (35)

ℜ
{

1 + (1 + α)KG(ejωh)

1 + (1 − α)KG((ejωh)

}

> 0 (39)

is obtained. Inequalities (38) and (39) correspond to the circle criterion for nonlinear
time-varying systems.

8. Validity of Aizerman’s conjecture

In the following case, Theorem-1 becomes equal to the robust stability condition of the
linear interval gain that corresponds to Aizerman’s conjecture which was extended into
discrete-time systems (Okuyama et al., 1998).

[Theorem-2] If the right side of (32) is satisfied at the saddle point,
(

∂η(q, ω)

∂q

)

q=q0,ω=ω0

= 0, (40)

195Nonlinear Phenomena and Stability Analysis for Discrete Control Systems
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10 Nonlinear Control

−ε
ε

Fig. 6. Discretized nonlinear characteristic and stable sector for Example-1.

inequality (26) of Theorem-1 becomes equal to the robust stability condition provided for a
linear time-invariant discrete-time system.
(Proof) This theorem can easily be proven by using the right side of (26). Then,

∂η(q, ω)

∂q
=

−η(q, ω)Ω(ω)V(ω)
√

q2Ω2v2 + (U2 + V2){(1 + U)2 + V2}
. (41)

From (40), the following can be obtained:

η(q0, ω0)Ω(ω0)V(ω0) = 0. (42)

Obviously, η(q, ω) > 0. Moreover, since 0 < ω0 < π/h, Ω(ω0) > 0 from (27). Then,

V(ω0) = 0 (43)

is obtained. Thus,

η(q0, ω0) =
|1 + U(ω0)|
|U(ω0)|

> α (44)

Inequality (44) corresponds to the stability condition which was determined for the
time-invariant discrete-time system with a linear gain, i.e., the Nyquist stability condition
for a discrete-time system.

Theorem-2 shows that the robust stability condition for a linear time-invariant system (the
concept of interval set) can be applied to nonlinear discrete-time control systems, when (40) is
satisfied. However, (32) is not always valid at the saddle point given in (40). In the following
example, it can be shown that there are counter examples of Aizerman’s conjecture extended
into the nonlinear discrete-time systems.

9. Numerical examples

In order to verify the theoretical result, two numerical examples for discrete control systems
with saturation type nonlinearity are presented.

196 Applications of Nonlinear Control
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(a)

∆e(k)

e(k)

(b)

Fig. 7. Time responses of e(k) and e†(k), and phase traces (e(k), ∆e(k)) for Example-1
(r = 1.0, 2.0, 3.0, 4.0, 5.0).

[Example-1] Consider the following controlled system:

G(s) =
Kp(s + 6)

s(s + 1)(s + 2)
, (45)

where Kp = 1.0. It is assumed that the discretized nonlinear characteristic (discretized
sigmoid, i.e., arc tangent function (Okuyama et al., 2002b) is as shown in Fig. 6. Here, the
resolution value is chosen as γ = 1.0. For C-language expression, it can be written as

e† = γ ∗ (double)(int)(e/γ),

v = 0.4 ∗ e† + 3.0 ∗ atan(0.6 ∗ e†),

v† = γ ∗ (double)(int)(v/γ),

where (int) and (double) denote the conversion into an integral number (a round-down
discretization) and the reconversion into a double-precision real number, respectively.

When choosing the threshold ε = 2.0, the sectorial area of the stepwise (point-to-point)
nonlinearity for ε ≤ |e| < 35.0 can be determined as [0.5, 1.5] drawn by dotted lines in the
figure. In this example, the sampling period is chosen as h = 0.1. From (26) and (32), the
max-min value can be calculated as follows:

max
q

η(q, ω0) = η(q0, ω0) = 0.49,

when the nominal gain K = 1.0. Hence, α < 0.49 and the stable area is determined as
[0.51, 1.49]. Obviously, this sector contains the area bounded by the dotted lines. Thus, the
discrete control system is stable in a global sense.

The stability condition for linear gain K can be calculated as 0 < K < 1.5 when the
sampling period is h = 0.1. In this example, Aizerman’s conjecture for discrete-time system is
satisfied. Figures 7 (a) and (b) show time responses e(k), e†(k) and phase traces (e(k), ∆e(k)),

197Nonlinear Phenomena and Stability Analysis for Discrete Control Systems
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12 Nonlinear Control

(a)

∆e(k)

e(k)

(b)

Fig. 8. Time responses of e(k), e†(k), and phase traces (e(k), ∆e(k)) for Example-1 (r = 5.0,
6.0, 7.0, 8.0, 9.0).

∆e†(k)

−ε

(a)

∆e†(k)

ε

(b)

Fig. 9. Backward difference ∆e†(k) vs. sampling period h for Example-1 (r = 3.0 and r = 9.0).

(e†(k), ∆e†(k)) of the discrete nonlinear control system when the reference inputs are r =
1.0, 2.0, 3.0. Figures 8 (a) and (b) show those responses when r = 5.0, 7.0, 9.0. Although
the responses contain sustained oscillations, they do not exceed the threshold ε = 2.0. The
input and the output of the nonlinearity lie in a parallelogram shown in Fig. 6. The robust
stability in a global sense is guaranteed for all the reference inputs r. The above behavior can
be estimated from the intersections of the highest gain of the sector and the stepwise nonlinear
characteristic. Obviously, discrete-values (1.0, 2.0) and (−1.0,−2.0) lie in the outside of the
stable sector.

Figures 9 (a) and (b) show the traces of backward difference ∆e†(k) when the sampling period
h increases. As is obvious from the figure, the assumption of (10) is satisfied for h < 0.12 when
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Fig. 10. Discretized nonlinear characteristic and stable sector for Example-2.
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Fig. 11. Time responses of e(k) and e†(k) and phase traces (e(k), ∆e(k)) for Example-2
(r = 1.0, 2.0, 3.0, 4.0, 5.0).

r = 9.0, and for h < 2.0 when r = 3.0. In either case, the assumption is satisfied in regard to
h = 0.1.

[Example-2] Consider the following controlled system:

G(s) =
Kp(−s + 8)(s + 4)

s(s + 0.2)(s + 16)
, (46)

where Kp = 1.0. Here, the same nonlinear characteristic is chosen as shown in Example-1.
When the threshold ε = 1.0 is specified, the sectorial area of the stepwise nonlinearity for
ε ≤ |e| < 10.0 can be determined as [0.78, 2.0]. In this example, the sampling period is chosen
as h = 0.04. The max-min value can be calculated as follows:

max
q

η(q, ω0) = η(q0, ω0) = 0.45,
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(a)
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Fig. 12. Time responses of e(k) and e†(k) and phase traces (e(k), ∆e(k)) for Example-2
(r = 5.0, 6.0, 7.0, 8.0, 9.0).

when the nominal gain K = 1.4. Hence, α < 0.45 and the stable area is determined as
[0.77, 2.02]. This sector contains the above area. However, the stability region of control
systems with linear gain K is given as 0 < K < 6.3 when the sampling period is h = 0.04.
Obviously, the discrete nonlinear control system corresponds to a counter example of the
Aizerman conjecture. Figures 11 and 12 show time responses e(k), e†(k) and phase traces
(e(k), ∆e(k)), (e†(k), ∆e†(k)) of the discrete nonlinear control system, respectively. Although
the nonlinear characteristic exists in the stable area for linear systems, a sustained oscillation
is generated on account of a steep build-up characteristic in the lower side of the stable sector.

∆e†(k)

(a)

∆e†(k)

(b)

Fig. 13. Backward difference ∆e†(k) vs. sampling period h for Example-2 (r = 3.0 and
r = 9.0).
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Figure 13 shows the traces of backward difference ∆e†(k) when the sampling period h
increases. As is obvious from the figure, the assumption of (10) is satisfied for h < 0.11 when
r = 9.0, and for h < 2.2 when r = 3.0. In either case, the assumption is satisfied in regard to
h = 0.04.

10. Conclusions

This article analyzed the nonlinear phenomena and stability of discrete-time and
discrete-value (discretized/quantized) control systems in a frequency domain. By
partitioning the discretized nonlinear characteristic into two nonlinear sections and by
defining a sectorial area over a specified threshold, the concept of the robust stability condition
for nonlinear discrete-time systems was applied to the discrete nonlinear control systems. In
consequence, the nonlinear phenomena of discrete control systems were clarified, and the
robust stability of discrete nonlinear feedback systems was elucidated. The result described in
this chapter will be useful in designing discrete (digital, event-driven, or packet transmission)
control systems.
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