
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



8 

Predictive Function Control of the  
Single-Link Manipulator with Flexible Joint 

Zhihuan Zhang and Chao Hu 
Ningbo Institute of Technology, Zhejiang University 

China 

1. Introduction 

Flexible-link robotic manipulators have many advantages with respect to conventional rigid 
robots. They are built by lighter, cheaper materials, which improve the payload to arm 
weight ratio, thus resulting in an increase of the speed with lower energy consumption. 
Moreover, due to the reduced inertia and compliant structure, these lightweight arms can be 
operated more safely and are more applicable for the delicate assembly tasks and interaction 
with fragile objects, including human beings.  

The control for robot manipulators is to determine the time history of joint inputs to cause 
the end-effector to execute a commanded motion. There are many control techniques and 
methodologies that can be applied to the control of the manipulators. The specific control 
method and its implementation ways can have a significant impact on the performance of 
the manipulator and consequently on the range of its possible applications. In addition, the 
mechanical design of the manipulator itself will influence the type of control scheme 
needed. However, in order to improve the control performance, more sophisticated 
approaches should be found. 

The control for flexible joint system has attracted a considerable amount of attention during 
the past few years. There are PD, inverse dynamics, and the force control approach for the 
feedback control strategies of flexible joint manipulator. (1989, MARK W. SPONG), an 
integral manifold approach to the feedback control of flexible joint robots (1987, MARK W. 
SPONG, KHASHAYAR KHORASANI, and PETAR V. KOKOTOVIC), and the nonlinear 
feedback control of flexible joint manipulators: a single link case study, (1990, K. 
KHORASANI). The basic idea of feedback linearization is to construct a nonlinear control 
law as a so-called inner loop control which, in the ideal case, exactly linearizes the nonlinear 
system after a suitable state space change of coordinates. The designer can design a second 
stage or outer loop control in the new coordinates to satisfy the traditional control design 
specifications such as tracking, disturbance rejection, and so forth. Since the feedback 
linearization of flexible joint manipulator is a fourth order integrator system, so we 
proposed a three stage design method, the first is nonlinear feedback to get integrator 
system, the second is pole placement to get expect performance, and the third is to use PFC 
to reject disturbance and uncertainty, since they can not be exactly cancelled by nonlinear 
feedback, coupling effects of the joint flexibility. More accurate description of robot 
dynamics may include fast actuator dynamics and joint-link flexibility, and so on. 
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2. Equations of motion 

Consider the single-link arm shown in Figure 1 consisting of a flexible joint.  

 

Fig. 1. Single-link robot with joint flexibility 

The kinetic energy of the manipulator is a quadratic function of the vector q   

 
,

1 1
( ) ( )

2 2

n
T

ij i j
i j

K q D q q d q q q                (1) 

where the n n  inertia matrix ( )D q is symmetric and positive definite for each nq .  

The potential energy ( )V V q is independent of q . We have remarked that robotic 

manipulator satisfies this condition.  

The Euler-Lagrange equations for such a system can be derived as follows. Since   

 
,
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Also  
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Thus the Euler-Lagrange equations can be written as 

 
,

1
( )

2
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kj j i j k

i k kj i j

d d V
d q q q q

q q q

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By interchanging the order of summation and taking advantage of symmetry, we can show 

that  
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The term 
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                 (4) 

are known as Christoffel symbols. Note that, for a fixed k, we have ijk jikc c , which reduces 

the effort involved in computing these symbols by a factor of about one half. Finally, if we 

define  

 k
k

V

q
 




            (5) 

then the Euler-Lagrange equations can be written as  

 
,

( ) ( ) ( )kj j ijk i j k k
j i j

d q q c q q q q       , 1, ,k n       (6)  

In the above equation, there are three types of terms. The first involve the second derivative 

of the generalized coordinates. The second are quadratic terms in the first derivatives of q, 

where the coefficients may depend on q. These are further classified into two types. Terms 

involving a product of the type 2
iq  are called centrifugal, while those involving a product of 

the type i jq q   where i j are called Coriolis terms. The third type of terms are those 

involving only q but not its derivatives. Clearly the latter arise from differentiating the 

potential energy. It is common to write (6) in matrix form as  

 ( ) ( , ) ( )D q q C q q q g q                 (7) 
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where the k, j-th element of the matrix ( , )C q q is defined as  

1 1

1
( )

2

n n
kj ijki

kj ijk i i
i j ki i

d dd
c c q q q

q q q 

       
    

    

3. Feedback linearization design for inner loop 

We first derive a model similar to (6) to represent the dynamics of a single link robot with joint 
flexibility. For simplicity, ignoring damping of the equations of motion, system is given by 

 1 1 1 1 1 1 2( ) ( , ) ( ) 0D q q h q q q K q q              (8) 

 2 1 2( )Jq K q q u             (9) 

In state space, which is now 4n , we define state variables in block form 

 1 1 2 1

3 2 4 2

x q x q

x q x q

 
 




          (10) 

Then from (8)-(9) we have  

 
1 2x x              (11) 

  1
2 1 1 2 1 3( ) ( , ) ( )x D x h x x K x x         (12) 

 
3 4x x                (13) 

 1 1
4 1 3( )x J K x x J u              (14) 

This system is then of the form 

 ( ) ( )x f x G x u           (15) 

For a single-input nonlinear system, ( )f x and ( )g x are smooth vector fields on n , 

(0) 0f  , and u , is said to be feedback linearizable if there exists a region U in 
n containing the origin, a diffeomorphism T: nU  , and nonlinear feedback  

 ( ) ( )u x x v            (16) 

with ( ) 0x  on U, such that the transformed variables 

 ( )y T x         (17) 

satisfy the system of equations 

 y Ay bv         (18) 

where  
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 
 
 
  

 

In the single-link case we see that the appropriate state variables with which to define the 

system so that it could be linearized by nonlinear feedback on the link position, velocity, 

acceleration, and jerk. Following the single-input case, then, we can apply same action  

on the multi-link case and derive a feedback linearizing transformation blockwise as 

follows,  

 1 1 1( )y T x x             (19) 

 2 2 1 2( )y T x y x             (20) 

  1
3 3 2 2 1 1 2 1 3( ) ( ) ( , ) ( )y T x y x D x h x x K x x             (21) 

 

 1 1
4 4 3 1 1 2 1 3 1 2

1

1 1
1 1 2 1 3 2 4 4 1 2 3 1 4

2

( ) [ ( ) ] ( , ) ( ) ( ) {

[ ( ) ( ( , ) ( ))] ( )} ( , , ) ( )

d h
y T x y D x h x x K x x D x x

dt x

h
D x h x x K x x K x x a x x x D x Kx

x

 

 


      




       



    (22) 

where for simplicity we define the function 4a to be that in the definition of 4y except the 

last term, which is 1
4D Kx . Note that 4x appears only in this last term so that 4a depends 

only on 1 2 3, ,x x x . 

As in the single-link case, the above mapping is a global diffeomorphism. Its inverse can be 
found by 

 1 1x y        (23) 

 2 2x y             (24) 

 1
3 1 1 3 1 2( ( ) ( , ))x y K D y y h y y         (25) 

 1
4 1 4 4 1 2 3( )( ( , , ))x K D y y a y y y          (26) 

The linearizing control law can now be found from the condition 

 4y v             (27) 

where v  is a new control input. Computing 4y  from (22) and suppressing function 
arguments for brevity yields  
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1 1 1 1 14 4 4

2 1 3 4 4 1 3
1 2 3

( ( )) [ ] ( ( ) )

( ) ( )

a a a d
v x D h K x x x D Kx D K J K x x J u

x x x dt

a x b x u

      
        
  

 
  (28) 

where  

 1 1 1 14 4 4
2 1 3 4 4 1 3

1 2 3

( ) : ( ( )) [ ] ( )
a a a d

a x x D h K x x x D Kx D KJ K x x
x x x dt

     
       
  

     (29) 

 1 1( ) ( )b x D x KJ u          (30) 

Solving the above expression for u yields 

 1( ) ( ( ))u b x v a x        (31) 

 : ( ) ( )x x v              (32) 

where 1( ) ( )x JK D x   and 1( ) ( ) ( )x b x a x    

With the nonlinear change of coordinates (19)-(22) and nonlinear feedback (32) the 
transformed system has the linear block form 

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

I

I
y y v

I

I

   
   
    
   
   
   

           (33) 

: Ay bv   

where I n n   identity matrix, 0 n n   zero matrix, 4
1 2 3 4( , , , )T T T T T ny y y y y  , and 

nv . The system (33) represents a set of n decoupled quadruple integrators. 

4. Outer loop design based on predictive function control 

4.1 why use predictive function control 

The technique of feedback linearization is important due to it leads to a control design 
methodology for nonlinear systems. In the context of control theory, however, one should 
be highly suspicious of techniques that rely on exact mathematical cancellation of terms, 
linear or nonlinear, from the equations defining the system. 

In this section, we investigate the effect of parameter uncertainty, computational error, 
model simplification, and etc. We show that the most important property of feedback 
linearizable systems is not necessarily that the nonlinearities can be exactly cancelled by 
nonlinear feedback, but rather that, once an appropriate coordinate system is found in 
which the system can be linearized, the nonlinearities are in the range space of the input. 
This property is highly significant and is exploited by the predictive function control 
techniques to guarantee performance in the realistic case that the nonlinearities in the 
system are not known exactly. 
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Consider a single-input feedback linearizable system. After the appropriate coordinate 
transformation, the system can be written in the ideal case as 

 

1 2

1( )[ ( )]n

y y

y v x u x 



  







             (34) 

provided that u is given by (16) in order to cancel the nonlinear terms ( )x and ( )x . 

In practice such exact cancellation is not achievable and it is more realistic to suppose that 

the control law u in (16) is of the form 

 ˆˆ( ) ( )u x x v         (35) 

where ˆ( )x , ˆ( )x represent the computed versions of ( )x , ( )x , respectively. These 

functions may differ from the true ( )x , ( )x for several reasons. Because the inner loop 

control u is implemented digitally, there will be an error due to computational round-off 

and delay. Also, since the terms ( )x , ( )x are functions of the system parameters such as 

masses, and moments of inertia, any uncertainty in knowledge of these parameters will be 

in reflected in ˆ( )x , ˆ( )x . In addition, one may choose intentionally to simplify the control 

u by dropping various terms in the equations in order to facilitate on-line computation. If 

we now substitute the control law (35) into (34) we obtain 

 

1 2

1

1

ˆˆ( )[ ( ) ( ) ( )]

( , , , )
n

n

y y

y v x x x v x

v y y v

   






   
 








     (36) 

where the uncertainty   is given as 

      1
1 1

1 ( )
ˆ ˆ( , , , ) 1 |n y T X

y y v v      
 

          (37) 

The system (36) can be written in matrix form as  

 { ( , )}y Ay b v y v       (38) 

where A and b are given by (18). For multi-input case, similar to (33), and if mv , and  

 : n m m   . Note that the system (38) is still nonlinear whenever 0  . The practical 

implication of this is solved by the outer loop predictive function control (PFC). 

The system (38) can be represented by the block diagram of Figure 2. The application of the 

nonlinear inner loop control law results in a system which is “approximately linear”. A 

common approach is to decompose the control input v  in (38) into two parts, the first to 
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stabilize the ‘nominal linear system’ represented by (38) with 0  . In this case v  can be 

taken as a linear state feedback control law designed to stabilize the nominal system and/or 

for tracking a desired trajectory. A second stage control v is then designed for robustness, 

that is, to guarantee the performance of the nominal design in the case that 0  . Thus the 

form of the control law is  

 ˆˆ( ) ( )u x x v            (39) 

 v Ky v              (40) 

 ( )rv PFC y               (41) 

where Ky is a linear feedback designed to place the eigenvalues of A in a desired location, 
v  represents an additional feedback loop to maintain the nominal performance despite the 

presence of the nonlinear term  . ry is a reference input, which can be chosen as a signal for 
tracking a desired trajectory.  

 

Fig. 2. block diagram for PFC outer loop design 

4.2 Predictive function control 

All MPC strategies use the same basic approach i.e., prediction of the future plant outputs, 
and calculation of the manipulated variable for an optimal control. Most MPC strategies are 
based on the following principles: 

Use of an internal model  

Its formulation is not restricted to a particular form, and the internal model can be linear, 
nonlinear, state space form, transfer function form, first principles, black-box etc. In PFC, 

nonlinear 
system 
of joint 

flexibility 

T(x) 

ˆ( )x

ˆ( )x  
PFC 

linear model 

base 
function 

x y 

 ŷ

u 
v 

e 

y

-K 


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only independent models where the model output is computed only with the present and 
past inputs of the process models are used. 

Specification of a reference trajectory 

Usually an exponential. 

Determination of the control law  

The control law is derived from the minimization of the error between the predicted output 
and the reference with the projection of the Manipulated Variable (MV) on a basis of functions. 

Although based on these principles the PFC algorithm may be of several levels of 
complexity depending on the order and form of the internal model, the order of the basis 
function used to decompose the MV and the reference trajectory used. 

4.3 First order PFC 

Although it is unrealistic to represent industrial systems by a first order system, as most of 
them are in a higher order, some well behaved ones may be estimated by a first order. The 
estimation will not be perfect at each sample time, however, the robustness of the PFC will 
help to maintain a decent control. 

If the system can be modelled by a first order plus pure time delay system, then the 
following steps in the development of the control law are taken. 

Model formulation 

In order to implement a basic first order PFC, a typical first order transfer function equation 
(42) is used. 

 ( ) ( )
1

M
M

M

K
y s u s

T S



      (42) 

Note that the time delay is not considered in the internal model formulation and in this case 

MK  is equal to one. The discrete time formulation of the model zero-order hold equivalent 
is then obtained in (43).  

 ( ) ( 1) (1 ) ( 1)M M My k y k K u k            (43) 

where exp( )s

M

T

T
    . If the manipulated variable is structured as a step basis function: 

 ( ) ( )H
L My k H y k          (44) 

 ( ) (1 ) ( )H
F My k H K u k          (45) 

Where, Ly and Fy are respectively, the free (autoregressive) and the forced response of My . 

Reference trajectory formulation 

If Ry  is the expression of the reference trajectory, then at the coincidence point H: 
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 ( ) ( ) ( ( ) ( ))H
R PC k H y k H C k y k             (46) 

thus: 

 ( ) ( ) ( ( ) ( ))H
R Py k H C k C k y k          (47) 

Predicted process output 

The predicted process output is given by the model response, plus a term given the error 

between the same model output and the process output: 

 ˆ ( ) ( ) ( ( ) ( ))P M P My k H y k H y k y k              (48) 

where ( ) ( ) ( ) ( ) (1 ) ( )H H
M L F M My k H y k H y k H y k K u k         . 

Computation of the control law 

At the coincidence point H: 

 ˆ( ) ( )R Py k H y k H           (49) 

Combining (44), (45), (47) and (48) yields 

 ( ) ( ( ) ( )) ( ) ( ) ( )H
P P M MC k C k y k y k y k H y k               (50) 

Replacing ( )My k H  by its equivalent in equations (44) and (45) we obtain: 

 ( )(1 ) ( )(1 ) ( )(1 ) (1 ) ( )H H H H
P M MC k y k y k K u k               (51) 

Solving for u(k) the final result is the control law given in (52). 

 
( ( ) ( ))(1 ) ( )

( )
(1 )

H
P M

H
MM

C k y k y k
u k

KK




 
 


        (52) 

4.4 Case of a process with a pure time delay 

In the linear case, a process with a pure time delay can be expressed in terms of a delay-free 

part, plus a delay added at the output, as in Fig. 3.  

 

 

Fig. 3. Process with time delay 

The value Pdelayy  at time k is measured, but not Py . In order to take into account the delay 

in a control law formulation, prior knowledge of the delay value d is needed. Py  can be 

estimated as:  

 

Delay free 
Process 

 

Delay, d 
u yP yPdelay 
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 ( ) ( ) ( ) ( )P Pdelay M My k y k y k y k d          (53) 

4.5 Tuning in PFC 

According to the three principles of PFC, tuning is a function of the order of the basis 
constructing the MV, the reference trajectory, the control horizon and the CLRT value. 

The influence of the PFC parameters is given in Table 1, where the influence of various  
PFC parameters is on precision (Steady State Resp.), transient response and robustness  

are graded between 0 (indicating minimum influence) and 1 (indicating maximum  
influence). 

 

 SS Resp. Transient Resp. Robustness 

Basis function 1 0 0 

Reference trajectory 0 1 1/2 

Coincidence horizon 0 1/2 1 

Table 1. Effect of PFC parameters in tuning 

In most cases, an exponential reference trajectory is chosen along with a single coincidence 

horizon point (H = 1) and a zero order basis function (Richalet, 1993). Considering the 

known Open Loop Response Time of the system (OLRT), one can choose the CLRT value 

given by the ratio OLRT/CLRT. This ratio then becomes the major tuning parameter 

shaping the system output and MV, dictating how much overshoot occurs and ensuring 

stability, on the condition that the internal model is accurate enough. For slow processes, 

e.g., heat exchange systems, a ratio of 4 or 5 is found most suitable, and ensures a stable 

PFC. 

5. Simulation 

Consider the single link manipulator with flexible joint shown in Figure 1. Choosing 1q  and 

2q  as generalized coordinates, the kinetic energy is  

 2 2
1 2

1 1

2 2
K Iq Jq         (54) 

The potential energy is 

 2
1 1 2

1
(1 cos ) ( )

2
V MgL q k q q            (55) 

The Lagrangian is 

 2 2 2
1 2 1 1 2

1 1 1
(1 cos ) ( )

2 2 2
L K V Iq Jq MgL q k q q            (56) 

Therefore we compute 
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 1
1

L
Iq

q








    2

2

L
Jq

q








        (57) 

 1
1

d L
Iq

dt q







     2
2

d L
Jq

dt q







         (58) 

 1 1 2
1

sin( ) ( )
L

MgL q k q q
q


   


    1 2

2

( )
L

k q q
q


 


     (59) 

Therefore the equations of motion, ignoring damping, are given by 

 1 1 1 2sin( ) ( ) 0Iq MgL q k q q           (60) 

 2 1 2( )Jq k q q u         (61) 

Note that since the nonlinearity enters into the first equation the control u cannot simply be 

chosen to cancel it as in the case of the rigid manipulator equations. In other words, there is 

no obvious analogue of the inverse dynamics control for the system in this form. 

In state space we set 

1 1x q    2 1x q   

3 2x q    4 2x q   

and write the system (60)- (61) as 

 

1 2

2 1 1 3

3 4

4 1 3

sin( ) ( )

1
( )

x x

MgL k
x x x x

I I
x x

k
x x x u

J J



   



  









          (62) 

The system is thus of the form (15) with 

 

2

1 1 3

4

1 3

sin( ) ( )

( )

( )

x

MgL k
x x x

I I
f x

x

k
x x

J

 
 
   
 

  
 
  
 

        

0

0

( ) 0

1

g x

J

 
 
 
 
 
 
  

       (63) 

Therefore n=4 and the necessary and sufficient conditions for feedback linearization of this 

system are that  
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  2 3

2

2

0 0 0

0 0 0

, ( ), ( ), ( ) 4
1

0 0

1
0 0

f f f

k

IJ

k

IJ
rank g ad g ad g ad g rank

k

J J

k

J J

 
 
 
 
 
  
 

 
 
 

 
 

   (64) 

which has rank 4 for 0k  , ,I J   . Also, since vector fields  2, ( ), ( )f fg ad g ad g  are constant, 

they form an involutive set.  

  2, ( ), ( )f fg ad g ad g         (65) 

To see this it suffices to note that the Lie Bracket of two constant vector fields is zero. Hence 
the Lie Bracket of any two members of the set of vector fields in (65) is zero which is trivially 
a linear combination of the vector fields themselves. It follows that the system (60)- (61) is 
feedback linearizable. The new coordinates 

 i iy T    1, , 4i          (66) 

are found from the conditions (67)- (68) 

 1 , ( ) 0k
fdT ad g       0,1, , 2k n      (67) 

 1
1 , ( ) 0n

fdT ad g         (68) 

with n=4, that is 

 1 , 0dT g        (69) 

 1 ,[ , ] 0dT f g            (70) 

 2
1 , ( ) 0fdT ad g         (71) 

 3
1 , ( ) 0fdT ad g         (72) 

Carrying out the above calculations leads to the system of equations 

 1

2

0
T

x





     1

3

0
T

x





     1

4

0
T

x





     (73) 

and             

 1

1

0
T

x





      (74) 
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From this we see that the function 1T  should be a function of 1x  alone. Therefore, we take 

the simplest solution 

 1 1 1y T x     (75) 

and compute  

 2 2 1 2,y T dT f x            (76) 

 3 3 2 1 1 3, sin( ) ( )
MgL k

y T dT f x x x
I I

            (77) 

 4 4 3 1 2 2 4, cos( ) ( )
MgL k

y T dT f x x x x
I I

           (78) 

The feedback linearizing control input u is found from the condition 

 

4
4

1
( , )

,

( ( )) ( ) ( )

u v dT f
dT g

IJ
v a x x v x

k
 

   
 

   
        (79)  

where  

 
2

1 2 1 1 3 1( ) : sin( )( cos( ) ) ( )( cos( ))
MgL MgL MgLk k k k

x x x x x x x
I I I I I J I

              (80) 

Therefore in the coordinates 1 4, ,y y with the control law (79) the system becomes 

1 2y y    2 3y y  

3 4y y    4y v  

or, in matrix form, 

 y Ay bv          (81) 

where 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

A

 
 
 
 
 
 

         

0

0

0

1

b

 
 
 
 
 
 

 

The transformed variables 1 4, ,y y are themselves physically meaningful. We see that 

1 1y x =link position 
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2 2y x =link velocity 

3 2y y  =link acceleration 

4 3y y  =link jerk 

Since the motion trajectory of the link is typically specified in terms of these quantities they 
are natural variables to use for feedback. 

For given a linear system in state space form, such as (81), a state feedback control law is an 
input v of the form 

 
4

1

T
i i

i

v k y r k y r


             (82) 

where ik  are constants and r is a reference input. If we substitute the control law (82) into 

(81), we obtain 

 ( )Ty A bk y br        (83) 

Thus we see that the linear feedback control has the effect of changing the poles of the 

system from those determined by A to those determined by TA bk  

When the parameters are chosen 1 62.5k  , 2 213.6k  , 3 204.2k   4 54k  , we can get step 

responses in Figure 4. where k1, k2, k3 and k4 are linear feedback coefficients to place the 

eigenvalues of A in a desired location. 

 

1 1

2 2

3 3

4 4

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

62.5 213.8 204.2 54 1

y y

y y
r

y y

y y

       
       
        
       
       

          






    (84) 

  
1

2

3

4

1 0 0 0

y

y
y

y

y

 
 
 
 
 
 

       (85) 

The internal model parameter: 0.016MK  , 3MT  , 8d  , and the coincidence point H=10. 

Response time of reference trajectory is 0.01, and sample time is 0.01. 

For the uncertainty  , the system (38) can be written in matrix form as  

( ) { ( , )}Ty A bk y b r y v     

then use predictive function control strategy to reduce or overcome uncertainty of nonlinear 

feedback error ( , )y v ,and simulation result is shown in Figure 5 for ( , ) 10% ry v y  . 
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Fig. 4. link position output 
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Fig. 5. link position output with uncertainty rejection 
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6. Conclusion  

A new three stage design method is presented for the single link manipulator with flexible 
joint. The first is feedback linearization; the second is to use pole placement to satisfy 
performance, and the third is to develop predictive function control to compensate 
uncertainty. Finally, for the same uncertainty, robustness is better than traditional method.  
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